
Rainfall-induced shallow landslides and soil wetness: comparison of
physically based and probabilistic predictions
Elena Leonarduzzi1,2, Brian W. McArdell2, and Peter Molnar1

1Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
2Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland

Correspondence: Elena Leonarduzzi (leonarduzzi@ifu.baug.ethz.ch)

Abstract. Landslides are an impacting natural hazard in alpine regions, calling for effective forecasting and warning systems.

Here we compare two methods (physically based and probabilistic) for the prediction of shallow rainfall-induced landslides

in an application to Switzerland, with a specific focus on the value of antecedent soil wetness. First, we show that landslide

susceptibility predicted by the factor of safety in the infinite slope model is strongly dependent on soil data inputs, limiting

the hydrologically active range where landslides can occur to only ∼20% of the country with typical soil parameters and soil5

depth models, not accounting for uncertainty. Second, we find the soil saturation estimate provided by a conceptual hydro-

logical model (PREVAH) to be more informative for landslide prediction than that estimated by the physically based coarse

resolution model (TerrSysMP), which we attribute to the lack of temporal variability and coarse spatial resolution in the latter.

Nevertheless, combining the soil water state estimates in TerrSysMP with the infinite slope approach improves the separation

between landslide triggering and non-triggering rainfall events. Third, we demonstrate the added value of antecedent soil satu-10

ration in combination with rainfall thresholds. We propose a sequential threshold approach, where events are first split into dry

and wet antecedent conditions by a N-day antecedent soil saturation threshold, and then two different total rainfall-duration

threshold curves are estimated. This, among all different approaches explored, is found to be the most successful for landslides

prediction.

1 Introduction15

Landslides are a natural hazard affecting alpine regions worldwide. They damage infrastructure, buildings, sometimes leading

to loss of life (e.g., Kjekstad and Highland, 2009; Salvati et al., 2010; Petley, 2012; Trezzini et al., 2013; Mirus et al., 2020).

Shallow landslides occur when and where the applied shear on the soil-bedrock interface exceeds the shear strength of the

soil on a slope. Their occurrence is determined by two key factors: predisposing factors, which are a collection of soil and

land surface properties of a certain location which make it susceptible (or not) to landsliding (e.g., Reichenbach et al., 2018);20

and triggering factors, which are those that initiate slope failure on susceptible slopes. In general, most landslides are either

triggered by earthquakes or rainfall (e.g., Iverson, 2000; Highland et al., 2008; Leonarduzzi et al., 2017; Marc et al., 2019).

Here we focus on shallow rainfall-induced landslides, which involve the top layer of the soil, typically less than 2m thick, and

fail instantaneously. In such landslides, failure is typically the result of the development of positive pore water pressure in the
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soil, which decreases its strength (e.g., Anderson and Sitar, 1995; Highland et al., 2008). This condition is often associated with25

intense or long lasting rainfall events that saturate the soil by vertical infiltration and lateral subsurface drainage. The wetness

of the soil prior to the triggering rainfall is therefore a key ingredient in slope failure (Bogaard and Greco, 2018).

Several approaches exist for the prediction of landslides that focus on one or more predisposing and triggering factors,

typically classified into 3 types: susceptibility mapping, probabilistic approaches, and physically based modelling (e.g., Aleotti

and Chowdhury, 1999).30

Susceptibility mapping assesses the vulnerability of a certain area to landsliding based on predisposing factors. In statis-

tical susceptibility mapping, the different predisposing factors, geological, topographical, and climatological properties, are

combined with landslide inventories and used as explanatory variables in a statistical model (e.g., Reichenbach et al., 2018).

Landslide hazard maps are then generated by various forms of linear and nonlinear multivariate regression models (e.g., Chung

et al., 1995), logistic regression (e.g., Ohlmacher and Davis, 2003; Ayalew and Yamagishi, 2005; Lee and Pradhan, 2007;35

Yilmaz, 2009; von Ruette et al., 2011), or machine learning algorithms (e.g., Saito et al., 2009; Ermini et al., 2005; Yilmaz,

2009). Susceptibility mapping can also be achieved by applying a physically based geotechnical model which identifies the

likelihood of failure in a region based on an assessment of likely soil water distribution in space (e.g., Baum et al., 2002, 2008;

Dietrich and Montgomery, 1998; Formetta et al., 2016).

Probabilistic approaches focus mainly on the temporal component of the landslide hazard (triggering factors), rather than40

the spatial susceptibility (predisposing factors). They are based on the assumption that rainfall is the main triggering factor,

and take advantage of historical records of rainfall and landslides. These databases are combined to learn which meteorological

conditions have been associated with the triggering of landslides in the past. This allows then to recognise critical conditions

in weather forecasts of the coming days and estimate how likely the occurrence of landsliding is. The most common of these

approaches is that of rainfall thresholds, and in particular intensity-duration or total rainfall-duration threshold curves (e.g.,45

Guzzetti et al., 2007; Leonarduzzi et al., 2017; Segoni et al., 2018). While rainfall is the main triggering factor, soil wetness

conditions prior to triggering rainfall can also be included in this framework (e.g., Bogaard and Greco, 2018; Marino et al.,

2020). The antecedent soil wetness conditions can be derived in many different ways, each with its advantages and limitations,

for example from in-situ measurements (depend on network density, e.g., Wicki et al., 2020), remote sensing of soil moisture

(suffer from low resolution and insufficient penetrating depth, e.g., Brocca et al., 2012; Thomas et al., 2019), through proxies of50

soil wetness like antecedent rainfall (miss evapotranspiration and snowmelt, e.g., Glade et al., 2000; Godt et al., 2006; Mathew

et al., 2014), or by hydrological soil water balance modelling (e.g., Ponziani et al., 2012; Thomas et al., 2018).

