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Abstract. Rainfall erosivity is one of the most important factors incorporated into the empirical soil erosion models USLE 10 

(Universal Soil Loss Equation) and RUSLE (Revised Universal Soil Loss Equation). Gridded precipitation datasets have been 

widely used in the estimation of rainfall erosivity, whereas biases due to scale differences between gridded data and gauge 

data have been ignored. Based on daily precipitation observations from over 2000 stations in China, as well as four widely 

used gauge-based gridded daily precipitation datasets, CPC, GPCC, CN05.1 and NMIC, this study compared the probability 

density functions (PDFs) of the gridded and gauge datasets using the skill score method, quantified the bias of rainfall erosivity 15 

(including the R-factor and 1-in-10-year event rainfall erosivity) estimated using the gridded daily precipitation datasets from 

that estimated using the gauge daily precipitation dataset based on the area reduction factor (ARF) method, and established 

correction factors for rainfall erosivity maps generated from gridded datasets. The results showed that the gridded daily data 

reduced the frequency of no-rain days and the intensity of heavy precipitation. In the eastern part of China, the grid-estimated 

R-factor values were underestimated by 15–40 % compared with the gauge-estimated values, and the grid-estimated 1-in-10-20 

year event rainfall erosivity values were underestimated by 25–50 %, whereas in the western part of China, noticeable random 

errors were introduced. The lower probability and intensity of the daily precipitation larger than the 90th percentile in the 

gridded datasets were mainly responsible for the underestimation. CN05.1 was the most-recommended among the four datasets, 

as it had the lowest mean relative error (MRE), and the accuracy was higher for the eastern part of China than for the western 

part of China. The MREs were 16.1 % and 25.1 % for the R-factor after applying correction factors of 1.708 and 1.010, 25 

respectively, for the eastern and western part of China. The 1-in-10-year event erosivity had larger correction factors and MREs 

than did the R-factor, with the MREs being 22.1 % and 27.2 % after applying correction factors of 1.959 and 1.880, respectively, 

for the eastern and western part of China. This study pointed out that in the applications of gridded precipitation datasets, the 

empirical models established based on gauge precipitation data should not be used directly for the gridded data, or a bias 

correction process needed to be considered for the model outputs. 30 
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1 Introduction 

Precipitation is one of the most crucial components of the water cycle, and reliable precipitation datasets are the basis for 

characterizing the precipitation process and its impact on other earth surface processes (Kidd and Huffman, 2011). In general, 

there are two major types of datasets: gauge data and gridded data. Gauge observations provide relatively accurate 

measurements of precipitation at site locations. However, they have obvious limitations due to poor spatial coverage in many 35 

parts of the world (New et al., 2001; Kidd and Huffman, 2011), and gauge data alone are often insufficient for many 

applications (Villarini and Krajewski, 2008; Kotlarski et al., 2017). 

To improve the spatial and temporal coverage of precipitation observations, numerous gridded datasets with different 

spatiotemporal resolutions have been developed. These gridded datasets are based on the interpolation of gauge observations 

using different spatial interpolation methods (Peterson and Vose, 1997; Hulme, 1992; Xie et al., 2007; Schamm et al., 2014), 40 

retrieval of satellite or weather radar data (Huffman et al., 2007; Joyce et al., 2004; Ashouri et al., 2015), merged gauge-

satellite or gauge-radar precipitation products (Adler et al., 2003; Xie et al., 1997), and reanalysis data obtained by merging 

observations and numerical forecast products through data assimilation technology (Dee et al., 2011; Kobayashi et al., 2015; 

Kanamitsu et al., 2002). These gridded precipitation datasets can be applied in global and regional climatological studies 

(Alexander et al., 2006; Sun et al., 2014; IPCC, 2014), climate model evaluations (Kotlarski et al., 2017; Prein and Gobiet, 45 

2017), and, more relevant to this study, can be used as a vital meteorological input to various land surface process models, 

such as hydrological models, crop models, and soil erosion models (Yilmaz et al., 2005; Hong et al., 2007; Jiang et al., 2012; 

Vrieling et al., 2014). In addition to gridded precipitation products based on observations, gridded precipitation projections 

from global climate models (GCMs) and regional climate models (RCMs) have been widely used to drive land surface process 

models for climate change impact assessments (Booij, 2005; Liu et al., 2014; Gosling and Arnell, 2016). This kind of research 50 

is of fundamental importance for our adaptation to climate change, as significant global warming has occurred since the 

industrial revolution and is projected to continue throughout this century (IPCC, 2014). 

When applying gridded precipitation datasets, certain issues deserve special attention. Apart from interpolation errors and 

satellite retrieval bias, gridded data behave differently from gauge observations in probability distribution functions (PDFs) of 

the daily precipitation amounts due to the intrinsic difference in spatial scales, which is common in gauge-based interpolation 55 

products, satellite products, reanalysis products and outputs of climate models (Xie et al., 2007; Chen et al., 2008; Shen et al., 

2010; Tapiador et al., 2012). This is expected because the gridded value, which represents the average precipitation over a 

gridded cell (about 1–100 km2), is supposed to differ from the gauge data, which represents the sampled value of a point (100–

1000 cm2). The differences in PDFs between gridded and gauge datasets need to be considered in the application of the datasets; 

otherwise, they may lead to bias in model outputs (Zhang et al., 2011; Hofstra et al., 2012; Gehne et al., 2016). 60 

