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Abstract. Irrigation has important implications for sustaining global food production, 8 

enabling crop water demand to be met even under dry conditions. Added water also 9 

cools crop plants through transpiration; irrigation might thus play an important role in 10 

a warmer climate by simultaneously moderating water and high temperature stresses. 11 

Here we used satellite-derived evapotranspiration estimates, land surface temperature 12 

(LST) measurements, and crop phenological stage information from Nebraska maize 13 

to quantify how irrigation relieves both water and temperature stresses. Unlike air 14 

temperature metrics, satellite-derived LST revealed a significant irrigation-induced 15 

cooling effect, especially during the grain filling period (GFP) of crop growth. This 16 

cooling appeared to extend the maize growing season, especially for GFP, likely due 17 

to the stronger temperature sensitivity of phenological development during this stage. 18 

Our analysis also revealed that irrigation not only reduced water and temperature 19 

stress but also weakened the response of yield to these stresses. Specifically, 20 

temperature stress was significantly weakened for reproductive processes in irrigated 21 

maize. Attribution analysis further suggested that water and high temperature stress 22 

alleviation were responsible for 65±10% and 35±5.3% of irrigation’s yield benefit, 23 

respectively. Our study underlines the relative importance of high temperature stress 24 

alleviation in yield improvement and the necessity of simulating crop surface 25 

temperature to better quantify heat stress effects in crop yield models. Finally, 26 

untangling irrigation’s effects on both heat and water stress mitigation has important 27 

implications for designing agricultural adaptation strategies under climate change. 28 
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1. Introduction 33 

Irrigation -- a large component of freshwater consumption sourced from water 34 

diversion from streams and groundwater (Wallace, 2000, Howell, 2001) -- allows 35 

crops to grow in environments that do not receive sufficient rainfall, and buffers 36 

agricultural production from climate variability and extremes. Irrigated agriculture 37 

plays an outsized role in global crop production and food security: irrigated lands 38 

account for 17% of total cropped area, yet they provide 40% of global cereals 39 

(Rosegrant et al 2002, Siebert and Döll 2010). Meeting the rising food demands of a 40 

growing global population will require either increasing crop productivity and/or 41 

expansion of cropped areas; both strategies are daunting under projected climate 42 

change. Cropland expansion may be in marginal areas that require irrigation even in 43 

the present climate (Bruinsma 2009); increasing temperatures will drive higher 44 

atmospheric vapor pressure deficits (VPD) and raise crop water demand and crop 45 

water losses. This increasing water demand poses a water ceiling for crop growth and 46 

might necessitate irrigation application over present rainfed areas to increase or even 47 

maintain yields (DeLucia et al., 2019). 48 

 49 

However, the provision of additional irrigation water modifies both the land surface 50 

water and energy budgets. Additional water can result in an evaporative cooling 51 

effect, which may be beneficial for crop growth indirectly through lowering the 52 

frequency of extreme heat stress (Butler et al., 2018). High temperature stress will be 53 

more prevalent (Russo et al., 2014) under future warming, and might result in more 54 

severe yield losses than water stress (Zhu et al., 2019) due to reduced photosynthesis, 55 

pollen sterility, and accelerated crop senescence in major cereals (Rezaei et al., 56 

2015b; Rattalino Edreira et al., 2011; Ruiz-Vera et al., 2018). A better understanding 57 

of irrigation’s potential to alleviate high temperature stress will therefore be important 58 

for agricultural management. More broadly, understanding how irrigation can or 59 

should contribute to a portfolio of agricultural adaptation strategies thus requires 60 

improved understanding of its relative roles in mitigating both water and heat stresses. 61 

 62 

Climate models and meteorological data have been used to investigate how historical 63 

expansion of irrigation at global and regional scales has influenced the climate 64 

system, including surface cooling and precipitation variation (Kang and Eltahir, 2019; 65 
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Thiery et al., 2017; Bonfils and Lobell, 2007; Sacks et al., 2009). However, many 66 

crop models still use air temperature rather than canopy temperature to estimate heat 67 

stress; this may overestimate heat stress effects in irrigated cropland (Siebert et al., 68 

2017), since canopy temperature can deviate significantly from air temperature 69 

depending on the crop moisture conditions (Siebert et al., 2014). Recently, a 70 

comparison of crop model simulated canopy temperatures suggests that most crop 71 

models lack a sufficient ability to reproduce the field-measured canopy temperature, 72 

even for models with a good performance in grain yield simulation (Webber et al., 73 

2017). 74 

 75 

Satellite-derived land surface temperature (LST) measurements have been used to 76 

directly quantify regional scale surface warming or cooling effects resulting from 77 

surface energy budget changes due to changes in land cover and land management 78 

(Loarie et al., 2011; Tomlinson et al., 2012; Peng et al., 2014). Importantly, yield 79 

prediction model comparisons suggest that replacing air temperature with MODIS 80 

