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Abstract. Irrigation has important implications for sustaining global food production, 8 

enabling crop water demand to be met even under dry conditions. Added water also 9 

cools crop plants through transpiration; irrigation might thus play an important role in 10 

a warmer climate by simultaneously moderating water and high temperature stresses. 11 

Here we use satellite-derived evapotranspiration estimates, land surface temperature 12 

(LST) measurements, and crop phenological stage information from Nebraska maize 13 

to quantify how irrigation relieves both water and temperature stresses. Our study 14 

shows that, unlike air temperature metrics, satellite-derived LST detects significant 15 

irrigation-induced cooling effect, especially during the grain filling period (GFP) of 16 

crop growth. This cooling is likely to extend the maize growing season, especially for 17 

GFP, likely due to the stronger temperature sensitivity of phenological development 18 

during this stage. The analysis also suggests that irrigation not only reduces water and 19 

temperature stress but also weakens the response of yield to these stresses. 20 

Specifically, temperature stress is significantly weakened for reproductive processes 21 

in irrigated crops. The attribution analysis further suggests that water and high 22 

temperature stress alleviation contributes to 65% and 35% of yield benefit, 23 

respectively. Our study underlines the relative importance of high temperature stress 24 

alleviation in yield improvement and the necessity of simulating crop surface 25 

temperature to better quantify heat stress effects in crop yield models. Finally, 26 

untangling irrigation effects on both heat and water stress mitigation has important 27 

implications for designing agricultural adaptation strategies under climate change. 28 

 29 
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1. Introduction 33 

Irrigation -- a large component of freshwater consumption sourced from water 34 

diversion from streams and groundwater (Wallace, 2000, Howell, 2001) -- allows 35 

crops to grow in environments that do not receive sufficient rainfall, and buffers 36 

agricultural production from climate variability and extremes. Irrigated agriculture 37 

plays an outsized role in global crop production and food security: irrigated lands 38 

account for 17% of total cropped area, yet they provide 40% of global cereals 39 

(Rosegrant et al 2002, Siebert and Döll 2010). Meeting the rising food demands of a 40 

growing global population will require either increasing crop productivity and/or 41 

expansion of cropped areas; both strategies are daunting under projected climate 42 

change. Cropland expansion may be in marginal areas that require irrigation even in 43 

the present climate (Bruinsma 2009); increasing temperatures will drive higher 44 

atmospheric vapor pressure deficits (VPD) and raise crop water demand and crop 45 

water losses. This increasing water demand poses a water ceiling for crop growth and 46 

might necessitate irrigation application over present rainfed areas to increase or even 47 

maintain yields (DeLucia et al., 2019). 48 

 49 

However, the provision of additional irrigation water modifies both the land surface 50 

water and energy budgets. Additional water can result in an evaporative cooling 51 

effect, which may be beneficial for crop growth indirectly through lowering the 52 

frequency of extreme heat stress (Butler et al., 2018). Especially considering the 53 

future warmer climate, high temperature stress will be more prevalent (Russo et al., 54 

2014) and might result in more severe yield losses than water stress (Zhu et al., 2019) 55 

due to reduced photosynthesis, pollen sterility, and accelerated crop senescence in 56 

major cereals (Rezaei et al., 2015b; Rattalino Edreira et al., 2011; Ruiz-Vera et al., 57 

2018), therefore, a better understanding of irrigation effect on high temperature stress 58 

alleviation will be important for agricultural management practices. More broadly, 59 

understanding how irrigation can or should contribute to a portfolio of agricultural 60 

adaptation strategies thus requires improved understanding of its relative roles in 61 

mitigating both water and heat stresses.  62 

 63 

Climate models and meteorological data have been used to investigate how historical 64 

expansion of irrigation at global and regional scales has influenced the climate 65 
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system, including surface cooling and precipitation variation (Kang and Eltahir, 2019; 66 

Thiery et al., 2017; Bonfils and Lobell, 2007; Sacks et al., 2009). However, many 67 

crop models still use air temperature rather than canopy temperature to estimate heat 68 

stress; this may overestimate heat stress effect in irrigated cropland (Siebert et al., 69 

2017), since canopy temperature can deviate significantly from air temperature 70 

depending on the crop moisture conditions (Siebert et al., 2014). Recently, a 71 

comparison of crop model simulated canopy temperature suggests that most crop 72 

models lack a sufficient ability to reproduce the field-measured canopy temperature, 73 

even for models with a good performance in grain yield simulation (Webber et al., 74 

2017).  75 

 76 

Alternatively, satellite-derived land surface temperature (LST) has been used to 77 

directly quantify regional scale surface warming or cooling effects resulting from 78 

surface energy budget changes due to changes in land cover and land management 79 

(Loarie et al., 2011; Tomlinson et al., 2012; Peng et al., 2014). Importantly, yield 80 

prediction model comparisons suggest that replacing air temperature with MODIS 81 