One typical case is the use of gridded precipitation data in the estimation of rainfall erosivity. Rainfall erosivity represents the 

potential of rainfall and runoff to cause soil erosion, which is one of the factors incorporated in the widely used soil erosion 

model USLE and RUSLE (Wischmeier and Smith, 1978; Renard et al., 1997). The mean annual rainfall erosivity (the R-factor) 
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is defined as the mean annual sum of the event EI30, which is calculated as the product of the total kinetic energy, E, and the 

maximum 30-minute intensity, I30, of an event (Wischmeier and Smith, 1958). The calculation of EI30 requires breakpoint 65 

precipitation data or data with short-term observation intervals and long timeseries, which are unavailable in many countries 

and regions. To solve this problem, many statistical models using annual, monthly or daily precipitation data have been 

developed (Yu and Rosewell, 1996; Zhang and Fu, 2003). It has been shown that models using daily precipitation data can be 

used to estimate three aspects of rainfall erosivity that are required in the ULSE and RULSE models: the R-factor, seasonal 

distribution of rainfall erosivity and event EI30 values with different return periods; therefore, daily models have been widely 70 

used in soil erosion assessments in China (Xie et al., 2016). 

In practice, to generate a rainfall erosivity map that provides information for an entire area, including areas without gauge 

observations, two approaches can be used. The first is to calculate rainfall erosivity for individual stations and then spatially 

interpolate the values onto a predefined grid; the second is to generate gridded rainfall erosivity maps based on gridded 

precipitation products directly (Yin et al., 2017). The former approach was chosen in most previous studies and has been 75 

proven to be highly accurate since the R-factor, as a long-term average annual value, has less spatial variability, so the spatial 

interpolation does not lead to large errors (Hong et al., 1997; Zhang et al., 2003). The second method has been used more 

frequently recently as gridded precipitation datasets are more readily available and easily used to update rainfall erosivity maps. 

For example, Lu and Yu (2002) generated a map of rainfall erosivity for Australia at a 0.05-degree resolution using a gauge-

based gridded daily precipitation dataset. Zhu and Yu (2015) obtained a map of rainfall erosivity at a 0.25-degree resolution 80 

for mainland China from a gauge-based gridded daily precipitation dataset produced by the National Meteorological 

Information Center (NMIC). In regions where gauge precipitation records are scarce, such as Africa, satellite precipitation 

products have become the preferred data source. For instance, Vrieling et al. (2010, 2014) analyzed the variation in rainfall 

erosivity across Africa using the Tropical Rainfall Measuring Mission (TRMM) satellite product with a 3-hour temporal 

resolution and a 0.25-degree spatial resolution. In addition, since future changes in precipitation are likely to influence rainfall 85 

erosivity, the gridded precipitation outputs of GCMs and RCMs have been used to project future rainfall erosivity under climate 

change (Nearing, 2001; Zhang et al., 2010; Biasutti and Seager, 2015; Panagos et al., 2017; Borrelli et al., 2020). 

However, due to the intrinsic differences between gridded data and gauge data, rainfall erosivity estimated from gridded data 

is likely to be biased if inappropriate methods are used. The largest problem is that the statistical relationship between daily or 

monthly precipitation and rainfall erosivity, which is established from gauge data, cannot be used directly for gridded data. 90 

Nearing (2001) pointed out that when projecting future rainfall erosivity, the results from GCMs would not be compatible with 

the results from historical gauge records since an integrated average over the entire grid square could not be compared with a 

record from a specific location within the grid. Biasutti and Seager (2015) also explained that even though the grid of a 

downscaled dataset was quite fine, the coefficients of equations estimated from the gauge values would not necessarily be 

appropriate for a gridded dataset. In many studies, this problem has been overlooked, and the resulting biases have not been 95 

well-quantified (Zhu and Yu, 2015; Teng et al., 2017). To make gridded results comparable with gauge results, statistical 

erosivity models should be recalibrated or even rebuilt on the grid scale (Biasutti and Seager, 2015), or for projections from 
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GCMs, the gridded precipitation outputs need to be spatially downscaled to points, from which the future rainfall erosivity 

values can be calculated and then interpolated to generate an R-factor map (Zhang et al., 2010; Shiono et al., 2013).  

The major objectives of this study are to (1) quantify the biases of precipitation metrics and rainfall erosivity values estimated 100 

with four gauge-based gridded daily precipitation datasets (CPC, GPCC, CN05.1 and NMIC) based on gauge daily 

precipitation observations and (2) develop correction factors of the grid-estimated rainfall erosivity to minimize the bias. First, 

we compared four gridded datasets with gauge daily precipitation observations for 2243 meteorological stations in China in 

terms of the differences in the PDFs of the daily precipitation values, precipitation metrics and rainfall erosivity values 

estimated from a power function daily model. Second, a set of correction factors was established by relating the rainfall 105 

erosivity values from the four gridded daily datasets to those from the state-of-the-art rainfall erosivity map for mainland China 

generated based on hourly data from 2396 stations (Yue et al., 2020b). These correction factors can be useful when applying 

gridded daily precipitation datasets in the estimation of rainfall erosivity and soil erosion in China. 

2 Data and methods 

2.1 Data 110 

2.1.1 Gauge-observed daily precipitation data 

Daily precipitation data from 2481 meteorological stations, archived by the China Meteorological Administration (CMA), 

were used in this study. The longest overlapping period between the gauge data and four sets of gridded data was from 1 

January 1982 to 31 December 2014. If the precipitation data were missing for more than six days in a month during the 

overlapping period, the data from that station were excluded from this study (CMA, 2003). Finally, the gauge observations of 115 

2243 stations from 1982 to 2014 were selected. 