LST can improve yield predictions because LST accounts for both evaporative 81 

cooling and water stress (Li et al., 2019). Satellite data also provide the observational 82 

evidence to constrain model performance or directly retrieve crop growth status 83 

information. For example, satellite derived soil moisture had been used to characterize 84 

irrigation patterns and improve irrigation quantity estimations (Felfelani et al., 2018; 85 

Lawston et al., 2017; Jalilvand et al., 2019; Zaussinger et al., 2019). Integration of 86 

satellite products like LST therefore have the potential to improve our understanding 87 

of how irrigation and climate change impact crop yields, and thus provide guidance 88 

for farmers to optimize management decisions. 89 

 90 

In this study, we focused on Nebraska, the third largest maize producer in the United 91 

States. Multi-year mean climate data showed that conditions have been drier in 92 

western areas and warmer in southern areas of the state (Figure 1a and b). 93 

Importantly, Nebraska has historically produced a mixture of irrigated and rainfed 94 

maize that facilitated comparison (more than half (56%) of the Nebraska maize 95 

cropland was irrigated, with more irrigated maize in the western area (Figure 1c), 96 

according to the United States Department of Agriculture (USDA, 2018a)). County 97 

yield data from the USDA showed that interannual fluctuations in rainfed maize yield 98 

have in general been much larger than for irrigated maize (Figure 1b). Although 99 
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irrigated yields were higher, rainfed maize yields have grown faster than irrigated (an 100 

average of 3.9% per year versus 1.0% per year) over the study period (2003-2016) 101 

(Figure 1b), in part because breeding technology progress has improved the drought 102 

tolerance of maize hybrids (Messina et al., 2010).  103 

 104 

As noted above, irrigation potentially benefits crop yields by moderating both water 105 

and high temperature stress. Here we used satellite-derived LST and satellite-derived 106 

water stress metrics to statistically tease apart the contributions of irrigation to water 107 

and heat stress alleviation, separately. We: (1) evaluated the difference in temperature 108 

and moisture conditions over irrigated and rainfed maize croplands; (2) explored how 109 

irrigation mitigated water and high temperature stresses using panel statistical models; 110 

(3) quantified the relative contributions of irrigation-induced water and high 111 

temperature stress alleviation to yield improvements; and (4) explored whether 112 

current crop models reproduced the observed irrigation benefits on maize growth 113 

status. 114 

2. Materials and Methods 115 

We first describe the data used, followed by a brief description of statistical 116 

methodology.  117 

2.1 Satellite products to identify irrigated and non-irrigated maize areas 118 

We used the United States Department of Agriculture’s Cropland Data Layer (CDL) 119 

to identify maize croplands for each year in the study period 2003-2016 (USDA, 120 

2018b). The irrigation distribution map across Nebraska was obtained from a previous 121 

study that used Landsat-derived plant greenness and moisture information to create a 122 

continuous annual irrigation map across U.S. Northern High Plains (Deines et al., 123 

2017). The irrigation map showed a very high accuracy (92 to 100%) when validated 124 

with randomly generated test points and also highly correlated with county statistics 125 

(R
2
 = 0.88–0.96) (Deines et al., 2017). Both the CDL and irrigation map are at 30m 126 

resolution. We first projected them to MODIS sinusoidal projection and then 127 

aggregated them to 1km resolution to align with MODIS ET and LST products. Then, 128 

pixels containing more than 60% maize and an irrigation fraction >60% were labeled 129 

as irrigated maize while pixels with >60% maize and <10% irrigation fraction were 130 

labeled as rainfed maize croplands. As always, threshold selection involves a tradeoff 131 
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between mixing samples and retaining as many samples as possible. Our choices of 132 

<10% as the threshold for rainfed maize and 60% to define irrigated maize 133 

represented the best optimization in our sample, as we found that more stringent 134 

threshold had a very small effect on LST differences between irrigated and rainfed 135 

maize at county level but resulted in significant data omission (more details in 136 

supplementary Figure 1-2). 137 

2.2 Maize phenology information 138 

Maize growth stage information derived in a previous study was used to assess the 139 

influence of irrigation on maize growth during different growth stages (Zhu et al., 140 

2018). Stage information including emergence date, silking date, and maturity date, 141 

was derived with MODIS WDRVI (Wide Dynamic Range Vegetation Index, 8-day 142 

and 250m resolution) based on a hybrid method combining shape model fitting (SMF) 143 

and threshold-based analysis. Then we defined vegetative period (VP) as period from 144 

emergence date to silking date, grain filling period (GFP) as period from silking date 145 

to maturity date and growing season (GS) as period from emergence date to maturity 146 

date. Details can be found in our previous studies (Zhu et al., 2018). WDRVI was 147 

used due to its higher sensitivity to changes at high biomass than other vegetation 148 

indices (Gitelson et al., 2004) and was estimated with the following equation: 149 

𝑁𝐷𝑉𝐼 = (𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑)/(𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑)       (1) 150 