LST can improve yield predictions because LST accounts for both evaporative 82 

cooling and water stress (Li et al., 2019). Satellite data also provide the observational 83 

evidence to constrain model performance or directly retrieve crop growth status 84 

information. For example, satellite derived soil moisture had been used to characterize 85 

irrigation pattern and improve irrigation amount estimation (Felfelani et al., 2018; 86 

Lawston et al., 2017; Jalilvand et al., 2019; Zaussinger et al., 2019). Therefore, 87 

integrating satellite products have the potential to improve our understanding of how 88 

irrigation and climate change impact crop yield and thus provide guides for farmers to 89 

make the optimal decisions. 90 

 91 

In this study, we focus on Nebraska, the third largest maize producer in the United 92 

States. Multi-year mean climate data shows that conditions are drier in western areas 93 

and warmer in southern areas (Figure 1a and b). Importantly, Nebraska features a 94 

mixture of irrigated and rainfed maize that facilitates comparison (more than half 95 

(56%) of the Nebraska maize cropland is irrigated with more irrigated maize in the 96 

western area (Figure 1c), according to the United States Department of Agriculture 97 

(USDA, 2018a)). County yield data from the USDA shows that interannual 98 

fluctuations in rainfed maize yield are much larger than for irrigated maize (Figure 99 
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1b). Although irrigated yields are higher, rainfed maize yields have grown faster than 100 

irrigated (3.9% per year versus 1.0% per year) over the study period (2003-2016) 101 

(Figure 1b), one of the possible reasons is that breeding technology progress has 102 

improved the drought tolerance of maize hybrids (Messina et al., 2010).  103 

 104 

As noted above, irrigation potentially benefits crop yields by moderating both water 105 

and high temperature stress. Here we use satellite-derived LST and satellite-derived 106 

water stress metrics to statistically tease apart the contributions of irrigation to water 107 

and heat stress alleviation, separately. We: (1) evaluate the difference in temperature 108 

and moisture conditions over irrigated and rainfed maize croplands; (2) explore how 109 

irrigation mitigates water and high temperature stresses using panel statistical models; 110 

(3) quantify the relative contributions of irrigation-induced water and high 111 

temperature stress alleviation to yield improvements; and (4) explore whether current 112 

crop models can reproduce the observed irrigation benefits on maize growth status. 113 

2. Materials and Methods 114 

We first describe the data used, followed by a brief description of statistical 115 

methodology.  116 

2.1 Satellite products to identify irrigated and non-irrigated maize areas 117 

We used the United States Department of Agriculture’s Cropland Data Layer (CDL) 118 

to identify maize croplands for each year in the study period 2003-2016 (USDA, 119 

2018b). The irrigation distribution map across Nebraska was obtained from a previous 120 

study that used Landsat-derived plant greenness and moisture information to create a 121 

continuous annual irrigation map across U.S. Northern High Plains (Deines et al., 122 

2017). The irrigation map showed a very high accuracy (92 to 100%) when validated 123 

with randomly generated test points and also highly correlated with county statistics 124 

(R
2
 = 0.88–0.96) (Deines et al., 2017). Both the CDL and irrigation map are at 30m 125 

resolution. We first projected them to MODIS sinusoidal projection and then 126 

aggregated them to 1km resolution to align with MODIS ET and LST products. Then, 127 

pixels containing more than 60% maize and an irrigation fraction >60% were labeled 128 

as irrigated maize while pixels with >60% maize and <10% irrigation fraction were 129 

labeled as rainfed maize croplands. As always, threshold selection involves a tradeoff 130 

between mixing samples and retaining as many samples as possible. Our choices of 131 

https://doi.org/10.5194/hess-2020-627
Preprint. Discussion started: 20 January 2021
c© Author(s) 2021. CC BY 4.0 License.



5 
 

<10% as the threshold for rainfed maize and 60% to define irrigated maize 132 

represented the best optimization in our sample, as we found that more stringent 133 

threshold had a very small effect on LST differences between irrigated and rainfed 134 

maize at county level but resulted in significant data omission (more details in 135 

supplementary Figure 1-2). 136 

 137 

2.2 Maize phenology information 138 

Maize growth stage information derived in a previous study was used to assess the 139 

influence of irrigation on maize growth during different growth stages (Zhu et al., 140 

2018). Stage information including emergence date, silking date, and maturity date, 141 

was derived with MODIS WDRVI (Wide Dynamic Range Vegetation Index, 8-day 142 

and 250m resolution) based on a hybrid method combining shape model fitting (SMF) 143 

and threshold-based analysis. Then we defined vegetative period (VP) as period from 144 

emergence date to silking date, grain filling period (GFP) as period from silking date 145 

to maturity date and growing season (GS) as period from emergence date to maturity 146 

date. Details can be found in our previous studies (Zhu et al., 2018). WDRVI was 147 

used due to its higher sensitivity to changes at high biomass than other vegetation 148 

indices (Gitelson et al., 2004) and was estimated with the following equation: 149 