2.1.2 Gridded daily precipitation data 

In this study, four gridded daily datasets were used: two worldwide gridded daily precipitation datasets, the CPC (Climate 

Prediction Center) Unified Gauge-based Analysis of Global Daily Precipitation (hereinafter referred to as CPC; Xie et al., 

2007) and the GPCC (Global Precipitation Climatology Centre) First Guess Daily product (hereinafter referred to as GPCC; 120 

Schamm et al., 2014); and two nationwide datasets, CN05.1, developed by China Meteorological Administration (Wu et al., 

2013), and the China Gridded Daily Precipitation Product, developed by the National Meteorological Information Center 

(hereinafter referred to as NMIC; Shen et al., 2010). Details about the four datasets are shown in Table 1. 

Table 1. Basic information on gridded daily precipitation datasets. 

Data Source CPC GPCC CN05.1 NMIC 

References Xie et al., 2007 Schamm et al., 2014 Wu et al., 2013 Shen et al., 2010 
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Spatial resolution 0.5° × 0.5° 1° × 1° 0.25° × 0.25° 0.5° × 0.5° 

Interpolation 

method 

Optimal interpolation (OI) 

with anomalies 

Ordinary block kriging 

with anomalies 

Climatology—thin plate 

smoothing splines; 

anomaly—angular 

distance weighting 

Optimal interpolation 

(OI) with anomalies 

Coverage Global land surface Global land surface China China 

Period 1979.1.1–present 1982.1.1–present 1961.1.1–present 1957.1.1–present 

No. of stations 

1979–2005: more than 

30000; 2006–present: more 

than 17000 

6000~8000 in Global 

Telecommunication 

System (GTS) 

More than 2400 More than 2400 

No. of stations in 

China 

more than 700 

Meteorological sites across 

China and more than 1000 

hydrological sites in the 

Yellow River Basin 

More than 700 More than 2400 More than 2400 

2.2 Method 125 

2.2.1 Skill score 

The skill score provided a quantitative measure of the similarity of the PDFs. The similarity of the PDFs of the daily 

precipitation amounts between gauge and gridded data was measured with the skill score (𝑆𝑠𝑐𝑜𝑟𝑒) following the methods 

outlined in Perkins et al. (2007): 

𝑆𝑠𝑐𝑜𝑟𝑒 = ∑ min(𝑍𝑔, 𝑍𝑜)𝑛
1  ,           (1) 130 

where n is the number of bins used to calculate the PDF for a given station (the bin width was set to 0.5 mm, and n was 

determined by bin width and maximum precipitation); 𝑍𝑔 is the fraction of values in a given bin from the gridded data; and 𝑍𝑜 

is the fraction of values in the same bin from the gauge-observed data. 𝑍𝑔 and 𝑍𝑜 were calculated when the daily precipitation 

amount was ≥ 0.1 mm. This metric, being the sum of the minimum value of two frequency distributions, measured the common 

area between two PDFs. The 𝑆𝑠𝑐𝑜𝑟𝑒 ranged from 0 to 1; the closer its value was to 1, the more similar the two PDFs were. 135 
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2.2.2 Definition of the precipitation metrics, rainfall erosivity, and areal reduction factors 

Four metrics were used to measure the performances of the different datasets for both the average precipitation conditions and 

the frequency or intensity of extreme events (Table 2). The metrics were recommended by the World Climate Research 

Programme/Climate Variability and Predictability (WCRP/CLIVAR) Expert Team on Climate Change Detection, Monitoring, 

and Indices (ETCCDMI) (Alexander et al., 2006). 140 

To estimate rainfall erosivity, we used a model of erosivity as a power function of the daily precipitation amount with a 

coefficient that varies seasonally as a sinusoidal function of the month (Xie et al, 2016): 

𝑅𝑑𝑎𝑦,𝑚 = 0.2686 [1 + 0.5412 cos (
π

6
𝑚 −

7π

6
)] 𝑃𝑑𝑎𝑦,𝑚

1.7265, when 𝑅𝑑𝑎𝑦,𝑚 ≥ 10𝑚𝑚,    (2) 

where m is the month, from 1 to 12; 𝑅𝑑𝑎𝑦,𝑚 is the rainfall erosivity value for the day in the mth month; and 𝑃𝑑𝑎𝑦,𝑚 is the daily 

precipitation amount for the day in the mth month and was no less than 10 mm, which was the threshold of erosive daily 145 

precipitation. The daily rainfall erosivity values were accumulated for each month, and the R-factor was defined as the sum of 

the average monthly rainfall erosivity values (MJ·mm·hm-2·h-1·a-1) over the study period. 

In addition, the 1-in-10-year event EI30, which was the event rainfall erosivity value with different return periods of 10 years 

(MJ·mm·hm-2·h-1), was also considered. Though from daily precipitation records, only daily rainfall erosivity could be 

generated, Yin et al. (2019) found that there was a good linear relationship between event and daily rainfall erosivity values 150 

for corresponding return periods (the 1-in-10-year event EI30 was approximately 1.17 times as much as the 1-in-10-year daily 

rainfall erosivity value). The generalized extreme value distribution (Smith, 2001) was first used to fit the annual series of the 

maximum daily rainfall erosivity values, and the 1-in-10-year daily rainfall erosivity value was then generated based on the 

calibrated extreme value distribution. Finally, the 1-in-10-year daily rainfall erosivity value was multiplied by the conversion 

factor of 1.17 to obtain the 1-in-10-year event EI30. 155 

The precipitation metrics and rainfall erosivity values were first calculated for individual stations from gauge data and then 

interpolated into grids consistent with the four gridded datasets in terms of the spatial resolutions (Table 1), using ordinary 

kriging to obtain 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑠𝑡𝑎 and 𝑅𝑠𝑡𝑎. The metrics and rainfall erosivity values were calculated directly from the gridded 

data to obtain 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑔𝑟𝑖 and 𝑅𝑔𝑟𝑖. Used to measure the difference between the two methods, Area Reduction Factor (ARF) 

was defined in this study as the ratio of 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑔𝑟𝑖  over 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑠𝑡𝑎  (𝑅𝑔𝑟𝑖  over 𝑅𝑠𝑡𝑎) (Fowler et al., 2005; Chen and 160 