Finally, physically based modelling approaches are usually made up of two components to directly simulate slope stability

in time and space: an hydrological and a geotechnical model. The hydrological model is used to estimate the condition of the

soil, i.e. the pore water pressure and/or saturation, which are then used in the geotechnical model for the estimation of slope55

stability (e.g., by the infinite slope or other hydromechanical slope failure model). These approaches are theoretically the most

sound and predict both when and where a landslide could occur, but are computationally expensive and data demanding. For

these reasons, they are typically applied on individual slopes in landslide-prone areas or small catchments only (Cohen et al.,

2009; von Ruette et al., 2013; Anagnostopoulos et al., 2015; Fan et al., 2015, 2016).
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In this work, we conduct a comparison of a probabilistic and physically based modelling approach to landslide prediction60

with the specific question of the value of the inclusion of antecedent soil wetness state in the prediction. Our scale of analysis

is regional (Switzerland) instead of hillslope/catchment scale, because it is at this scale that landslide early warning systems

need to be developed (e.g., Staehli et al., 2015). First we explore the regional susceptibility to landslides following the infinite

slope approach (physically based susceptibility mapping). This allows us to understand where hydrology can play a role in the

landscape in triggering landslides, i.e. identifying areas where the transient soil wetness results in the Factor of Safety (FoS)65

fluctuating above 1 (stable) and below 1 (unstable). We then explore two approaches to account for the soil wetness state for

landslide prediction, taking advantage of the hydrological estimates of soil moisture provided by two different models set-up

for forecasting purposes and covering Switzerland.

(1) A fully physically based approach that takes advantage of a state-of-the-art European simulation of hydrology (Furusho-

Percot et al., 2019) with three physically based coupled models (climate forecast model, land surface model, hydrological70

model) at a coarse resolution (12.5km×12.5km), from which we extract pore water pressure. The pressure field is then used as

a dynamic component in the Factor of Safety estimation in the infinite slope approach. This framework is designed based on

similar existing blueprints for landslide warning systems (Schmidt et al., 2008; Wang et al., 2020).

(2) A probabilistic approach in which we develop rainfall threshold curves for landslide prediction based on a combination

of historical databases of rainfall and landslides for Switzerland (Leonarduzzi et al., 2017). We then combine these predictions75

with estimated soil saturation by a Swiss operational, semi-distributed conceptual hydrological model (PREVAH, Viviroli

et al., 2009) to quantify the strength of the signal in antecedent soil moisture which could be used in rainfall threshold curve

methods for landslide prediction at this scale.

The comparison between the two approaches allows us to answer the following questions: 1) Is the infinite slope approach

valuable for landslides hazard assessment at the regional scale? 2) Where does hydrology play a role in the triggering of80

landslides in Switzerland? 3) Which hydrological soil water estimate (PREVAH or TerrSysMP) is more informative for land-

slide prediction and why? 4) How can we best take advantage of the soil saturation estimates in combination with rainfall

characteristics for landslide prediction?

2 Methods and Data

2.1 Physically based approach85

2.1.1 The infinite slope model

For the stability assessment, we choose to follow the infinite slope approach, because this is one of the most widely used

models for slope failure prediction (e.g., Pack et al., 1998; Iverson, 2000; Baum et al., 2008; Lu and Godt, 2008). It is based

on the assumption that the thickness of the sliding mass (soil) is much smaller than the length of the slope, which is typically
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true for shallow landslides (up to 2m deep). The Factor of Safety (FoS) is computed as the ratio between soil shear strength90

and applied stress to the soil layer:

FoS(t) =
c+ [γd− γwh]cos2βtanφ

γdsinβcosβ
(1)

where h is the water pressure head within the soil layer [m] (see Section 2.1.3), d the soil depth [m] (see Section 2.1.2), c

is soil cohesion [Pa], γ is soil unit weight [N/m2] (computed from the bulk soil density ρ and gravitational acceleration g as

γ = ρ ∗ g), γw is the specific weight of water [N/m2], β is the slope angle [rad], and φ is the soil internal friction angle [rad].95

Typically FoS=1 is assumed to be the threshold of failure, with landsliding occurring when FoS<1, i.e. when the applied shear

stress exceeds the soil shear strength.

All calculations are done at the resolution of the DEM, that is a grid of cell size 25m×25m in this paper. This resolution is

a result of testing (not reported here), and a compromise between not violating the infinite slope assumptions (length scale of

landslides >> their depth), keeping the grid size similar to that of a typical landslide detachment area, but also capturing local100

topographic gradients β, which are smoothed as resolution decreases.