WDRVI=100 ∗
[(𝛼－1)+(𝛼+1)×𝑁𝐷𝑉𝐼]

[(𝛼+1)+(𝛼－1)×𝑁𝐷𝑉𝐼]
        (2) 151 

where 𝜌𝑟𝑒𝑑 and 𝜌𝑁𝐼𝑅 were the MODIS surface reflectance in the red and NIR bands, 152 

respectively. To minimize the effects of aerosols, we used the 8-day composite 153 

products in MOD09Q1 and MYD09Q1 and quality-filtered the reflectance data using 154 

the band quality control flags. Only data passing the highest quality control were 155 

retained (Zhu et al., 2018). The scaling factor, α=0.1, was adopted based on a 156 

previous study to degrade the fraction of the NIR reflectance at moderate-to-high 157 

green vegetation and best linearly capture the maize green leaf area index (LAI) 158 

(Guindin-Garcia et al., 2012). 159 

2.3 Temperature exposure during maize growth 160 

We used daily 1-km spatial resolution MODIS Aqua LST (MYD11A1) data to 161 

characterize the crop surface temperature; since its overpassing times are at 1:30 and 162 

13:30, it is closer to the times of daily minimum and maximum temperature than the 163 
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MODIS Terra LST (Wan et al., 2008) and is therefore better for characterizing crop 164 

surface temperature stress (Johnson 2016; Li et al., 2019). For quality control, pixels 165 

with an LST error >3 degree were filtered out based on the corresponding MODIS 166 

LST quality assurance layers. Missing values (less than 3% of total observations) 167 

were interpolated with robust spline function (Teuling et al., 2010). Aqua LST data 168 

are available after July 2002; we thus restricted our study to the period 2003-2016. 169 

For comparison, we also obtained daily minimum and maximum surface air 170 

temperature (Tmin and Tmax) at 1-km resolution from Daymet version 3 (Thornton et 171 

al., 2018). For both MODIS LST and air temperature, we calculated integrated crop 172 

heat exposure -- the growing degree days (GDD) and extreme degree days (EDD) -- 173 

according to the following definitions: 174 

 175 
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Here temperature (T) could be either air temperature or LST, interpolated from daily 178 

to hourly values with sine function (Tack et al., 2017). t represents the hourly time 179 

step, N is the total number of hours in a specified growing period (either the entire 180 

growing season, or a specific phenological growth phase, as defined below). 181 

Following previous studies (Lobell et al., 2011; Zhu et al., 2019), we used 30°C as the 182 

high temperature threshold, although higher values might be applicable in some 183 

settings (Sanchez et al., 2014). 184 

 185 

2.4 Maize Water Stress 186 

Water stress during maize growth was characterized by the ratio of evapotranspiration 187 

(ET) to potential evapotranspiration (PET), as in a previous study (Mu et al., 2013). 188 

We used MODIS products (MYD16A2) for both ET and PET, based on its good 189 

performance for natural vegetation (Mu et al., 2011); however, our comparison using 190 

flux tower observed ET at an irrigated maize site at Nebraska suggested that ET at the 191 

irrigated maize was significantly underestimated by MODIS ET (Supplementary 192 

Figure 3). We therefore also used another ET product (SSEBop ET) to replace 193 
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MODIS ET. SSEBop ET was also estimated with MODIS products (Senay et al., 194 

2013), like LST, vegetation index, and albedo as input variables, but used a revised 195 

algorithm including predefined boundary conditions for hot and cold reference pixels 196 

(Senay et al., 2013) and showed better performance than MODIS ET (Velpuri et al., 197 

2013). We also saw improved performance when we compared it with flux tower 198 

observed ET at an irrigated maize site (Supplementary Figure 4). The comparison of 199 

MODIS PET and flux tower estimated PET showed satisfactory performance for 200 

MODIS PET (Supplementary Figure 5). Since MODIS PET from MYD16A2 has a 201 

spatial resolution of 500 m with 8-day temporal resolution, while SSEBop ET has 202 

1km spatial resolution with daily time step, we reconciled the two datasets to 1km 203 

spatial resolution and 8-day temporal resolution.  204 

2.5 Crop model simulation results 205 

We compared the results of our statistical analysis with four gridded crop models. 206 

Simulation results from pAPSIM, pDSSAT, LPJ-GUESS, CLM-crop for both rainfed 207 

and irrigated maize across Nebraska were obtained from Agricultural Model 208 

Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and 209 

Inter-Sectoral Impact Model Intercomparison Project 1 (ISIMIP1) (Warszawski et al., 210 

2014). The four models were driven by the same climate forcing dataset (AgMERRA) 211 

and run at a spatial resolution of 0.5 arc-degree longitude and latitude. All simulations 212 

were conducted for purely rainfed and near-perfectly irrigated conditions. These 213 

models simulated maize yield, total biomass, ET and growing stage information 214 