Knutson, 2008): 

𝐴𝑅𝐹 =
𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑔𝑟𝑖

𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑠𝑡𝑎
, for precipitation metrics;  𝐴𝑅𝐹 =

𝑅𝑔𝑟𝑖

𝑅𝑠𝑡𝑎
, for rainfall erosivity,    (3) 

In all the spatial interpolation processes, leave-one-out cross validation was used to assess the accuracy of the interpolation 

method. PBIAS (percent bias), NSE (Nash-Sutcliffe coefficient of efficiency) and RMSE (root-mean-square error) were 

calculated to examine the differences between the actual values calculated from gauge daily precipitation data and the values 165 

predicted by the kriging interpolation: 
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𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂𝑖−𝑃𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

× 100 % ,          (4) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑁
𝑖=1

 ,           (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝑖 − 𝑃𝑖)2𝑁

𝑖=1  ,          (6) 

where 𝑂𝑖  is the rainfall erosivity value of the ith site calculated from the gauge-observed data and 𝑃𝑖  is the rainfall erosivity 170 

value of the ith site predicted by the kriging method from the cross-validation process. The closer NSE was to 1, and the closer 

PBIAS and RMSE were to 0, the better the interpolation model was. A negative PBIAS value indicated that the interpolation 

model overestimated the values at the sites, and conversely, a positive PBIAS value indicated that the model underestimated 

the values at the sites. 

The ARFs in the eastern part of China, where the climate is relatively humid and soil erosion is mainly caused by water, may 175 

be different from those in the western part of China, where the climate is drier and soil erosion is mainly caused by wind and 

freeze-thaw processes. In addition, the different densities of meteorological stations could also influence the results. Therefore, 

the study area was divided into two parts (Chen and Zhu, 1989), and the evaluation was carried out in the two parts separately. 

 Table 2. Definition of precipitation metrics. 

Metrics Description 

PRCPTOT Mean annual total precipitation from wet days  

WD Wet days: mean annual total days when precipitation ≥ 1 mm 

R95pTOT 
Mean annual total precipitation from days when precipitation > 95th 

percentile on wet days in the study period 

R×1 day Mean annual maximum 1-day precipitation amount  

2.2.3 Correction factors for rainfall erosivity from gridded daily data 180 

Because of the lack of long-term precipitation data with high temporal resolution that can be used to calculate EI30, the main 

method for obtaining nationwide rainfall erosivity datasets is based on daily precipitation data at present (Xie et al., 2016). To 

improve the accuracy of the rainfall erosivity map, Yue et al. (2020b) collected hourly precipitation data from more than 2000 

stations and generated a state-of-the-art rainfall erosivity map for China. In this study, we considered the rainfall erosivity map 

for the period of 1982–2014 generated from Yue’s method as a reference to evaluate the accuracy of the rainfall erosivity 185 

values estimated from gridded daily precipitation data. MAE (mean absolute error) and MRE (mean relative error) were 

calculated for each grid box where a rain gauge was located: 
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𝑀𝐴𝐸 =
1

𝑁
∑ |𝑅𝑔𝑟𝑖(𝑖) − 𝑅𝑟𝑒𝑓(𝑖)|𝑁

𝑖=1  ,          (7) 

𝑀𝑅𝐸 =
∑ |𝑅𝑔𝑟𝑖(𝑖)−𝑅𝑟𝑒𝑓(𝑖)|𝑁

𝑖=1

∑ 𝑅𝑟𝑒𝑓(𝑖)𝑁
𝑖=1

× 100 % ,         (8) 

where 𝑅𝑟𝑒𝑓 is the rainfall erosivity extracted from the reference map. The map contained two aspects: the average annual 190 

rainfall erosivity (the R-factor) and the 1-in-10-year event EI30. The spatial resolution of the rainfall erosivity map was 

converted to match those of the four gridded datasets through bilinear interpolation resampling. 

To facilitate users in obtaining rainfall erosivity values as close to the accurate value as possible based on gridded daily data 

in China, we established correction factors applicable to the four gridded datasets using the reference map. Linear regression 

analysis was conducted based on the characteristics of the errors. It was assumed that the grid boxes that contained 195 

meteorological sites that were used in the generation process of the gridded data had higher accuracy in the gridded daily 

precipitation datasets than grid boxes that did not contain meteorological sites; therefore, these grid boxes were selected for 

use in developing the correction factors. For the eastern part of China, 647 grid boxes with meteorological sites used in the 

generation process of the four gridded precipitation products were selected for the correction factors, and the remaining 1348 

grid boxes with meteorological sites inside them were used for the evaluation of the correction factors. Similarly, for the 200 

western part of China, 167 grid boxes were selected for use developing the correction factors, and 81 grid boxes were used for 

the evaluation. Then, the linear relationships were established as: 

𝑅𝑟𝑒𝑓 = 𝑎 ∙ 𝑅𝑟𝑒𝑓 ,            (9) 

where a is the correction factor. The rainfall erosivity value of each grid box estimated from the gridded data was corrected by 

applying a. Then, the MAE and MRE from Eq. (7) and Eq. (8) were calculated to assess the improved rainfall erosivity values 205 

once the corrections had been made. 
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Figure 1. Spatial distribution of the meteorological stations with daily precipitation observations and the division of the 

eastern and western part of China. All stations were used in the evaluation of differences between 𝑴𝑬𝑻𝑹𝑰𝑪𝑺𝒔𝒕𝒂 and 