To estimate the bulk soil density, cohesion, and friction angle we use publicly available datasets in OpenLandMap (Open-

LandMap; Hengl et al., 2017), which provide global maps of a wide range of soil, land cover, hydrology, geology, climatic and

relief characteristics. All the maps used here are available at a resolution of approximately 250m×250m. The soil properties

are provided for 6 different depths up to 200 cm produced by machine learning algorithms trained on soil profiles globally105

(SoilGrids Dataset). For the estimation of the bulk soil density, we compute the thickness-weighted average for the 2m soil

column. For the friction angle, we first associate a value for each soil texture class (USDA system) present in Switzerland in

the OpenLandMap dataset (Geotechdata.info, Angle of Friction). Then at each location, we choose the value of the friction

angle at the depth corresponding to the local soil depth (e.g. if the soil is 120cm deep locally, the closest value in SoilGrids

will be that at 1m depth). Finally for cohesion, we assume that the soil itself is cohesionless (c= 0), but we add the important110

contribution of vegetation to cohesion on slopes. From the landcover map in OpenLandMap, we identify 8 classes of tree cover,

and assign them a cohesion value between c= 5−22 kPa. Denser tree cover and mixed forests are associated with larger values

of cohesion (Schwarz et al., 2012; Dorren and Schwarz, 2016). To quantify the sensitivity of the FoS estimation to the apparent

root cohesion, we also simulate the reference case in which cohesion is assumed c= 0 over the entire country (Figure 1). All

maps are downscaled to 25m×25m resolution by resampling with nearest neighbour.115

To assess the susceptibility to landsliding in Switzerland, we compute the Factor of Safety of the two end-member scenarios:

completely wet soil (h= d) or completely dry soil (h= 0), which give us the minimum and maximum FoS. This allows

us to identify unconditionally stable and unstable areas in our domain just based on hydrology and soil and topographic

characteristics. Unconditionally stable areas have the minimum FoS>1 for a completely wet soil and will never fail regardless

of the actual hydrological state. Unconditionally unstable areas have the maximum FoS<1 for a completely dry soil and will120

(should) always fail according to Eq. 1. In all other areas, hydrology plays a role in the initiation of landslides according to the

FoS methodology.
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Figure 1. Maps of the distributed input used in the Factor of Safety calculations. a) The 25m digital elevation model (Swisstopo), b) friction

angle obtained from the OpenLandMap USDA texture class and provided soil depth, c) bulk density obtained from OpenLandMap, and d)

cohesion estimated for the land cover map from OpenLandMap. The friction angle depends on the local soil depth, here soil depth estimated

with the linear diffusion model.

We then compute the dynamic Factor of Safety in time and its statistics for all cells (25m×25m) in which at least one

landslide was recorded according to the landslide database (for details on the database see Section 2.2), using the water pressure

head h estimated from the hydrological model described in Section 2.1.3. Additionally, we also compute the departure of the125

minimum FoS from the local temporal mean (i.e. mean of the 25m cell) during each triggering and non-triggering rainfall event

which are defined in Section 2.2. These analyses allow us to observe variations in FoS at cell level and relate them to observed

landslide occurrence at those locations. If these relations are found to be strong, we hypothesise that a warning system could

be based on the estimated FoS. Otherwise, its use for landslide warning is questionable.

2.1.2 Soil depth130

Because soil depth is the most poorly known variable and uncertain parameter in the slope stability model in Eq. 1, here we

use four different methods to estimate soil thickness distributions in space and test their impacts on FoS estimates: (1) Uniform

soil depth of 1 m for the entire country. (2) Slope-dependent model (Saulnier et al., 1997):

di = dmax

{
1−

[
tanβi− tanβmin

tanβmax− tanβmin

(
1− dmin

dmax

)]}
(2)
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where dmax is maximum soil depth, dmin the minimum soil depth (assumed to be 5cm), βi is the local slope, βmax is the135

maximum slope above which no soil layer can form (assumed to be 45◦), and βmin the minimum slope (0◦). (3) Elevation-

dependent model (Saulnier et al., 1997):

di = dmax−
zi− zmin

zmin− zmax
(dmax− dmin) (3)

where zi is the local elevation, zmax is the maximum elevation, and zmin the minimum elevation. (4) Steady state soil depth

produced by the linear diffusion transport model (Roering, 2008) where we simulate the distributed soil depth after 15’000140

years of soil development. This approach is based on mass conservation (Eq. 4), with soil production decreasing exponentially

with soil depth (Eq. 5) and soil erosion and transport assumed to be linearly dependent on slope (Eq. 6).