(planting date, flowering date and maturity date). Planting date occurs on the first day 215 

following the prescribed sowing date in which soil temperature is at least 2 degrees 216 

above the 8 °C base temperature. Harvest occurs once the specified heat units are 217 

reached. Heat units to maturity were calibrated from the prescribed crop calendar data 218 

(Elliott et al., 2015). Crop model simulation was evaluated by calculating the Pearson 219 

correlation between simulated yields in the baseline simulations and detrended 220 

historical yields for each country from the Food and Agriculture Organization. 221 

Management scenario ‘harmnon’ was selected, meaning the simulation using 222 

harmonized fertilizer inputs and assumptions on growing seasons. More details on the 223 

simulation protocol can be found in Elliott et al. (2015) and Müller et al. (2019). We 224 

used this model comparison project outputs to shed light on how well crop models 225 

had simulated the irrigation benefits we identified in different phases of crop growth. 226 
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2.6 Method 227 

We used standard panel statistical analysis techniques to identify the impacts of 228 

irrigation on maize productivity via heat stress reduction and water stress reduction 229 

pathways. 230 

 231 

Comparison of LST, ET, PET, ET/PET, GDD and EDD between irrigated and rainfed 232 

maize areas was performed within each county to minimize the effects of other 233 

spatially-varying factors, like background temperature and management practices, on 234 

surface temperature and evapotranspiration. These biophysical variables (LST, ET, 235 

PET, ET/PET, GDD and EDD) averaged over each county were then integrated over 236 

vegetative period (VP, from emergence date to silking date), grain filling period (GFP, 237 

from silking date to maturity date) and whole growing season (GS, from emergence 238 

date to maturity date) so we could evaluate whether and how irrigation had 239 

differentially influenced maize growth during early VP and late GFP. 240 

 241 

We further examined how irrigation had changed the sensitivity of maize yield and its 242 

components to temperature variation. As done in our previous study (Zhu et al., 2019), 243 

we decomposed the total yield variation into three components: biomass growth rate 244 

(BGR), growing season length (GSL) and harvest index (HI) based on the following 245 

equation:  246 

𝑌𝑖𝑒𝑙𝑑 = 𝐻𝐼 ∙ 𝐴𝐺𝐵 = 𝐻𝐼 ∙ 𝐵𝐺𝑅 ∙ 𝐺𝑆𝐿        (5) 247 

Aboveground biomass (AGB) was retrieved through a regression model: 248 

AGB= 16.4 ∙IWDRVI
0.8

             (6) 249 

which was built in the previous study through regressing field measured maize AGB 250 

against MODIS derived integrated WDRVI (IWDRVI) (Zhu et al., 2019). Then HI 251 

could be estimated as Yield/AGB and BGR could be estimated as AGB/GSL. This 252 

decomposition allowed us to examine how different crop growth physiological 253 

processes responded to external forcing: HI characterizes dry matter partitioning 254 

between source organ and sink organ and is mainly related with processes 255 

determining grain size and grain weight; BGR is related with physiological processes 256 

of daily carbon assimilation rate through photosynthesis and GSL is related with crop 257 

phenological development. The uncertainties in AGB estimation results from the 258 

parameters in the regression model (Eq. (6)) converting IWDRVI to AGB. Here we 259 

quantified the uncertainties rooted in the estimated parameters through running the 260 
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panel model 1000 times with the samples generated from each parameter's 95% 261 

confidence interval (Zhu et al., 2019). 262 

 263 

Temperature sensitivity of irrigated or rainfed yield (𝑆𝑇
𝑌𝑖𝑒𝑙𝑑) was estimated using a 264 

panel data model (Eq. (7)) with growing season mean LST and ET/PET as the 265 

explanatory variables: 266 

𝑙𝑜𝑔(𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) = 𝛾1𝑡 + 𝛾2𝐿𝑆𝑇𝑖,𝑡 + 𝛾3
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
+ 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡          (7) 267 

𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 is maize yield (t/ha) in county i and year t. It is a function of overall yield 268 

trends (𝛾1𝑡) that have fairly steadily increased over the study period (Figure 1b), local 269 

crop temperature stress (𝐿𝑆𝑇𝑖,𝑡), and local crop water stress (
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
). The 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 270 

terms provide an independent intercept for each county (fixed effect), and thus 271 

account for time-invariant county-level differences that contributed to variations in 272 

yield, like the soil quality. 𝜀𝑖,𝑡 is an idiosyncratic error term. 𝛾2 or 

ln( )Yield

LST



  defines 273 

the temperature sensitivity of yield. The temperature sensitivity of BGR (𝑆𝑇
𝐵𝐺𝑅), HI 274 

(𝑆𝑇
𝐻𝐼) and GSL (𝑆𝑇

𝐺𝑆𝐿) could be estimated with Eq (7) in a similar way through using 275 

BGR, HI and GSL as the dependent variable. Here the dependent variable Yield 276 

(BGR, GSL and HI) was logged, so the estimated temperature sensitivity represented 277 

the percentage change of Yield (BGR, GSL and HI) with 1°C temperature increase. 278 