𝑴𝑬𝑻𝑹𝑰𝑪𝑺𝒈𝒓𝒊 , as well as 𝑴𝑬𝑻𝑹𝑰𝑪𝑺𝒔𝒕𝒂  and  𝑴𝑬𝑻𝑹𝑰𝑪𝑺𝒈𝒓𝒊 . The stations marked with red dots were used for the 210 

derivation of correction factors, and those with blue dots were used for the evaluation. The three marked stations 

(Beijing, Guangzhou and Yumen) were used as examples to compare the PDFs. 
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3 Results 

3.1 Comparison of PDFs between gridded and gauge data based on skill score 

On the national scale, the skill score values of CN05.1 were the smallest among the four gridded datasets (2.5 % of stations 215 

with 𝑆𝑠𝑐𝑜𝑟𝑒  > 0.9 and 42.2 % of stations with 𝑆𝑠𝑐𝑜𝑟𝑒  > 0.8), whereas NMIC had the largest skill score values (75.2 % of stations 

with 𝑆𝑠𝑐𝑜𝑟𝑒  > 0.9). From the perspective of spatial distribution, the skill scores in the western part of China, such as Xinjiang 

Province and Gansu Province, were relatively small, as well as those in the northern regions in the eastern part of China, such 

as the Loess Plateau, Hebei Province and Shandong Province. The skill scores in the southern regions in the eastern part of 

China were relatively large. 220 

 

Figure 2. Spatial distributions of the skill scores for (a) CPC, (b) GPCC, (c) CN05.1, and (d) NMIC. 

 

Figure 3 shows the PDFs of the daily precipitation amounts of the gauge observations and four gridded datasets of Beijing, 

Guangzhou and Yumen (Fig. 1), which represented conditions in the northern and southern regions in the eastern part of China 225 
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as well as the western part of China, respectively. In Beijing and Guangzhou, the four gridded datasets reduced no-rain days 

(0 mm) but increased drizzle precipitation (0–1 mm) and light precipitation (1–10 mm) compared to those of the original 

gauge observations. For erosive precipitation, the four gridded datasets demonstrated slight increases in the frequency of 

occurrence of precipitation in the 10–30 mm range and decreases in the frequency of occurrence of precipitation larger than 

40 mm in Beijing and precipitation larger than 50 mm in Guangzhou. For Yumen, erosive precipitation events rarely occurred 230 

(PDF < 0.3 %), and no-rain days accounted for more than 90 % of the gauge observations; CPC, GPCC and CN05.1 decreased 

the frequency of occurrence of no-rain days and erosive days, whereas NMIC obtained an almost perfect estimation of no-rain 

and light precipitation days and increased the frequency of occurrence of erosive days. For these three places, the differences 

between CN05.1 and the gauge observations were considerable, especially for the no-rain and low-intensity precipitation 

events in the northern and western regions, whereas NMIC showed similar PDFs to the gauge observations. Figure 3 also 235 

shows a comparison of the extreme daily precipitation amounts (90th, 95th, 99th percentiles and the maximum). As the 

percentile and extreme degree increased, the reduction in the daily precipitation amounts of CPC, GPCC and CN05.1 increased, 

whereas these percentiles based on NMIC were close to or even exceeded those of the gauge observations. 
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Figure 3. Comparison of PDFs and the extreme daily precipitation amounts between the gauge observations and four 240 

gridded datasets: (a) PDFs, Beijing, (b) extreme daily precipitation amounts, Beijing, (c) PDFs, Guangzhou, (d) extreme 

daily precipitation amounts, Guangzhou, (e) PDFs, Yumen, and (f) extreme daily precipitation amounts, Yumen. 

3.2 Comparison of the precipitation metrics and rainfall erosivity values based on ARF 

ARFs indicating the differences in the precipitation metrics obtained through the two approaches ( 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑠𝑡𝑎  and 

𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑔𝑟𝑖), as well as the rainfall erosivity (𝑅𝑠𝑡𝑎 and 𝑅𝑔𝑟𝑖), are shown in Fig. 4. The cross-validation results showed that 245 

the accuracy of the spatial interpolation in the 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑠𝑡𝑎  (𝑅𝑠𝑡𝑎) generation process was quite high (Table 3), which indicated 

that the differences between 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑠𝑡𝑎  and 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑔𝑟𝑖 (𝑅𝑠𝑡𝑎 and 𝑅𝑔𝑟𝑖) were mainly produced during the upscaling of the 

gauge precipitation measurements to grids; that is, the discrepancy occurred because of the gridded precipitation products. In 

the eastern part of China, the gridded data generally conserved the average annual precipitation amounts well, but wet days 

were overestimated by 10–30 %, which led to lower daily precipitation intensities than those seen in the gauge data. For erosive 250 

precipitation (≥ 10 mm day-1, not shown in Fig. 4), the total erosive precipitation amounts of CPC, GPCC, and CN05.1 were 

approximately 10–25 % lower than the amounts seen in the gauge data, whereas the erosive days were captured well, leading 

to a reduction in erosive precipitation intensity. For extreme precipitation metrics, compared with the R95pTOT, which 

comprehensively reflected the intensity and frequency of daily precipitation of the high percentile, the reduction in the average 

annual maximum daily precipitation was more obvious. The medians of the ARFs for the R95pTOT of CPC, GPCC, CN05.1 255 

and NMIC were 0.85, 0.93, 0.97 and 0.97, respectively, and those for R×1 day were 0.69, 0.78, 0.76 and 0.85, respectively. In 

terms of rainfall erosivity, the medians of the ARFs for the R-factors of CPC, GPCC, CN05.1 and NMIC were 0.63, 0.77, 0.75 

and 0.85, respectively, and for the 1-in-10-year event rainfall erosivity (1-in-10-year EI30), they were 0.49, 0.62, 0.55 and 0.71, 

respectively. The results revealed that rainfall erosivity was more affected by extreme precipitation intensity, and the 1-in-10-

year EI30 amplified the differences between gridded and gauge data in extreme precipitation conditions (Table 4). 260 