∂di
∂t

=−∇qs,i +
ρr
ρs
εi (4)

εi =
ε0

cosβi
e−µdicosβi (5)

qs,i =−Kl∇zi (6)145

where ∂di
∂t is the change of soil depth in time, qs,i the soil (sediment) transport vector at location i, ρrρs the ratio between the

bedrock and soil density (2 as in Dietrich et al., 1995), εi the soil production rate at location i, ε0 the maximum soil production

rate associated with 0 depth (0.000268 m/year as in Heimsath et al., 2001), β the slope angle at location i, µ the critical value

depth (3 1/m as in Roering, 2008), Kl the coefficient of linear proportionality (0.0050 as in Dietrich et al., 1995), and ∇zi the

gradient of elevation at location i.150

For the soil depth models (2)-(4) we fix the maximum soil depth dmax = 2m, to be consistent. In fact, no deeper soil depths

are reported in the Swiss soil suitability map for agriculture (Bod).

2.1.3 Hydrology

The water pressure head within the soil layer required for the calculation of the Factor of Safety (h in Eq. 1), is provided by an

operational European forecasting system. This consists of the climatology from 1989 to current day, obtained by applying the155

Terrestrial Systems Modeling Platform (TerrSysMP) (Kurtz et al., 2016). This platform is made up of three physically based

coupled models that solve the water and energy fluxes from the atmosphere to the groundwater: a weather prediction model, a

land surface process model, and a hydrological model for surface and subsurface 3D water fluxes. TerrSysMP is produced at

daily resolution over a 12.5km×12.5km grid covering Europe. Several state and flux variables are available and can be freely

accessed, here we use the water pressure in the soil and soil saturation.160
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We extract from the historical simulations the water pressure at the depth obtained by the soil depth model chosen and

correct for the elevation difference between the centre of the corresponding TerrSysMP vertical layer and the estimated local

depth and use it as the water pressure head term in Eq. 1 h. In addition to pressure, we also extract the average saturation of

the top two soil layers (total depth of 60cm from the surface), in order to facilitate comparisons with the saturation obtained by

the conceptual hydrological model PREVAH.165

2.2 Probabilistic approach

2.2.1 Rainfall threshold curves

We combine landslide inventory data in Switzerland and a daily gridded dataset of rainfall to develop rainfall threshold curves

following the method of Leonarduzzi et al. (2017). The historical landslides were collected in the Swiss flood and landslide

damage database (Swiss Federal Research Institute WSL, Hilker et al., 2009). This database contains floods, landslides, and170

rockfall events which produced damages in Switzerland since 1972. We select the landslide events that have a known location

and date, and were not associated with snowmelt, for a total of 1807 events between 1981 and 2016 (timeframe of the analysis).

The rainfall record is obtained as the interpolation of a network of ca. 430-460 raingauges, using the local climatology and

regional precipitation-topography relationships (Shepard, 1984; Frei and Schär, 1998; Frei et al., 2006). It contains daily rainfall

totals on a 1km×1km grid covering the entire country since 1961.175

For the definition of rainfall events, we follow the procedure introduced in Leonarduzzi et al. (2017). First we select suscep-

tible cells, that is rainfall cells (1km×1km grid cells) where at least one landslide was recorded. For those cells we separate

the rainfall timeseries into events, where an event is defined as a series of consecutive rainy days with a minimum of 1 dry day

in-between events. These events are then classified as observed triggering if a landslide was recorded during or immediately

after them, and non-triggering otherwise. The properties of each event are total rainfall depth (E), event duration (D), event180

mean daily intensity, and event maximum daily intensity.

We then define a power-law total rainfall-duration (ED) threshold curveE = aDb that separates triggering and non-triggering

rainfall events. To this end, we estimate the a and b parameters of the power law curve by maximising the True Skill Statistic

(TSS=True Positive Ratio - False Positive Ratio), as in Leonarduzzi et al. (2017). This allows us to classify the rainfall events

by the calibrated ED threshold into the following groups (see also Leonarduzzi and Molnar, 2020): observed and correctly185

predicted triggering events above the ED curve (True Positives), observed triggering events which fall below the ED curve

(False Negative), observed non-triggering events which fall above the ED curve (False Positive), and observed non-triggering

events which fall below the ED curve (True Negatives).

2.2.2 Antecedent soil saturation

We use the values of soil saturation estimated by the Swiss operational hydrological model PREVAH (Viviroli et al., 2009) at190

a 500m×500m resolution to explore the added value of antecedent soil saturation on the ED curve predictions. PREVAH

is a conceptual model, where the soil is represented by three storage modules: soil moisture storage (SSM), upper zone
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(unsaturated) runoff storage (SUZ), and lower zone (saturated) runoff storage. We use the values of the first two (unsatu-

rated) layers and combine and transform them into a 0-1 soil saturation estimate. This is computed as: soilsaturation=

(SSM +SUZ)/(SSMmax+SUZmax), where SUZmax is a distributed calibrated parameter, while SSMmax is the maxi-195

mum value of SSM simulated over the entire timeframe (1981-2018) at each grid cell.

For each susceptible cell defined in Section 2.2.1, we extract the timeseries of the PREVAH soil saturation estimate at the

corresponding cell, and compute the departure of the maximum saturation during triggering and non-triggering rainfall events

from the local temporal mean and the N-day mean antecedent saturation (N=1,2,5,10,20,30,60 days).