 279 

To quantify the relative contribution of water and high temperature stress alleviation 280 

to yield benefit, we related the yield difference between irrigated and non-irrigated 281 

maize (irrigation yield-rainfed yield, ∆𝑌𝑖𝑒𝑙𝑑 ) to a quadratic function of growing 282 

season EDD and ET/PET differences between irrigated and rainfed maize: 283 

∆𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛾1∆
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
+ 𝛾2∆

𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡

2
+ 𝛾3∆𝐸𝐷𝐷𝑖,𝑡+𝛾4∆𝐸𝐷𝐷𝑖,𝑡

2 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡      (8) 284 

The yield improvement explained by heat and water stress alleviation was estimated 285 

as 

2
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 . The relative 286 

contribution of water and high temperature stress alleviation was estimated as 287 
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, respectively. We also 289 

ran the model above using daytime LST difference (∆𝐿𝑆𝑇) in lieu of ∆EDD as a 290 

robustness check: 291 

 ∆𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛾1∆
𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡
+ 𝛾2∆

𝐸𝑇

𝑃𝐸𝑇𝑖,𝑡

2
+ 𝛾3∆𝐿𝑆𝑇𝑖,𝑡 + 𝛾4∆𝐿𝑆𝑇𝑖,𝑡

2 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡    (9) 292 

To diagnose any potential collinearity between ∆
𝐸𝑇

𝑃𝐸𝑇
 and ∆LST, we calculated the 293 

Variance Inflation Factor (VIF) for the model above. In this formulation the relative 294 

contributions of water and high temperature stress alleviation were estimated as 295 
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, respectively. 297 

3. Results 298 

As expected, irrigation improved maize yield and the yield benefit showed a distinct 299 

spatial variation when we compared areas we identified as irrigated versus rainfed 300 

maize. The yield benefit of irrigation was much higher in the western area of the state 301 

(Figure 2a), because the drier environment in western area featured a wider  yield gap 302 

between irrigated and rainfed cropland in an average year. The satellite derived 303 

vegetation index WDRVI reflected these differences, with higher values in areas we 304 

identified as irrigated maize, especially around maize silking (Figure 2b). Importantly, 305 

this suggested that irrigated and rainfed cropland were distinguishable based on 306 

satellite derived crop seasonality information. 307 

 308 
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When county-level LST data were averaged over 2003-2016, the daytime LST in 309 

irrigated maize was 1.5℃ cooler than rainfed maize, while nighttime LST showed a 310 

very slight difference (0.2℃) (Figure 3a,b). When the LST differences were 311 

integrated over different growing periods (Figure 3e-h), we found that the daytime 312 

cooling effect was greatest in the GFP (Figure 3g), probably due to the higher LAI (or 313 

ground cover) and transpiration during that stage of growth. This was also consistent 314 

with previous field studies showing that irrigation was mainly applied during the 315 

middle to late reproductive period, which corresponded to the greatest water demand 316 

period (Chen et al., 2018). The spatial pattern of the LST difference showed stronger 317 

cooling effect in the western area (Figure 3c-h), which was similar to the spatial 318 

pattern of yield benefit identified in Figure 2a. In contrast, surface air temperature 319 

showed much smaller daytime cooling effect (Figure 3i,j). The mean daytime and 320 

nighttime air temperature differences between irrigated and rainfed maize were -0.2℃ 321 

and -0.3℃, respectively, and the spatial pattern of air temperature difference over VP 322 

and GFP was also relatively small between counties and crop growth periods (Figure 323 

3k-p). The difference between spatial-temporal patterns identified using LST and air 324 

temperature likely arises because LST reflects canopy energy partition between latent 325 

heat flux and sensible heat flux. Additional moisture provided by irrigation results in 326 

more heat transferred as latent heat flux, creating a cooling effect. 327 

 328 

Temperature is an important driver of crop phenology and has been used as the 329 

primary environmental variable in crop phenology models (Wang et al., 1998). Given 330 

the identified irrigation cooling, we further examined how irrigation altered maize 331 

phenological stages. We found irrigated maize showed an earlier emergence and 332 

silking but delayed maturity (Figure 4a). Consequently, GFP was extended by 7.5 333 

days on average, which contributed to most of the total GS extension (8.1 days) 334 