𝑁𝐷𝑉𝐼 = (𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑)/(𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑)       (1) 150 

WDRVI=100 ∗
[(𝛼－1)+(𝛼+1)×𝑁𝐷𝑉𝐼]

[(𝛼+1)+(𝛼－1)×𝑁𝐷𝑉𝐼]
        (2) 151 

where 𝜌𝑟𝑒𝑑 and 𝜌𝑁𝐼𝑅 were the MODIS surface reflectance in the red and NIR bands, 152 

respectively. To minimize the effects of aerosols, we used the 8-day composite 153 

products in MOD09Q1 and MYD09Q1 and quality-filtered the reflectance data using 154 

the band quality control flags. Only data passing the highest quality control were 155 

retained (Zhu et al., 2018). The scaling factor, α=0.1, was adopted based on a 156 

previous study to degrade the fraction of the NIR reflectance at moderate-to-high 157 

green vegetation and best linearly capture the maize green leaf area index (LAI) 158 

(Guindin-Garcia et al., 2012). 159 

2.3 Temperature exposure during maize growth 160 

We used daily 1-km spatial resolution MODIS Aqua LST (MYD11A1) data to 161 

characterize the crop surface temperature; since its overpassing time is at 1:30 and 162 

13:30, it is closer to the times of daily minimum and maximum temperature than the 163 
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MODIS Terra LST (Wan et al., 2008) and is therefore better for characterizing crop 164 

surface temperature stress (Johnson 2016; Li et al., 2019). For quality control, pixels 165 

with an LST error >3 degree were filtered out based on the corresponding MODIS 166 

LST quality assurance layers. Missing values (less than 3%) were interpolated with 167 

robust spline function (Teuling et al., 2010). Aqua LST data are available after July 168 

2002; we thus restricted our study to the period 2003-2016. For comparison, we also 169 

obtained minimum and maximum daily surface air temperature (Tmin and Tmax) at 170 

1-km resolution from Daymet version 3 (Thornton et al., 2018). For both MODIS 171 

LST and air temperature, we calculated integrated crop heat exposure -- the growing 172 

degree days (GDD) and extreme degree days (EDD) -- with the following equations: 173 
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Here temperature (T) could be either air temperature or LST and had been 176 

interpolated from daily to hourly values with sine function (Tack et al., 2017). 𝑡 177 

represents the hourly time step, N is the total number of hours in a specified growing 178 

period (either the entire growing season, or a specific phenological growth phase, as 179 

defined below). 180 

 181 

2.4 Maize Water Stress 182 

Water stress during maize growth was characterized by the ratio of evapotranspiration 183 

(ET) to potential evapotranspiration (PET), as used in previous study (Mu et al., 2013). 184 

MODIS product (MYD16A2) provided both ET and PET from 2003 to 2016 and 185 

showed good performance for natural vegetation (Mu et al., 2011), however, our 186 

comparison using flux tower observed ET at an irrigated maize site at Nebraska 187 

suggested that ET at the irrigated maize was significantly underestimated by MODIS 188 

ET (Supplementary Figure 3). Therefore, we used another ET product (SSEBop ET) 189 

to replace MODIS ET. SSEBop ET was also estimated with MODIS products (Senay 190 

et al., 2013), like LST, vegetation index, and albedo as input variables, but used a 191 

revised algorithm including predefined boundary conditions for hot and cold reference 192 

pixels (Senay et al., 2013) and showed better performance than MODIS ET (Velpuri 193 
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et al., 2013), which was confirmed when we compared it with flux tower observed ET 194 

at an irrigated maize site (Supplementary Figure 4). The comparison of MODIS PET 195 

and flux tower estimated PET shows MODIS PET has satisfactory performance 196 

(Supplementary Figure 5). Since MODIS PET from MYD16A2 has a spatial 197 

resolution of 500 m with 8-day temporal resolution, while SSEBop ET has 1km 198 

spatial resolution with daily time step, we reconciled the two datasets to 1km spatial 199 

resolution and 8-day temporal resolution. Then ET, PET and ET/PET were averaged 200 

over time to get mean ET, PET and ET/PET during VP, GFP and GS with satellite 201 

derived phenology to characterize water status during maize growth. 202 

2.5 Crop model simulation results 203 

We compared the results of our statistical analysis with four gridded crop models. 204 

Simulation results from pAPSIM, pDSSAT, LPJ-GUESS, CLM-crop for both rainfed 205 

and irrigated maize across Nebraska were obtained from Agricultural Model 206 

Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and 207 

Inter-Sectoral Impact Model Intercomparison Project 1 (ISIMIP1) (Warszawski et al., 208 

2014). The four models were driven by the same climate forcing dataset (AgMERRA) 209 

and run at a spatial resolution of 0.5 arc-degree longitude and latitude. All simulations 210 

were conducted for purely rainfed and near-perfectly irrigated conditions. These 211 

models simulated maize yield, total biomass, ET and growing stage information 212 