We test the information content of soil saturation for the ED curves, i.e. analyse whether information on soil saturation could200

reduce some of the false positives and negatives generated by the ED threshold curve estimated in Section 2.2.1. For each

group of events (false positives, false negatives, true positives, and true negatives) and each rainfall event duration (1 to 6 days)

we compute the mean soil saturation over 5-60 days prior to the beginning of the event. This allows us to examine if we fail

to predict some triggering events (False Negative) with the ED curve because saturation was very high, reducing the rainfall

amount required for the initiation of a landslide, and likewise if some larger rainfall amounts were insufficient for the triggering205

(False Positive) because the soil was very dry prior to rainfall.

Finally we explore two different approaches to combine rainfall characteristics and antecedent saturation. On one hand, a

hydro-meteorological threshold separating the antecedent N-days mean saturation (with N=1,2,5,10,20,30,60 days) and rainfall

characteristic (logarithm of either total rainfall, maximum or mean intensity) pairs for triggering and non-triggering events. On

the other hand, a sequential threshold system where events are first split in high and low N-days antecedent saturation, and210

then two different ED thresholds are used accordingly, for wet and dry antecedent conditions (e.g., Sidle and Ochiai, 2006).

We optimise the saturation and ED thresholds by maximising the TSS, but we also consider different antecedent saturation

periods (N=1,2,5,10,20,30,60 days). We propose that such thresholds could be used in a landslide warning context together

with estimated current soil wetness and forecasted rainfall.

3 Results215

3.1 Physically based approach

3.1.1 Infinite slope model spatial patterns

Distributed inputs (Fig. 1) were used to compute the FoS across Switzerland as a function of the hydrological term h for the

two end-member states h= 0 and h= d. As a first step, we generated the distributed soil depth values following the four

approaches introduced in Section 2.1.2 (Figure 2). These result in quite different spatial soil depth distributions, with the220

elevation-dependent soil depth mirroring the DEM, the slope-dependent soil depth showing low variability in depth in valleys

and lowlands where slope is constant, and the linear diffusion model soil depth showing the highest spatial heterogeneity,

with large differences in soil depth over short distances. This is due to the dependence on the second derivative of elevation
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Figure 2. From top to bottom: digital elevation model (DEM, Swisstopo 25m) and 4 soil depth distributions: constant (d=1m), slope- and

elevation-dependent, and d between 0 and 2m assuming the linear diffusion model at steady state. The maps on the right show a zoom to the

same area to appreciate small scale variability.

(curvature), and results in low soil depth on mountain ridges, but sometimes larger values in convergent topography right next

to them.225

We then compute the minimum (assuming soil completely wet, h= d in Eq. 1) and maximum (assuming soil completely

dry, h= 0 in Eq. 1) FoS for every 25m×25m cell in Switzerland considering all four soil depth maps. We group the cells
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Table 1. Percentage of Unconditionally Stable (US), Conditionally (Un)Stable (CUS), and Unconditionally Unstable (UU) cells in Switzer-

land according to the FoS calculations for each soil depth model, and percentage of landslides in each condition from the landslide inventory.

For the linear diffusion model the results are also shown when cohesion is neglected (c= 0).

landslides

soil depth model US CUS UU in US in CUS in UU

constant 66% 22% 12% 65% 30% 5%

slope dep. 66% 25% 10% 65% 30% 5%

elevation dep. 65% 22% 13% 64% 31% 5%

lin. diff. 65% 22% 13% 64% 31% 5%

lin. diff. (no cohesion) 35% 40% 25% 19% 61% 20%

as unconditionally stable (when FoSmin > 1) and unstable (when FoSmax < 1), and conditionally (un)stable (all remaining

cells) (Figure 3). The resulting limits of the FoS over the country seem not to be affected strongly by the soil depth model

chosen. This is confirmed also when looking at the fraction of cells with observed landslides in each condition (Table 1).230

Nevertheless this is not to say that soil depth is not an important parameter for the initiation of landslides, as in Figure 3

and Table 1 we are not considering the interplay of soil depth and hydrology. Considering the two extreme scenarios (soil

completely wet or completely dry), we are ignoring how likely these conditions are to occur, and the fact that a thicker soil will

likely be more difficult to saturate. Therefore, while soil depth does not seem to impact the areas with limiting conditions for

completely wet and dry soil, it will very likely impact the landslide volume and the actual hydrological state and therefore FoS235

value.

Under the conditions studied here, only 22-25% of the area of Switzerland is conditionally unstable, i.e. area where hydrol-

ogy matters for landslide occurrence according to the infinite slope model. The presence of so many landslides in uncondition-

ally stable areas (65-66% of the total number of landslides), and the existence of some unconditionally unstable cells (10-13%

of the country), are undesirable outcomes. While some inaccuracy in the location of the landslides (which might not refer to240

the detachment zone) could play a role, these results also suggest that either the infinite slope model is inadequate or the input

parameters are inaccurate. In fact, the sensitivity of the FoS to cohesion makes the point (Figure 3 and Table 1) regarding pa-

rameter uncertainty. If we remove cohesion (c= 0), a much larger portion of the country is susceptible to landslides (unstable

or potentially unstable), and the hydrologically active portion, conditionally (un)stable, is now 40% of the country, with more

than 60% of the total landslides recorded in this area, and only 19% of the landslides remains in unconditionally unstable areas245

(3 and Table 1). This is a strong indication that the infinite slope model predictions are highly sensitive to input parameters.