(Figure 4b). Site measurements of phenological stage information confirmed that 335 

irrigated maize had a longer GS, especially during GFP (Figure 4c). That this 336 

extension mainly occurred during GFP could be due to: (1) LST cooling was more 337 

prominent during GFP and (2) phenological development during GFP was more 338 

sensitive to temperature variation than development during VP (Egli et al., 2004). The 339 

higher temperature sensitivity of phenological development during GFP (4.9 day/℃) 340 

was supported by a regression model relating the GFP difference between irrigated 341 

and rainfed maize to the LST difference between irrigated and rainfed maize (Figure 342 
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4d-f). The spatial pattern suggested GS and GFP extension were more significant in 343 

the western area of the state (Figure 4g-h), likely due to the corresponding stronger 344 

cooling effect. 345 

 346 

We integrated LST or air temperature as described above (Materials and Methods) to 347 

estimate total heat exposure (GDD and EDD) over the maize growing season. We 348 

found both LST and air temperature estimated GDD were greater in irrigated maize 349 

than GDD in rainfed maize across most counties, especially during GFP (Figure 5a,c), 350 

which was very likely due to the GFP extension. As GDD characterizes the beneficial 351 

thermal time accumulation, the greater GDD in irrigated maize might contribute to the 352 

higher yield. In terms of EDD, LST estimated EDD suggested that irrigation 353 

suppressed high temperature stress especially for GFP (Figure 5b), while air 354 

temperature estimated EDD failed to characterize the irrigation induced lower high 355 

temperature stress (Figure 5d). 356 

 357 

SSEBop ET and MODIS PET were used to explore how irrigation influenced water 358 

demand and water supply across maize. We found irrigation led to 27% higher ET 359 

and 2% lower PET (Figure 6a-b). Higher ET was anticipated in irrigated maize, and 360 

lower PET might be due to irrigation cooling effect, which resulted in lower VPD and 361 

thus lower evaporative demand. We used the ratio of ET to PET as a proxy for water 362 

stress in this study, where low values indicated that plants were not transpiring at their 363 

full potential in the ambient conditions. This ratio was higher for irrigated maize, 364 

especially during the GFP (Figure 6c), and the spatial distribution suggested that the 365 

difference was greater in western counties than eastern counties (Figure 6d-e), similar 366 

to the distribution of the local cooling effect identified in Figure 3c. 367 

 368 

We divided the temperature sensitivity of yield into three components (sensitivity of 369 

BGR, GSL and HI) to investigate how irrigation changed the response of maize 370 

physiological processes to temperature. As shown in Figure 7, we found that 371 

temperature sensitivity of yield was significantly weakened from -6.9%/℃ to -1%/℃ 372 

in rainfed vs. irrigated areas, and this yield sensitivity change was mainly driven by a 373 

change in the sensitivity of the HI, which was weakened from -4.2%/℃ to 1%/℃. In 374 

both rainfed and irrigated maize, temperature sensitivity of GSL was quite close 375 
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(approximately -2%/℃), while BGR was only slightly influenced by temperature 376 

(Figure 7). 377 

 378 

We found that irrigation not only lowered water and high temperature stress, but also 379 

made yield less sensitive to water and high temperature stress (Figure 8a-c), 380 

consistent with previous studies (Troy et al., 2015; Tack et al., 2017). We statistically 381 

related yield differences to climatic variables differences using the linear model (Eq. 382 

(8)), and estimated that 61±9.4% of yield improvement between irrigated and rainfed 383 

maize could be explained by the irrigation induced heat and water stress alleviation. 384 

We further calculated that 79±13% of that yield improvement was due to water stress 385 

alleviation and 21±3.2% was due to heat stress alleviation. Because the distribution of 386 

∆EDD was truncated for points with ∆EDD>0 (Figure 8e), we explored an alternative 387 

model with quadratic functions of ∆LST and ∆ET/PET (Eq. (9)). In this specification, 388 

72±12% of yield improvement was explained by water and high temperature stress 389 

alleviation, with 65±10% and 35±5.3% of yield improvement due to water and high 390 

temperature stress alleviation, respectively. Because collinearity between ∆LST and 391 

∆ET/PET was potentially worrisome, we quantified the variance inflation factor (VIF) 392 

in the model; this was found to be well below standard thresholds, with a value of 2.2 393 

(VIFs over 10 indicate strongly collinear variables, with 5 being a more strict 394 

standard). Intuitively, our low VIF value was likely due to the use of differences in 395 

LST and ET/PET between irrigated and rainfed maize, rather than directly using LST 396 

and ET/PET as the explanatory variables. We also note that the high temperature 397 

stress alleviation estimated here appears larger than the estimation in a recent study 398 

(Li et al., 2020) where LST was also employed to detect the yield benefit of irrigation 399 

cooling effect. But this is due to the fact that we estimated cooling effect benefits 400 

relative to total sum of cooling and water stress effects, whereas Li et al. calculated 401 

cooling effect relative to net yield differences between irrigated and rainfed maize. 402 