    The ARFs in the western part of China generally had similar patterns to those in the eastern part of China but with greater 

spatial variability (Fig. 4). The medians of the ARFs for the R95pTOT of CPC, GPCC, CN05.1 and NMIC were 0.82, 0.88, 

0.93 and 1.08, respectively, and those for R×1 day were 0.78, 0.81, 0.66 and 1.01, respectively. The characteristics of extreme 

precipitation resulted in a larger discrepancy between 𝑅𝑔𝑟𝑖 and 𝑅𝑠𝑡𝑎. The medians of the ARFs for the R-factors of CPC, GPCC, 

CN05.1 and NMIC were 0.57, 0.67, 0.41 and 1.06, respectively, and those for the 1-in-10-year EI30 were 0.54, 0.49, 0.31 and 265 

0.70, respectively. 

Table 3. Cross-validation results for the precipitation metrics and rainfall erosivity values. 

Dataset 
PBIAS (%) NSE 

RMSE (the units were the same 

as those of the metrics) 

China Eastern Western China Eastern Western China Eastern Western 
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PRCPTOT –0.10 –0.11 0.31 0.99 0.96 0.85 95.7 95.6 96.4 

WD 0.00 –0.08 1.12 0.95 0.96 0.88 6.5 5.7 11.2 

R95pTOT –0.07 –0.08 0.26 0.99 0.95 0.80 30.4 31.2 23.7 

R×1 day –0.01 0.03 –1.01 0.99 0.92 0.76 8.46 8.74 5.59 

R-factor –0.10 –0.12 0.33 0.94 0.93 0.91 666.1 680.5 543.3 

1-in-10-year 

EI30 
0.13 0.31 –5.31 0.66 0.61 0.47 577.1 588.6 470.6 
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Figure 4. ARFs for the precipitation metrics and rainfall erosivity values. The bars show the variation across the 

stations, marking the median, Q1 and Q3 ranges (box), and the whiskers mark the range of Q1 – 1.5IQRs to Q3 + 270 

1.5IQRs (dashes):(a) CPC in the eastern part of China, (b) CPC in the western part of China, (c) GPCC in the eastern 

part of China, (d) GPCC in the western part of China, (e) CN05.1 in the eastern part of China, (f) CN05.1 in the western 

part of China, (g) NMIC in the eastern part of China, and (h) NMIC in the western part of China. 

 

Table 4. Overestimation (+) or underestimation (–) of precipitation metrics and rainfall erosivity values for the four 275 

gridded datasets. The values were calculated by percent bias. 

Dataset 
CPC GPCC CN05.1 NMIC 

Eastern Western Eastern Western Eastern Western Eastern Western 

PRCPTOT –6.6 –11.3 1.0 3.9 2.1 10.2 3.1 13.4 

WD 25.9 11.7 20.5 14.2 35.1 57.4 16.7 12.1 

R95pTOT –16.0 –18.7 –7.3 –3.7 –2.8 –4.4 –2.2 11.6 

R×1 day –32.4 –22.5 –22.7 –13.4 –24.5 –33.0 –15.1 4.6 

R-factor –37.1 –40.2 –23.0 –14.2 –25.7 –47.7 –13.7 12.5 

1-in-10-year 

EI30 
–50.0 –63.8 –34.4 –64.2 –42.0 –78.5 –25.5 –48.3 

3.3 Correction factors for rainfall erosivity values estimated using gridded daily data 

Based on Yue’s rainfall erosivity map, we conducted regression analysis for the eastern and western part of China 

separately to establish correction factors for the R-factors and 1-in-10-year event EI30 values using stations for 

calibration. The linear equations and coefficients of determination, R2, are shown in Fig. 5 and Fig. 6. 280 

For the R-factor, in the eastern part of China, the results showed that the difference between the R-factor estimated 

from the gridded daily data and that extracted from Yue’s map was larger than the difference between the R-factors 

estimated from the gridded daily data and that estimated from the gauge daily data; the daily erosivity model (Eq. 

(2)) generally underestimated the R-factor by 10–20 % in the eastern part of China. The correction factors 

(regression coefficients) of CPC, GPCC, CN05.1 and NMIC were 1.958, 1.570, 1.708, and 1.445, respectively. The 285 

R2 values for the four gridded datasets were all above 0.80, indicating that the linear models performed well in the 

eastern part of China. However, in the western part of China, the estimated R-factors using CPC and CN05.1 were 

almost unbiased, and the correction factors were close to 1, whereas for GPCC and NMIC, the correction factors 
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were 0.459 and 0.478, respectively. The R2 values varied from 0.26 to 0.79, indicating that random errors played 

more important roles in this region than those in the eastern part of China. 290 

For the 1-in-10-year event EI30 in the eastern part of China, the correction factors of CPC, GPCC, CN05.1 and 

NMIC were 2.133, 1.702, 1.959, and 1.477, respectively, showing that rainfall erosivity events caused by high-

intensity and low-frequency precipitation events calculated using gridded data were more underestimated than 

those of the R-factor. In the western part of China, the estimated 1-in-10-year event EI30 using CPC, GPCC and 

NMIC were almost unbiased, whereas for CN05.1, the correction factor was 1.880. 295 

To evaluate the performance of the correction factors, the MAEs and MREs of the stations used for evaluation were 

calculated before and after application of the correction factors. For the R-factor, in the eastern part of China, the 

MREs of CPC, GPCC, CN05.1, and NMIC were reduced by 28.4 %, 20.3 %, 23.2 % and 13.3 %, respectively, and 