(planting date, flowering date and maturity date). Planting date occurs on the first day 213 

following the prescribed sowing date in which soil temperature is at least 2 degrees 214 

above the 8 °C base temperature. Harvest occurs once the specified heat units are 215 

reached. Heat units to maturity were calibrated from the prescribed crop calendar data 216 

(Elliott et al., 2015). Crop model simulation was evaluated by calculating the Pearson 217 

correlation between simulated yields in the baseline simulations and detrended 218 

historical yields for each country from the Food and Agriculture Organization. 219 

Management scenario ‘harmnon’ was selected, meaning the simulation using 220 

harmonized fertilizer inputs and assumptions on growing seasons. More details on the 221 

simulation protocol can be found in Elliott et al. (2015) and Mueller et al. (2019). We 222 

used this model comparison project outputs to shed light on how well crop models 223 

had simulated the irrigation benefits we identified in different phases of crop growth. 224 
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2.6 Method 225 

We used standard panel statistical analysis techniques to identify the impacts of 226 

irrigation on maize productivity via heat stress reduction and water stress reduction 227 

pathways. 228 

 229 

Comparison of LST, ET, PET, ET/PET, GDD and EDD between irrigated and rainfed 230 

maize areas was performed within each county to minimize the effects of other 231 

spatially-varying factors, like background temperature and management practices, on 232 

surface temperature and evapotranspiration. These biophysical variables averaged 233 

over each county were then integrated over vegetative period (VP, from emergence 234 

date to silking date), grain filling period (GFP, from silking date to maturity date) and 235 

whole growing season (GS, from emergence date to maturity date) so we could 236 

evaluate whether and how irrigation had differentially influenced maize growth 237 

during early VP and late GFP. 238 

 239 

We further examined how irrigation had changed the sensitivity of maize yield and its 240 

components to temperature variation. As done in our previous study (Zhu et al., 2019), 241 

we decomposed the total yield variation into three components: biomass growth rate 242 

(BGR), growing season length (GSL) and harvest index (HI) based on the following 243 

equation:  244 

𝑌𝑖𝑒𝑙𝑑 = 𝐻𝐼 ∙ 𝐴𝐺𝐵 = 𝐻𝐼 ∙ 𝐵𝐺𝑅 ∙ 𝐺𝑆𝐿        (5) 245 

Aboveground biomass (AGB) was retrieved through a regression model: 246 

AGB= 16.4 ∙IWDRVI
0.8

             (6) 247 

which was built in the previous study through regressing field measured maize AGB 248 

against MODIS derived integrated WDRVI (IWDRVI) (Zhu et al., 2019). Then HI 249 

could be estimated as Yield/AGB and BGR could be estimated as AGB/GSL. Such 250 

decomposition allowed us to examine how different crop growth physiological 251 

processes responded to external forcing: HI characterizes dry matter partitioning 252 

between source organ and sink organ and is mainly related with processes 253 

determining grain size and grain weight; BGR is related with physiological processes 254 

of daily carbon assimilation rate through photosynthesis and GSL is related with crop 255 

phenological development. The uncertainties related with AGB estimation was 256 

quantified through resampling as we did in previous studies (Zhu et al., 2019). 257 

 258 

https://doi.org/10.5194/hess-2020-627
Preprint. Discussion started: 20 January 2021
c© Author(s) 2021. CC BY 4.0 License.



9 
 

Temperature sensitivity of irrigated or rainfed yield (𝑆𝑇
𝑌𝑖𝑒𝑙𝑑) was estimated using a 259 

panel data model (Eq. (7)) with growing season mean LST and ET/PET as the 260 

explanatory variables: 261 

𝑙𝑜𝑔⁡(𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) = 𝛾1𝑡 + 𝛾2𝐿𝑆𝑇𝑖,𝑡 + 𝛾3
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
+ 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡          (7) 262 

𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 is maize yield (t/ha) in county i and year t. It was a function of overall yield 263 

trends (𝛾1𝑡⁡) that had fairly steadily increased over the study period (Figure 1b), local 264 

crop temperature stress (𝐿𝑆𝑇𝑖,𝑡), and local crop water stress (
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
). The 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 265 

terms provided an independent intercept for each county (fixed effect), and thus 266 

accounted for time-invariant county-level differences that contributed to variations in 267 

yield, like the soil quality. 𝜀𝑖,𝑡 is an idiosyncratic error term. 𝛾2 or 

ln( )Yield

LST



  defines 268 

the temperature sensitivity of yield. The temperature sensitivity of BGR (𝑆𝑇
𝐵𝐺𝑅), HI 269 

(𝑆𝑇
𝐻𝐼) and GSL (𝑆𝑇

𝐺𝑆𝐿) could be estimated with Eq (7) in a similar way through using 270 

BGR, HI and GSL as the dependent variable. Here the dependent variable Yield 271 

(BGR, GSL and HI) was logged, so the estimated temperature sensitivity represented 272 

the percentage change of Yield (BGR, GSL and HI) with 1°C temperature increase. 273 