Since other effects (like cultivar difference and fertilizer application) might also 403 

contribute to the yield difference between irrigated and rainfed maize, the 404 

denominator used in Li et al., (2020) was larger. 405 

 406 

Because we found a strong effect on yields via alleviation of heat stress (and not 407 

simply water stress), we compared our results with four process-based crop models 408 

that simulated crop growth under both rainfed and irrigated conditions. These 409 
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simulations qualitatively reproduced the irrigation-induced higher maize yield, 410 

biomass, and ET (Figure 9), but to different degrees. The highest modeled 411 

improvement was identified in CLM-crop, with increases of 57%, 43% and 32% in 412 

yield, biomass and ET, respectively. However, all models except CLM-crop failed to 413 

reproduce the growing stage extension under irrigation (Figure 9), likely because 414 

CLM-crop was the only one of the tested models to have implemented a canopy 415 

energy balance module to simulate canopy temperature. CLM-crop was thus the only 416 

model able to capture the irrigation-induced evaporative cooling effect (heat-stress 417 

reduction). That the best agreement between observed and modeled results occurred 418 

with the only model that plausibly accounted for heat-stress alleviation due to 419 

irrigation was further evidence that this was the phenomenon we captured in our 420 

satellite observational study. 421 

4. Discussion and conclusion 422 

By integrating satellite products and ground-based information on cropping and 423 

irrigation, we showed that irrigated maize yields were higher than rainfed maize 424 

yields because added irrigation water reduced heat stress in addition to water stress. 425 

Our study underlines the relative importance of heat stress alleviation in yield 426 

improvement and the necessity of incorporating crop canopy temperature models to 427 

better characterize heat stress impacts on crop yields (Teixeira et al., 2013; Kar and 428 

Kumar, 2007). Our analysis disentangling the relative importance of heat and water 429 

stress alleviation in yield benefit can help farmers plan future investments, especially 430 

in terms of selecting cultivars with heat or drought stress tolerance. In addition, 431 

disentangling the two effects allows crop models to better predict crop phenology, 432 

considering irrigation induced cooling effect alters maize growing phases. 433 

 434 

Although ours is not the first study to suggest replacing air temperature with MODIS 435 

LST for maize yield prediction, especially under extreme warm and dry conditions, 436 

our results underscore important implications of doing so. Given the important role of 437 

heat stress in determining crop yield, thermal band derived LST information at finer 438 

spatial and temporal resolution should be a critical input for satellite data driven yield 439 

prediction models (Wang et al., 2015; Huryna et al., 2019; Li et al., 2019; Meerdink et 440 

al., 2019). In addition, given the differential responses of crop growth to heat and 441 
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water stresses in different stages, fusing satellite derived crop stage information with 442 

the heat and water stressors might improve crop yield prediction.  443 

 444 

This study also has useful implications for process-based crop model development. In 445 

our model evaluation, only the model that had implemented a canopy energy balance 446 

scheme captured the observed maize growth stage extension. Our results suggest that 447 

the heat stress alleviation due to irrigation identified here is largely overlooked in 448 

current crop models. As such, when those crop models are calibrated to match 449 

observed yields, processes associated with water stress alleviation are probably 450 

overestimated, resulting in uncertainties for predicting future irrigation water demand 451 

and crop yield. These uncertainties might mislead future adaptation decisions due to 452 

incomplete or biased estimates of the relative contributions of heat and water stress. 453 

Relatedly, recent studies identified a wide range for the simulated canopy temperature 454 

in current crop models (Webber et al., 2017). Therefore, assimilating satellite derived 455 

LST might be a potential solution to improving crop models heat stress representation 456 

so that they can better reproduce the observed heat stress effects (Meng et al., 2009; 457 

Xu et al., 2011). These  remotely sensed LST can also be used to validate model 458 

simulated LST, especially given that the recent ECOsystem Spaceborne Thermal 459 

Radiometer Experiment on Space Station (ECOSTRESS) mission makes hourly plant 460 

temperature measurement available (Meerdink et al., 2019). However, it is worth 461 

noting that the availability of satellite LST presents a constraint when thinking about 462 

future climate change impact studies. In addition, some caution is required for 463 

validating model-simulated LST, since LST is sensor- and satellite- specific. 464 

 465 

Several limitations and caveats apply to our study. First, the daily MODIS daytime 466 

LST we used to explain crop maximum daily temperature had missing values due to 467 

quality control checks, and was derived from a mix of crop covers and other land 468 

surface temperature information, which might bias the identified irrigation cooling 469 

effect. Specifically, using MODIS daytime LST as a proxy for true (measured) 470 

maximum crop surface temperature in an empirical statistical model might 471 

underestimate the benefit of cooling effect (measurement error in a predictor variable 472 

producing attenuation bias). These uncertainties in LST dataset might be resolved 473 

with the recently launched ECOSTRESS mission, as its hourly revisiting frequency 474 

enables better estimation of maximum daily temperature. The second issue is that 475 
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water stress and heat stress are not perfectly separable. As what we have shown, the 476 

cooling effect of irrigation lowers evaporative demand (PET) and thus indirectly 477 

contributes to lower water stress (higher ET/PET). In addition, water stress reduced 478 

photosynthesis and ET, resulting in higher plant temperature. Our disentangling 479 

methods do not account for the water stress and heat stress interaction effects, so these 480 