These aspects and potential limitations of the FoS will be further discussed in Section 4.

3.1.2 The effect of dynamic hydrology

To address the temporal dynamics of FoS in the susceptible areas (25m×25m cells where at least one landslide was recorded)

and their connection to observed landslides, we extract the daily timeseries of simulated TerrSysMP soil water pressure for all250
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Figure 3. Maps of (un)conditionally (un)stable regions of Switzerland obtained from the two Factor of Safety limiting cases (soil completely

wet or dry) and the different soil depth models. Panel in the bottom row is the reference case obtained with the linear diffusion model

neglecting cohesion (c= 0).

TerrSysMP cells within Switzerland for the period 1989-2018, and then compute the FoS in time for all 25m×25m cells in

which at least one landslide was recorded at the local depth estimated by the linear diffusion soil depth model.

The expectation is that landslides should occur when and where FoS<1. While the value of 1 is often chosen as a theoretical

threshold based on the balance of forces in a soil, several studies actually calibrate either the threshold FoS value or the critical

area over which FoS<1 in a region (e.g., Casadei et al., 2003). In this work we accept that the critical value of FoS can255

vary spatially depending on the soil parameters and the performance of the hydrological model. To this end, we focus on the

departure of the FoS from the long-term temporal average of each cell. This allows us to focus only on the temporal dimension
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Figure 4. Histograms of the departures of the minimum Factor of Safety from its grid-based long-term mean during landslide triggering and

non-triggering rainfall events, combining spatial (i.e. differences between landslide locations) and temporal (i.e. differences between events

in the cells) variability.

and observe whether the FoS is lower during triggering rainfall events (i.e. prior to landsliding). We compare the histograms

of the departures in FoS from the local temporal mean of the triggering and non-triggering events (Figure 4). While there is a

clear trend of FoS being smaller than the mean (i.e. negative values) during triggering events more than non-triggering events,260

the separation is not sufficient to establish a warning system based on a threshold of FoS.

In addition to soil pore water pressure and the FoS, we also consider the mean saturation over the top two model layers

estimated by TerrSysMP and compare the departure of it from its long-term local temporal mean (Figure 5a). This not only

allows us to directly compare the estimates of the two modelling frameworks (PREVAH and TerrSysMP), but also to further

assess the usefulness and validity of the infinite slope approach. For TerrSysMP, the difference between the departure from265

the mean during triggering and non-triggering events is barely noticeable for saturation. This suggests that although modelled

TerrSysMP soil saturation by itself is not a good metric for a landslide warning system, its inclusion into a FoS with additional

local soil and topography characteristics has some merit. Proof of this is the clearer separation between the distribution of

values of triggering and non-triggering events for FoS departures from the mean (Figure 4).

3.2 Probabilistic approach270

The role of antecedent wetness and the information content of the saturation estimates provided by the hydrological model

PREVAH (Viviroli et al., 2009) for landslide prediction is explored in a similar way to the physically based approach, but

because we do not have an estimate of soil pore water pressure in PREVAH, we use only soil saturation. We expect patterns

opposite to that of the FoS: the saturation to be exceptionally large on landslide days and generally larger during triggering

than non-triggering events. The separation of the distribution of the departure of saturation during triggering and non-triggering275

events from the local mean saturation (Figure 5b) is evident and much clearer than for TerrSysMP. This suggests that the

saturation estimate provided by PREVAH, might contain information useful for the prediction of landslides. We explore this

further by focusing on the missclassification associated with a rainfall threshold (i.e. false positives and false negatives). We
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Figure 5. Histograms of the departure of the maximum event saturation from its long-term local temporal mean for landslide triggering and

non-triggering events, considering a) saturation estimates from TerrSysMP, and (b) from PREVAH.

first define the optimum ED threshold for landsliding by maximising the TSS (E = 20.1D0.74, TSS=0.68), and then compute

the average antecedent saturation for each duration and class of events: false positives, false negatives, true positives, and280

true negatives. Regardless of the number days prior to the beginning of the rainfall event over which the mean saturation is

computed, the false negatives (FN, in Figure 6) are always associated with the highest antecedent saturation, and the false

positives (non-triggering events above the threshold, FP in Figure 6) with the lowest saturation. This confirms that at least

some of the false negatives were triggered by a smaller rainfall amount than expected due to exceptionally high antecedent soil

wetness, whereas sometimes although the ED threshold was exceeded, no landslide event was observed due to exceptionally285

low saturation prior to the rainfall event. The only point for which the antecedent saturation prior to false negatives is not the

highest is for duration of 6 days. However, this is due to the insufficient number of true negatives of such duration available

(see red dashed line in the bottom right panel in Figure 6).