 274 

To quantify the relative contribution of water and high temperature stress alleviation 275 

to yield benefit, the yield difference between irrigated and non-irrigated maize 276 

(irrigation yield-rainfed yield, ∆𝑌𝑖𝑒𝑙𝑑) was regressed over the quadratic function of 277 

growing season EDD and ET/PET differences between irrigated and rainfed maize: 278 

∆𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛾1∆
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
+ 𝛾2∆

𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡

2
+ 𝛾3∆𝐸𝐷𝐷𝑖,𝑡+⁡𝛾4∆𝐸𝐷𝐷𝑖,𝑡

2 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡      (8) 279 

The yield improvement explained by heat and water stress alleviation was estimated 280 

as 

2

2

1 2 3 , 4 ,
, ,

,

i t i t
i t i t

i t

ETET
EDD EDD

PET PET

Yield

         



   

 . The relative 281 

contribution of water and high temperature stress alleviation was estimated as 282 

2

1 2
, ,

2

2

1 2 3 , 4 ,
, ,

+
i t i t

i t i t
i t i t

ET ET

PET PET

ETET
EDD EDD

PET PET

 

   

 

      

 

   
 and283 

https://doi.org/10.5194/hess-2020-627
Preprint. Discussion started: 20 January 2021
c© Author(s) 2021. CC BY 4.0 License.



10 
 

2

3 , 4 ,

2

2

1 2 3 , 4 ,
, ,

+i t i t

i t i t
i t i t

EDD EDD

ETET
EDD EDD

PET PET

 

   

 

      

 

   
, respectively. Given 284 

the potential collinearity between ∆
𝐸𝑇

𝑃𝐸𝑇
 and ∆EDD, we also calculated the Variance 285 

inflation factor (VIF) to diagnose the severity of collinearity. The daytime LST 286 

difference ( LST ) was also tested to characterize heat stress alleviation with the 287 

following equation:  288 

∆𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛾1∆
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
+ 𝛾2∆

𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡

2
+ 𝛾3∆𝐿𝑆𝑇𝑖,𝑡 + 𝛾4∆𝐿𝑆𝑇𝑖,𝑡

2 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡    (9) 289 

Then, the relative contribution of water and high temperature stress alleviation was 290 

estimated as 

2

1 2
, ,

2

2

1 2 3 , 4 ,
, ,

+
i t i t

i t i t
i t i t

ET ET

PET PET

ETET
LST LST

PET PET

 
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 
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 
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2

3 , 4 ,

2

2

1 2 3 , 4 ,
, ,

+i t i t

i t i t
i t i t

LST LST

ETET
LST LST

PET PET

 

   

 

      

 

   
, respectively. 292 

3. Results 293 

As expected, irrigation improved maize yield and the yield benefit showed a distinct 294 

spatial variation when we compared areas we identified as irrigated versus rainfed 295 

maize. The yield benefit of irrigation was much higher in the western area of the state 296 

(Figure 2a), because the drier environment in western area widened the yield gap 297 

between irrigated and rainfed cropland in an average year. The satellite derived 298 

vegetation index WDRVI reflected these differences, with higher values in areas we 299 

identified as irrigated maize, especially around maize silking (Figure 2b). Importantly, 300 

this suggested that, in conjunction with ground-based information calibrated crop 301 

phenology, irrigated and rainfed cropland were distinguishable with time series 302 

satellite data where rainfall does not meet crop water demand. 303 

 304 

When county-level LST data were averaged over 2003-2016, the daytime LST in 305 

irrigated maize was 1.5℃ cooler than rainfed maize, while nighttime LST showed a 306 

very slight difference (0.2 ℃ ) (Figure 3a,b). When the LST differences were 307 
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integrated over different growing periods (Figure 3e-h), we found that the daytime 308 

cooling effect was greatest in the GFP (Figure 3g), probably due to the higher LAI (or 309 

ground cover) and transpiration during that stage of growth. This was also consistent 310 

with previous field studies showing that irrigation was mainly applied during the 311 

middle to late reproductive period, which corresponded to the greatest water demand 312 

period (Chen et al., 2018). The spatial pattern of the LST difference showed stronger 313 

cooling effect in the western area (Figure 3c-h), which was similar to the spatial 314 

pattern of yield benefit identified in Figure 2a. In contrast, surface air temperature 315 

shows much smaller daytime cooling effect (Figure 3i,j). The mean air temperature 316 

difference between irrigated and rainfed maize in daytime and nighttime were −0.2℃ 317 

and −0.3℃, respectively, and the spatial pattern of air temperature difference over VP 318 

and GFP was also relatively small between counties and crop growth periods (Figure 319 

3k-p). 320 

 321 

Temperature is an important driver of crop phenology and has been used as the 322 

primary environmental variables in crop phenology models (Wang et al., 1998). 323 