“heat” and “water stress” channels should be interpreted carefully. We note that our 481 

statistical model estimated temperature coefficient should be interpreted as the net of 482 

all effects raising surface temperature. The third issue is that our study only examined 483 

maize in one state, Nebraska. Although Nebraska is the largest irrigated maize 484 

producer in the US, results might differ for other crop types and other landscapes, due 485 

to different crop canopy structures and management practices (Chen et al., 2018), and 486 

spatial variations in water and heat stresses mitigation effects  (Figure 3 and Figure 7). 487 

 488 

Overall, our study suggests that heat stress alleviation, in addition to water stress 489 

alleviation, plays an important role in improving irrigated maize yield. Since current 490 

models generally cannot accurately simulate the canopy temperature, the irrigation 491 

induced yield benefit might have been overly attributed to water stress alleviation. 492 

This might bias the future yield prediction under irrigation, since high temperature 493 

stress might be more dominant than drought for crop yield formation under future 494 

warmer climate (Zhu et al, 2019; Jin et al., 2017). Better constrained crop models -- 495 

perhaps through integration of satellite observed land surface temperature and crop 496 

stage information -- will be necessary to  improve yield prediction and help 497 

policymakers and farmers make better decisions about where and when to implement 498 

irrigation. 499 

  500 
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Figures 712 

 713 

Figure 1: The spatial pattern of county level multi-year (2003-2016) mean daily 714 

precipitation (a) and air temperature (b) during maize growing season. County level 715 

multi-year (2003-2016) mean maize irrigation fraction across Nebraska (c). The 716 

maize irrigation fraction is based on USDA NASS report. Boxplot of county level 717 

irrigated and rainfed maize yield in Nebraska over the study period (d). The lines in (d) 718 

show the linear fitted yield trend with 95% confidence interval. Boxplots indicate the 719 

median (horizontal line), mean (cross), inter-quartile range (box), and 5–95th 720 

percentile (whiskers) of rainfed or irrigated yield across all counties. 721 

 722 

 723 

Figure 2: The difference between irrigated and rainfed maize yield (a) and satellite 724 

observed vegetation index (b and c). The shaded area in (b) and (c) shows one 725 

standard deviation of WDRVI (b) and WDRVI difference (c). 726 

 727 

 728 
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 729 

Figure 3: Spatial-temporal patterns of daytime and nighttime MODIS LST 730 

differences (left panel, a-h) and surface air temperature differences (right panel, i-p) 731 

between irrigated and rainfed maize in different growth stages: vegetative period and 732 

grain filling period. The shaded areas in (a), (b) and (i), (j) show one standard 733 

deviation of corresponding variables. 734 

 735 

 736 
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 737 

Figure 4: Boxplot of maize phenological date (a) and duration (b-c) for irrigated and 738 

rainfed maize areas. Sensitivity of phenological duration difference between irrigated 739 

and rainfed maize to LST difference between irrigated and rainfed maize (d-f). The 740 

slope in (d-f) was estimated with linear model. The spatial pattern of phenological 741 

date and duration differences between irrigated and rainfed maize areas (g-h). 742 

 743 
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 745 

Figure 5: Boxplot of GDD and EDD estimated with MODIS LST (a-b) and surface 746 

air temperature (c-d) for irrigated and rainfed maize areas. Boxplots indicate the mean 747 

(cross), median (horizontal line), 25--75th percentile (box), and 5--95th percentile 748 

(whiskers) of corresponding variables in all year and county combinations. 749 
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 751 

 752 

Figure 6: Boxplot of SSEBop ET, MODIS PET and ET/PET for irrigated and rainfed 753 

maize areas (a-c). Spatial pattern of SSEBop ET, MODIS PET and ET/PET 754 

differences between irrigated and rainfed maize areas (d-f). 755 

 756 
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 757 

Figure 7: Temperature sensitivity of yield and yield components (GSL, HI and BGR) 758 

for irrigated and rainfed maize areas.  759 

 760 

 761 
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30 
 

Figure 8: Response of maize yield to ET/PET (a), EDD (b) and daytime LST (c) in 763 

both irrigated and rainfed maize. Response of yield differences to ET/PET (d), EDD 764 

(e) and daytime LST (f) differences between irrigated and rainfed maize. The linear 765 

(dash black line) and quadratic (solid black line) response curves of ∆𝑌𝑖𝑒𝑙𝑑  to 766 

∆𝐸𝑇/𝑃𝐸𝑇, ∆𝐸𝐷𝐷and ∆𝐿𝑆𝑇 are shown in d-f. 767 

 768 

 769 

 770 

 771 

Figure 9: Boxplot of crop model simulated yield, biomass, ET and phenological 772 

duration (VP, GFP and GSL) differences between irrigated and rainfed maize areas. 773 

For phenological duration, CLM-crop only reports GSL. 774 