CN05.1 had the smallest MRE (16.1 %, Table 5) after the correction. In the western part of China, the correction 

factors of CPC and CN05.1 were close to 1, and the estimated R-factor of GPCC showed large random errors, so 300 

it was not necessary to conduct the correction except for on NMIC, whose MRE was reduced by 33.8 % with the 

correction. For the 1-in-10-year event EI30, in the eastern part of China, the MREs of CPC, GPCC, CN05.1, and 

NMIC were reduced by 34.0 %, 20.1 %, 26.0 % and 17.1 %, respectively, and NMIC had the smallest MRE (19.4 %, 

Table 6) with the correction, followed by that of CN05.1 (22.1 %). In the western part of China, only CN05.1 was 

worth correcting (the MRE was reduced by 21.0 %). 305 

Taken together, the results showed that the correction factors of CN05.1 had the best performance on both the R-

factor and 1-in-10-year event EI30. Maps of rainfall erosivity in China were generated based on CN05.1 by applying 

the correction factors (Fig. 5 and Fig. 6). To solve the discontinuity near the boundary area between the eastern and 

western part of China caused by the difference in correction factors, a buffer was used for each region following 

the method outlined in Yue et al. (2020a). 310 
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Figure 5. Comparison of the R-factors estimated from the gridded data and those extracted from Yue’s map. Due to 

the different spatial resolutions, the number of independent grids corresponding to stations used for the correction 

factor establishment in the four gridded datasets is different. (a) CPC in the eastern part of China using 417 grids, (b) 

CPC in the western part of China using 149 grids, (c) GPCC in the eastern part of China using 163 grids, (d) GPCC in 315 

the western part of China using 126 grids, (e) CN05.1 in the eastern part of China using 587 grids, (f) CN05.1 in the 

western part of China using 158 grids, (g) NMIC in the eastern part of China using 416 grids, and (h) NMIC in the 

western part of China using 149 grids. 
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Figure 6. As in Fig. 5, but for the 1-in-10-year event EI30. 320 
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Table 5. Performance of the correction factors for the R-factor. In the eastern part of China, 805, 274, 1318, 805 

validation grids were used for CPC, GPCC, CN05.1 and NMIC, respectively; in the western part of China, 77, 52, 84, 

77 validation grids were used for CPC, GPCC, CN05.1 and NMIC, respectively. 

Dataset 

MAE (MJ mm hm-2 h-1 a-1) MRE (%) 

Eastern Western Eastern Western 

Without corr. With corr. Without corr. With corr. Without corr. With corr. Without corr. With corr. 

CPC 2297.1 954.3 113.3 130.0 48.6 20.2 29.7 34.1 

GPCC 1792.7 846.2 112.6 209.4 38.5 18.2 30.9 57.4 

CN05.1 1862.3 762.4 98.3 97.1 39.3 16.1 25.4 25.1 

NMIC 1510.1 880.1 289.3 160.3 31.9 18.6 75.8 42.0 

Table 6. As in Table 5, but for the 1-in-10-year event EI30. 325 

Dataset 

MAE (MJ mm hm-2 h-1) MRE (%) 

Eastern Western Eastern Western 

Without corr. With corr. Without corr. With corr. Without corr. With corr. Without corr. With corr. 

CPC 1227.4 488.2 90.1 83.6 56.4 22.4 33.3 30.9 

GPCC 879.0 471.9 92.5 109.9 43.5 23.4 35.6 42.4 

CN05.1 1042.1 478.1 129.3 73.2 48.1 22.1 48.2 27.2 

NMIC 794.9 423.2 70.2 83.3 36.5 19.4 26.0 30.8 
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Figure 7.  Maps of the R-factor and 1-in-10-year event EI30 values based on CN05.1 after applying the correction factors. 
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4 Discussions 

The gridded daily precipitation datasets have different PDFs of daily precipitation than does the gauge dataset. The main 

difference is that the gridded datasets reduced the frequency of both no-rain days and heavy precipitation compared to those 330 

of the original station observations. In the daily rainfall erosivity model, rainfall erosivity increased exponentially with the 

increase in erosive daily precipitation amount, which meant that a reduction in heavy and extreme precipitation would result 

in a more serious underestimation of rainfall erosivity from the gridded daily precipitation datasets, especially for the event 

rainfall erosivity of high intensity and long return periods. The difference mainly comes from the spatial scale between the 

grid and the point, the station density used for generating the gridded dataset, the interpolation method and the follow-up 335 

bias correction method. 

Although it is very difficult to define the ground truth for the PDFs of mean precipitation over the target grid boxes without a 

very dense gauge network or reliable remote sensing data, it can be inferred that the spatial scale discrepancy between the 

grid and point is objective and is influenced by precipitation characteristics and the spatial resolutions of the grids. The skill 

score, which qualifies the similarity of PDFs between the grid and point scales, demonstrated larger values in the southern 340 

regions in the eastern part of China. In western China and northern regions in eastern China, precipitation tends to be 

concentrated in summer rainstorms, which are local and short-term, whereas in the southern regions in eastern China, there 

tends to be continuous precipitation events covering a wide area and lasting a long time, such as the Meiyu, which results in 

a smaller difference between the grid and point scales. It can be inferred that the differences between the grid and point 

scales would decrease with decreasing grid size. One extreme case is that if the grid size is small enough to a point, a 345 

difference would not exist. 