Given the identified irrigation cooling, we further looked into how irrigation altered 324 

maize phenological stages. We found irrigated maize showed an earlier emergence 325 

and silking but delayed maturity (Figure 4a). Consequently, GFP was extended by 7.5 326 

days on average, which contributed to most of GS extension (8.1 days) (Figure 4b). 327 

Site measurements of phenological stage information confirmed that irrigated maize 328 

had a longer GS, especially during GFP (Figure 4c). The reason why such extension 329 

mainly occurred in GFP might be that (1) LST cooling was more prominent during 330 

GFP and (2) phenological development during GFP was more sensitive to 331 

temperature variation than development during VP (Egli et al., 2004). The higher 332 

temperature sensitivity of phenological development during GFP (4.9 day/℃) was 333 

confirmed when we regress GFP difference between irrigated and rainfed maize over 334 

LST difference between irrigated and rainfed maize (Figure 4d-f). The spatial pattern 335 

suggested GS and GFP extension was more significant in the western area (Figure 4g-336 

h), likely due to the corresponding stronger cooling effect. 337 

 338 

We integrated LST or air temperature as described above (Materials and Methods) to 339 

estimate heat exposure (GDD and EDD) over maize growing season. We found both 340 

LST and air temperature estimated GDD were greater in irrigated maize than GDD in 341 
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rainfed maize across most counties, especially during GFP (Figure 5a,c), which was 342 

very likely due to the GFP extension. As GDD characterizes the beneficial thermal 343 

time accumulation, the greater GDD in irrigated maize might contribute to the higher 344 

yield. In terms of EDD, LST estimated EDD suggested that irrigation suppressed high 345 

temperature stress especially for GFP (Figure 5b), while air temperature estimated 346 

EDD failed to characterize the irrigation induced lower high temperature stress 347 

(Figure 5d). 348 

 349 

SSEBop ET and MODIS PET were used to explore how irrigation influenced water 350 

demand and water supply across maize. We found irrigation led to 27% higher ET 351 

and 2% lower PET (Figure 6a-b). Higher ET was anticipated in irrigated maize, and 352 

lower PET might be due to irrigation cooling effect, which resulted in lower VPD and 353 

thus lower evaporative demand. We used the ratio of ET to PET as the metric for 354 

water stress in this study, where low values indicated that plants were not transpiring 355 

at their full potential in the ambient conditions. This ratio was higher for irrigated 356 

maize, especially during the GFP (Figure 6c), and the spatial distribution suggested 357 

that the difference was greater in western counties than eastern counties (Figure 6d-e), 358 

which was similar to the distribution of the local cooling effect identified in Figure 3c. 359 

 360 

We divided the temperature sensitivity of yield into three components (sensitivity of 361 

BGR, GSL and HI) to investigate how irrigation changed the response of maize 362 

physiological processes to temperature. As shown in Figure 7, we found that 363 

temperature sensitivity of yield was significantly weakened from − 6.9%/ ℃  to 364 

−1%/℃ in irrigated vs. rainfed areas, and this yield sensitivity change was mainly 365 

driven by a change in the sensitivity of the HI, which was weakened from −4.2%/℃ 366 

to 1%/℃. In both rainfed and irrigated maize, temperature sensitivity of GSL was 367 

quite close (approximately −2%/℃), while BGR was only slightly influenced by 368 

temperature (Figure 7). 369 

 370 

We found that irrigation application not only lowered water and high temperature 371 

stress, but also made yield less sensitive to water and high temperature stress (Figure 372 

8a-c), consistent with previous studies (Troy et al., 2015; Tack et al., 2017). We 373 

regressed yield differences over climatic variables differences using the linear model 374 
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(Eq. (8)), and estimated that 61% of yield improvement between irrigated and rainfed 375 

maize could be explained by the irrigation induced heat and water stress alleviation. 376 

We further calculated that 79% of yield improvement was due to water stress 377 

alleviation and 21% due to heat stress alleviation. Because the distribution of ∆𝐸𝐷𝐷 378 

was truncated for points with ∆𝐸𝐷𝐷> 0 (Figure 8e), we explored an alternative model 379 

with quadratic functions of  ∆𝐿𝑆𝑇 and ∆𝐸𝑇/𝑃𝐸𝑇 (Eq. (9)). In this specification, 72% 380 

of yield improvement can be explained by water and high temperature stress 381 

alleviation, with 65% and 35% of yield improvement due to water and high 382 

temperature stress alleviation, respectively. The VIF we used to diagnose the 383 

collinearity between ∆𝐿𝑆𝑇 and ∆𝐸𝑇/𝑃𝐸𝑇 was 2.2. Normally, VIFs over 10 indicate 384 

collinear variables (with 5 being a more strict standard), therefore, our VIF test 385 

suggested the collinearity was not severe, probably because we used differences of 386 