Based on these results we consider two alternative approaches to combine antecedent saturation and rainfall characteristics

for a landslide warning system. First we optimised thresholds by combining N-days (N=1,5,10,20,30,60 days) antecedent290

saturation with the logarithm of maximum daily rainfall, total rainfall, or mean daily intensity, in the shape of log(R) =

a ∗S+ b, where R is the rainfall characteristic, S the N-day mean antecedent saturation and a and b the parameter optimised
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Figure 6. Plots of mean antecedent soil saturation averaged over 5-10-20-30-60 days prior to the beginning of the corresponding rainfall

event for durations of 1-6 days. Events are divided into 4 groups: True Positives (TP, triggering events above the threshold), False Positive

(FP, non-triggering events above the threshold, also called false alarms), False Negative (FN, triggering events below the threshold, also

called misses), and True Negatives (TN, non-triggering events below the threshold). The plot in the lower right shows the number of events

in each group of events for each duration, to check the robustness of the mean estimates.

by maximising TSS. The best performances are obtained with maximum daily rainfall intensity and 5d antecedent saturation

(Figure 7), with a TSS of 0.67.

While these results show clearly the usefulness of antecedent soil saturation (i.e. smaller amounts of rainfall being necessary295

to trigger a landslide in wetter conditions), the performances are not superior to that of a standard rainfall threshold, which

does not account for saturation. In fact, the total rainfall-duration (ED) threshold obtained considering the same rainfall events,

results in a maximum TSS of 0.68.

We therefore explored an alternative approach, where pure rainfall thresholds are defined, but for different levels of an-

tecedent soil saturation conditions, similarly to what Sidle and Ochiai (2006) did by splitting events according to antecedent300

rainfall. For this sequential thresholds approach we first split the events according to the N-days mean antecedent saturation and

then utilise two different ED thresholds, for wet (exceeding the saturation threshold) and dry (not exceeding it) conditions. Of

the different antecedent periods and saturation thresholds considered, we find 10d antecedent saturation with a 0.45 saturation

threshold to lead to the best performances (Figure 8 and to the ED thresholds shown in Figure 9). It is interesting to notice

that the parameters of the best thresholds for the wet (E = 17∗D0.75) and dry (E = 23∗D0.65) antecedent conditions suggest305

yet again that, at least for shorter duration events for which antecedent conditions are expected to be relevant, more rainfall is
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Figure 7. Relative frequency plot of triggering (right) and non-triggering (left) events for the hydrometeorological threshold combining 5d

mean antecedent saturation and the logarithm of maximum daily intensity. The threshold leading to the highest TSS is indicated with a yellow

line.
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required to generate a landslide in dry conditions. The overall TSS value is 0.69, improving slightly upon the performances

of pure rainfall thresholds. We propose this sequential threshold system as a candidate for the design of a regional warning

system.
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Figure 9. Relative frequency plot of triggering (right) and non-triggering (left) events for the total rainfall - duration (ED) threshold above

(panel above) and below (panel below) the soil saturation threshold of 0.45. The two ED thresholds curves are indicated as black lines in the

upper and panels and their equations are in the text.

4 Discussion310

The results presented here suggest that the probabilistic approach with rainfall and soil saturation thresholds is superior to the

physically based approach with the Factor of Safety calculation. It is important to stress that this is not a general statement, but

rather a conclusion drawn from the specific models and data which we compared. In fact, if a physically based approach would

accurately capture the pore water pressure variations at the required high resolution scales and therefore reproduce and predict

slope failure with the FoS (or another geotechnical) model, we maintain that it would be superior to a probabilistic approach. It315

is therefore worthwhile to discuss the limitations of the tested physically based approach and the results obtained with regards
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to the geotechnical component (i.e. the infinite slope approach and FoS calculations) and those related to the hydrological

component.

To consider the infinite slope approach independently from the hydrology, we can focus on the analysis of conditionally and

unconditionally stable/unstable areas of Switzerland and their validation against the location of historical landslides. There are320

two concerning aspects in these results: the presence of many historical landslides (65-66%) in unconditionally stable areas

and the existence of unconditionally unstable areas. The uncertainty in the location of the landslides could explain some of the

slope failures in unconditionally stable areas. Out of the 1354 landslides in unconditionally stable (US) areas, for 937 there

are no US cells in the 24 neighbouring cells (area of 125m×125m centred on the cell), and for 739 not even in the 80 cell

neighbourhood (area of 275m×275m centred on the cell). Furthermore, unconditionally unstable areas should theoretically325

not exist, because they should have failed already or have no soil. Nevertheless roughly 10-13% of the country is classified

as such. These two outcomes are therefore failures of the infinite slope approach and uncertainties in the soil parameters in

the model. The FoS approach is based on strong simplifications and ignores potentially important processes such as suction in

unsaturated soils, which temporarily increases stability. Nevertheless, we believe the uncertainties in the soil parameters have

the strongest influence. Proof of this are the results obtained neglecting apparent root cohesion (Figure 3). The fact that the map330

of (un)conditional (in)stability changes considerably when removing cohesion, shows the sensitivity of the FoS calculations to

this parameter. Other input parameters may be similarly influential. For instance, the friction angle values obtained based on the

the soil texture map from OpenLandMap (Figure 1b), are practically homogeneous over the country. We expect that friction

angle is in reality much more heterogeneous and, together with cohesion, is affecting the unconditionally stable area. The

sensitivity of the FoS estimates to the uncertain soil parameters can be examined theoretically or by Monte Carlo simulations,335

provided that parameter distributions are known (Hammond et al., 1992; Pack et al., 1998; Griffiths et al., 2011). Soil depth is

also a very uncertain and influential parameter. The UU areas in the alpine region are very likely steep locations were the soil

is absent (exposed bedrock). This aspect is missed by most soil datasets as well as soil depth models.