The station density used to generate the gridded dataset, the interpolation method and the follow-up bias correction method 

influenced the accuracy of the descriptions on the discrepancy between the spatial scales. Taking an extreme example, if the 

station density is high enough and the areal precipitation in a grid is observed by all gauges in the grid, the true value of the 

areal precipitation would be obtained, and the true difference of PDFs due to the spatial scale could be quantized. However, 350 

this is not practical over a wide region, and the interpolation error was generated and increased with the decrease in station 

density in the generation process of the gridded dataset. Among the four datasets in this study, CN05.1 and NMIC were 

generated based on more than 2000 stations over mainland China, which used nearly three times the number of stations 

compared with the other two datasets, CPC and GPCC. The increase in station density was believed to be of critical 

importance in the interpolation of precipitation, especially for daily scales with high spatial variability. This finding can be 355 

verified from the better performance of the gridded datasets in the eastern region, which has a higher station density (> 4 

stations per 10,000 square kilometers) than does the western region (< 1 station per 10,000 square kilometers). 

The largest difference between CN05.1 and NMIC was the different interpolation method, and NMIC applied a bias 

correction process such as quantile mapping, which resulted in a much higher similarity of PDFs compared with other 

datasets. Since the ground truth for the PDFs of the grid was hard to know, the scale difference of the PDFs between the grid 360 
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and point scale was difficult to quantify, it was doubtful whether the bias correction method adapted by NMIC was necessary 

and suitable. In addition, CN05.1 has the highest spatial resolution of 0.25° × 0.25°. To determine whether the spatial 

resolution affected the accuracy of the rainfall erosivity estimations, two spatial resolutions of 0.5° × 0.5° and 1° × 1° were 

derived from the CN05.1 dataset based on the bilinear interpolation method and were used to calculate rainfall erosivity. It 

was found that the linear relationship between the results from the gridded data and gauge data tended to be better with the 365 

increasing spatial resolution; thus, the bias of rainfall erosivity estimated from CN05.1 resulting from the difference in PDFs 

of daily precipitation between the grid and the point scale could be better corrected. In summary, CN05.1 was the most-

recommended dataset among the four gridded datasets for the estimation of rainfall erosivity in China. 

Although rainfall erosivity maps based on hourly data are currently available (Yue et al., 2020b), they are not easy to update 

in a timely manner since the collection of hourly data is harder than that of daily data. Gauge-based gridded daily 370 

precipitation datasets, such as CN05.1 in China, are easily available and can be used conveniently for the generation of 

rainfall erosivity maps (Zhu and Yu, 2015). Spatial scale discrepancies exist not only in gauge-based gridded precipitation 

data but also in satellite, merged and climate model-simulated precipitation products. This makes the direct use of gridded 

precipitation datasets dangerous in applications for which the empirical estimation method of a variable (rainfall erosivity, in 

this study) is developed based on gauge-observed precipitation. If absolute values or absolute changes of the variable are 375 

calculated from the gridded dataset, it is suggested that the empirical model is rebuilt at the grid scale (Biasutti and Seager, 

2015) or the systematic bias of the results generated from the model developed at the gauge scale are corrected. In this study, 

the latter method was adopted. 

5 Conclusions 

Based on the daily precipitation observations of over 2000 stations in China as well as four widely used gridded daily 380 

precipitation datasets, CPC, GPCC, CN05.1 and NMIC, this study compared the PDFs of the daily precipitation amounts, 

precipitation metrics and rainfall erosivity factors between the gridded daily datasets and the gauge daily dataset and 

established correction factors for the four gridded daily precipitation datasets using a high-precision rainfall erosivity map for 

China. The main conclusions are as follows: 

(1) The PDFs of gridded daily data were different from that of the gauge data, mainly reflecting reductions in no-rain days and 385 

heavy precipitation days and increases in light precipitation days. NMIC had the most similar PDF with the gauge data (for 

75.2 % of the stations, 𝑆𝑠𝑐𝑜𝑟𝑒 > 0.9), whereas CN05.1 had the most different PDF (for 2.5 % of the stations, 𝑆𝑠𝑐𝑜𝑟𝑒 > 0.9, and 

42.2 % of the stations > 0.8). 

(2) In the eastern part of China, the medians of the ARFs for the R-factors of CPC, GPCC, CN05.1 and NMIC were 0.63, 0.77, 

0.75 and 0.85, respectively, and those for the 1-in-10-year EI30 were 0.49, 0.62, 0.55 and 0.71, respectively. In the western part 390 

of China, the medians of the ARFs for the R-factors of CPC, GPCC, CN05.1 and NMIC were 0.57, 0.67, 0.41 and 1.06, 

respectively, and those for the 1-in-10-year EI30 were 0.54, 0.49, 0.31 and 0.70, respectively. The results indicated that rainfall 
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erosivity values estimated using gridded daily data were significantly lower than those estimated using gauge daily data in 

most cases, which was mainly caused by reductions in extreme precipitation intensity in the gridded data, especially for the 1-

in-10-year EI30. 395 

(3) In the eastern part of China, correction factors for the R-factor of CPC, GPCC, CN05.1 and NMIC were 1.958, 1.570, 

1.708, and 1.445, respectively, and those for the 1-in-10-year event EI30 were 2.133, 1.702, 1.959, and 1.477, respectively. 

With the correction, for the R-factor, the MREs based on separate validation datasets were reduced by 28.4 %, 20.3 %, 23.2 % 

and 13.3 %, respectively, and for the 1-in-10-year event EI30, the MREs were reduced by 34.0 %, 20.1 %, 26.0 % and 17.1 %, 

respectively. There was no obvious improvement after applying the correction factors for the western part of China except the 400 

R-factor of NMIC and the 1-in-10-year event EI30 of CN05.1. CN05.1 was the most-recommended dataset, with the lowest 

MREs of 16.1 % for the R-factor and 22.1 % for the 1-in-10-year event EI30 in the eastern part of China and MREs of 25.1 % 

for the R-factor and 27.2 % for the 1-in-10-year event EI30 in the western part of China after the application of correction 

factors. 

 405 
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