LST and 𝐸𝑇/𝑃𝐸𝑇 between irrigated and rainfed maize rather than directly using LST 387 

and 𝐸𝑇/𝑃𝐸𝑇 as the explanatory variables. 388 

 389 

Because we found a strong effect on yields via the heat stress (and not simply water 390 

stress), we compared our results with four process-based crop models that simulated 391 

crop growth under both rainfed and irrigated conditions. These simulations 392 

qualitatively reproduced the irrigation-induced higher maize yield, biomass, and ET 393 

(Figure 9), but to different degrees. The highest modeled improvement was identified 394 

in CLM-crop, with an increase of 57%, 43% and 32% in yield, biomass and ET, 395 

respectively. However, all models except CLM-crop failed to reproduce the growing 396 

stage extension under irrigation (Figure 9), probably because only CLM-crop 397 

implemented canopy energy balance module to simulate canopy temperature. CLM-398 

crop was thus the only model able to capture the irrigation-induced evaporative 399 

cooling effect (the heat-stress reduction). That the best agreement between observed 400 

and modeled results occurred with the only model that plausibly accounted for heat-401 

stress alleviation due to irrigation was further evidence that this was the phenomenon 402 

we captured in our satellite observational study.  403 

4. Discussion and conclusion 404 

By integrating satellite products and ground-based information about cropping and 405 

irrigation, we showed that irrigated maize yields were higher than rainfed maize 406 
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yields because added irrigation water reduced heat stress in addition to water stress. 407 

Our study underlines the relative importance of heat stress alleviation in yield 408 

improvement and the necessity of incorporating crop canopy temperature models to 409 

better characterize heat stress impacts on crop yields (Teixeira et al., 2013; Kar and 410 

Kumar, 2007). Our analysis disentangling the relative importance of heat and water 411 

stress alleviation in yield benefit helps farmers plan future investments, especially in 412 

terms of selecting cultivars with heat or drought stress tolerance. In addition, 413 

disentangling the two effects allows crop models better predict crop phenology, 414 

considering irrigation induced cooling effect alters maize growing phases. 415 

 416 

Although ours is not the first study to suggest replace air temperature with MODIS 417 

LST for maize yield prediction, especially under extreme warm and dry conditions, 418 

our results underscore important implications of doing so. Given the important role of 419 

heat stress in determining crop yield, thermal band derived LST information at finer 420 

spatial and temporal resolution should be a critical input for satellite data driven yield 421 

prediction models (Wang et al., 2015; Huryna et al., 2019; Li et al., 2019; Meerdink et 422 

al., 2019). In addition, given the differential responses of crop growth to heat and 423 

water stresses in different stages, fusing satellite derived crop stage information with 424 

the heat and water stressors might improve crop yield prediction.  425 

 426 

This study also has useful implications for process-based crop model development. In 427 

our model evaluation procedure, only one model has implemented canopy energy 428 

balance scheme, but it is the one that captures the observed maize growth stage 429 

extension. Our results suggest that the heat stress alleviation due to irrigation 430 

identified here is largely overlooked in current crop models. As such, when those crop 431 

models are calibrated to match observed yields, processes associated with water stress 432 

alleviation are probably overestimated, resulting in uncertainties for predicting future 433 

irrigation water demand and crop yield. These uncertainties might mislead future 434 

adaptation decisions due to incomplete or biased estimates of the relative 435 

contributions of heat and water stress. Relatedly, recent studies identified a wide 436 

range for the simulated canopy temperature in current crop models (Webber et al., 437 

2017). Therefore, assimilating satellite derived LST might be a potential solution to 438 

improving heat stress representation (Meng et al., 2009; Xu et al., 2011), especially 439 

given that the recent ECOsystem Spaceborne Thermal Radiometer Experiment on 440 
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Space Station (ECOSTRESS) mission makes hourly plant temperature measurement 441 

available (Meerdink et al., 2019). 442 

 443 

Several limitations and caveats apply to our study. First, the daily MODIS daytime 444 

LST we used to explain crop maximum daily temperature had missing value due to 445 

quality control and was derived from a mix of crop covers and other land surface 446 

temperature information, which might bias the identified irrigation cooling effect. 447 

Specifically, using MODIS daytime LST as a proxy for true (measured) maximum 448 

crop surface temperature in an empirical statistical model might underestimate the 449 

benefit of cooling effect (measurement error in a predictor variable producing 450 

attenuation bias). These uncertainties in LST dataset might be resolved with the 451 

recently launched ECOSTRESS mission, as its hourly revisiting frequency enables 452 

better estimation of maximum daily temperature. The second issue is that water stress 453 

and heat stress were not perfectly separable. As what we have shown, the cooling 454 

effect of irrigation lowers evaporative demand (PET) and thus indirectly contributes 455 

to lower water stress (higher ET/PET). Our disentangling method do not account for 456 

the water stress and heat stress interaction effects. If these interaction effects were 457 

considered, the relative contribution of heat stress alleviation to yield improvement is 458 

likely to be higher. Such water and heat stress interactions can become stronger 459 

during extreme years, like 2012, when most of the Midwest experienced severe 460 

drought. Under such circumstances, irrigation-induced cooling effect will be more 461 

beneficial. The third issue is that our study is conducted for maize in only one state, 462 