Another important aspect to consider for the FoS calculation is the spatial resolution. Higher resolutions allow to better

capture the local heterogeneities (if data is available), most importantly the topography (i.e. slope). On the other hand, at high340

resolutions, the assumption of slope length much greater than soil depth becomes invalid, and if the cell size becomes much

smaller than the typical detachment area of landslides, the interactions between neighbouring cells become even more critical.

For this reason, geotechnical models have been developed that explicitly model progressive failure, lateral interactions and

stress redistribution (Cohen et al., 2009; von Ruette et al., 2013; Anagnostopoulos et al., 2015; Fan et al., 2015).

The limitations of the hydrological component in the coarse resolution TerraSysMP model regardless of the geotechnical345

model, are evident from the very weak separation between triggering and non-triggering events in the FoS, but even more

in the soil saturation values themselves. In our analysis we focused on the temporal variability (i.e. departure from the local

mean, for triggering and non-triggering events), and the only variable in the FoS calculation which can vary in time is the

soil pore water pressure. This means that the lack of temporal variability in the FoS is a direct consequence of the lack of

temporal variability in the water pressure head. While combining the hydrological estimates with the infinite slope approach350
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does improve the separation compared to using saturation only, it is still insufficient to establish a threshold. The separation is

instead mush stronger when considering soil saturation obtained from PREVAH.

Theoretically, a physically based model like TerrSysMP should be better capable of simulating the movement of water in

the soil and therefore predicting the saturation or pressure more accurately. The lack of temporal variability in soil water

distribution in TerrSysMP is evident in the large number of both triggering and non-triggering events for which the departure355

of maximum event saturation from the local mean saturation is 0 (bars for x=0 in 5a), suggesting the saturation is constant

in time for those cells. We believe these results are a direct consequence of the spatial resolution of the model. In fact, at

such coarse resolution, the model does not capture local changes driven by higher resolution topography, for example lateral

subsurface flow. At this coarse resolution vertical fluxes in the soil will dominate over lateral fluxes (e.g., Lu et al., 2011).

Simple downscaling techniques which can be used to increase the spatial resolution of models have been explored (e.g., TWI,360

Beven, 1995; Schmidt et al., 2008; Wang et al., 2020; Leonarduzzi et al., 2021), but because they are static, they would not

affect the results shown here and compensate for the lack of temporal dynamics. If the coarse hydrological variable does not

include enough temporal variability, neither will the higher resolution spatially downscaled estimate. Another possible reason

for the lack of spatial soil moisture variability in simulations is that most models assume a homogeneous single or multilayer

soil without accounting for variable percolation and preferential flow at the soil-bedrock interface. This could reduce soil365

moisture variability even without accounting for lateral flows effects.

For the specific cases presented here, having a higher spatial resolution (500m×500m rather than 12.5km×12.5km) in

a conceptual hydrological model seems more beneficial than the gain in accurate physical representation of the soil flow

processes. This stresses once more the importance of adequate spatial resolution of hydrological models, especially for the

assessment of slope and soil saturation dependent natural hazards such as landslides.370

5 Conclusions

We explore two approaches for the prediction of landslides and the value of soil wetness in these predictions applied to a

regional scale study in Switzerland. In the first approach we use the soil water pressure estimates from a coarse-resolution

physically based model (TerrSysMP) and slope stability assessment using the infinite slope approach. In the second approach

we use rainfall-duration threshold curves informed by soil saturation obtained by a high resolution conceptual hydrological375

model (PREVAH).

Our main findings are:

– the infinite slope approach for quantifying slope instability is largely affected by the accuracy of input soil parameters,

in particular cohesion in our case (removing cohesion doubled the area where hydrology mattered in FoS prediction),

but the FoS can discern landslide triggering events better than soil moisture only by accounting for local topography and380

stress/strength balance;

– according to the infinite slope approach and without considering parameter uncertainty, hydrology can play a role in

the initiation of landslides over only ca. 20% of Switzerland (the conditionally (un)stable area, where about 30% of all
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observed landslides have occurred). Soil depth does not seem to affect the estimate of (un)conditionally (un)stable areas,

although it is an essential parameter for the estimate of local wetness and determines the landslide volume;385

– soil saturation estimates from a high resolution conceptual hydrological model (PREVAH) are more useful in improving

landslide predictions than those from a coarse resolution physically based modeling framework (TerrSysMP), mainly

due to effects related to the coarse spatial resolution of the latter model;

– we suggest the use of sequential rainfall ED thresholds that first consider antecedent soil saturation conditions (with

a optimal threshold of 10d mean antecedent saturation of 0.45) and then different rainfall ED curves for wet and dry390

conditions.
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