Nebraska. Although Nebraska is the largest irrigation maize producer  in the US, 463 

results might differ for other crop types and other landscapes, due to different crop 464 

canopy structures and management practices (Chen et al., 2018), and spatial variations 465 

in water and heat stresses mitigation effects  (Figure 3 and Figure 7). 466 

 467 

Overall, our study suggests that heat stress alleviation, in addition to water stress 468 

alleviation, plays an important role in improving irrigated maize yield. Since current 469 

models generally cannot accurately simulate the canopy temperature, the irrigation 470 

induced yield benefit might have been overly attributed to water stress alleviation. 471 

This might bias the future yield prediction under irrigation, since high temperature 472 

stress might be more dominant than drought for crop yield formation under future 473 

warmer climate (Zhu et al, 2019; Jin et al., 2017). Therefore, better constrained crop 474 
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models through integrating satellite observed land surface temperature and crop stage 475 

information will be necessary to  improve yield prediction and help policymakers and 476 

farmers make better decisions on where and when to implement irrigation. 477 

  478 
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Figures 676 

 677 

Figure 1: The spatial pattern of county level multi-year (2003-2016) mean daily 678 

precipitation (a) and air temperature (b) during maize growing season. County level 679 

multi-year (2003-2016) mean maize irrigation fraction across Nebraska (c). The 680 

maize irrigation fraction is based on USDA NASS report. Boxplot of county level 681 

irrigated and rainfed maize yield in Nebraska over the study period (d). The lines in (d) 682 

show the linear fitted yield trend with 95% confidence interval. Boxplots indicate the 683 

median (horizontal line), mean (cross), inter-quartile range (box), and 5–95th 684 

percentile (whiskers) of rainfed or irrigated yield across all counties. 685 

 686 

 687 

Figure 2: The difference between irrigated and rainfed maize yield (a) and satellite 688 

observed vegetation index (b and c). The shaded area in (b) and (c) shows one 689 

standard deviation of WDRVI (b) and WDRVI difference (c). 690 

 691 
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 693 

Figure 3: Spatial-temporal patterns of daytime and nighttime MODIS LST 694 

differences (left panel, a-h) and surface air temperature differences (right panel, i-p) 695 

between irrigated and rainfed maize in different growth stages: vegetative period and 696 

grain filling period. The shaded areas in (a), (b) and (i), (j) show one standard 697 

deviation of corresponding variables. 698 

 699 

 700 
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 701 

Figure 4: Boxplot of maize phenological date (a) and duration (b-c) for irrigated and 702 

rainfed maize areas. Sensitivity of phenological duration difference between irrigated 703 

and rainfed maize to LST difference between irrigated and rainfed maize (d-f). The 704 

slope in (d-f) was estimated with linear model. The spatial pattern of phenological 705 

date and duration differences between irrigated and rainfed maize areas (g-h). 706 

 707 

 708 
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 709 

Figure 5: Boxplot of GDD and EDD estimated with MODIS LST (a-b) and surface 710 

air temperature (c-d) for irrigated and rainfed maize areas. Boxplots indicate the mean 711 

(cross), median (horizontal line), 25--75th percentile (box), and 5--95th percentile 712 

(whiskers) of corresponding variables in all year and county combinations. 713 
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 715 

 716 

Figure 6: Boxplot of SSEBop ET, MODIS PET and ET/PET for irrigated and rainfed 717 

maize areas (a-c). Spatial pattern of SSEBop ET, MODIS PET and ET/PET 718 

differences between irrigated and rainfed maize areas (d-f). 719 
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 721 

Figure 7: Temperature sensitivity of yield and yield components (GSL, HI and BGR) 722 

for irrigated and rainfed maize areas.  723 

 724 

 725 
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Figure 8: Response of maize yield to ET/PET (a), EDD (b) and daytime LST (c) in 727 

both irrigated and rainfed maize. Response of yield differences to ET/PET (d), EDD 728 

(e) and daytime LST (f) differences between irrigated and rainfed maize. The linear 729 

(dash black line) and quadratic (solid black line) response curves of ∆𝑌𝑖𝑒𝑙𝑑  to 730 

∆𝐸𝑇/𝑃𝐸𝑇, ∆𝐸𝐷𝐷and ∆𝐿𝑆𝑇 are shown in d-f. 731 

 732 

 733 

 734 

 735 

Figure 9: Boxplot of crop model simulated yield, biomass, ET and phenological 736 

duration (VP, GFP and GSL) differences between irrigated and rainfed maize areas. 737 

For phenological duration, CLM-crop only reports GSL. 738 
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