
Answers to comments by Referee #1

Future projections of High Atlas snowpack

and runoff under climate change

March 9, 2021

Comment 1 One element that needs to be discussed in the manuscript is that the runoff coeffi-

cients are not only impacted by climatic parameters but also by surface conditions. Significant
changes in vegetation cover, land use or agricultural practices often have a greater impact, and
this aspect is absent from the manuscript.

Answer: Every modelling framework relies on its own assumptions, which translate into uncer-
tainties. In many climate change studies, the runoff coefficient is assumed to be more dependent
on climatic parameters than on surface conditions (like vegetation) for long term changes. Still,
you are correct, and it deserves to be added to the discussion. We do not explain differences
in average RCs across catchments, nor can we say anything about long-term variability in RCs
forced by non-climatic parameters, like land use change. Our projections also tacitly assume
that parameters other than climate variables will remain the same. Still, land use changes may
not be critical in the case of the High Atlas since most of the area under study is uncultivated,
naturally lacking tree cover and sparsely populated. It has not experienced large-scale land use
changes in the last few decades. However, climate-change driven trends in vegetation cover may
still affect runoff efficiency in the region. It is also unclear to what extent enhanced groundwater
pumping in the Oum-Er-Rbia watershed since the 1980s may have modified the natural water
balance and, indirectly, RCs in mountain catchments.

Comment 2 no reference to the literature except to the previous publication of the authors,

while an important body of work exist for the Mediterranean and Morocco :
Driouech et al https://doi.org/10.1007/s41748- 020-00169-3
Drobinski et al https://doi.org/10.1007/s10113-020-01659-w
Cramer et al https://doi.org/10.1038/s41558-018-0299-2
Lionello et al https://doi.org/10.1007/s10113-018-1290-1
In particular, climate projections on runoff already exist for the basin of interest, see Jaw et al
https://doi.org/10.1016/j.ejrh.2015.02.008 Tramblay et al http://doi.org/10.1007/s11269-017-
1870-8

Answer: We thank the reviewer for the references. A more thorough literature review and
comparison to previous results is required. We suggest adding the following sentences to the
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second paragraph of the introduction:
”Still, climate projections over Morocco – and generally the Mediterranean – agree on robust
warming and drying trends under greenhouse gas forcing (Cramer et al. 2018, Lionello et al.
2018, Drobinski et al. 2020, Tuel et al. 2020c). By the end of this century, average winter
temperatures in the High Atlas could be 2-4C higher, and precipitation 25-45% lower, depending
on the emissions scenario (Driouech et al. 2020, Tuel et al. 2020b).”
”Future trends in runoff in the High Atlas under climate change have been investigated by Jaw
et al. (2015) who analyzed simulations with the Variable Infiltration Capacity model forced by
regional climate model output. They found a general tendency to reductions in streamflow, with
a strong sensitivity to the forcing model’s precipitation trends. Tramblay et al. (2018) took a
simple water balance approach, equating long-term net precipitation with water availability, to
estimate future changes in dam storage across North Africa. In the High Atlas, they projected a
40-to-50% decline in water availability under business-as-usual by the end of the 21st century.”

Comment 3 Page 2, line 38 : what is a ”parametric snow module” ?

Answer: The choice of the word ”module” can be confusing indeed. What we meant here is that
the authors chose to include snow in their model by using a simple temperature-based parametric
representation of snow accumulation and melt. We would rephrase the sentence as ”Marchane
et al. (2017) developed runoff projections for the Rheyara catchment, south of Marrakech and
part of the Tensift watershed, by running conceptual monthly water-balance models incorporating
simple temperature-based parametrizations of snow accumulation and melt.”

Comment 4 Section 2.2: it is not clear why the authors consider TRMM rainfall, while daily

precipitation data is available at 7 locations (line 75). Why also mention CHIRPS rainfall if it
is not used in the study, as the author state

Answer: A gridded precipitation product is required for our simulations. While it is possible
to interpolate station data using a precipitation lapse-rate, the density of stations in our study
area is very small, which is why we prefer to rely on TRMM. Figure 3 discusses the adequacy of
this dataset, and further details can be found in Tuel et al. 2020 J Hydrology. CHIRPS data is
also used in this study to discuss the robustness of the runoff coefficient model (see Table 1).

Comment 5 Section 2.3: The authors should justify why they rely on only one RCM, when nowa-

days large ensemble of climate model experiments are available, such as the Euro-CORDEX (Ja-
cob et al https://doi.org/10.1007/s10113-020-01606-9) or Med-CORDEX (Ruti et al https://doi.org/10.1175/BAMS-
D-14-00176.1) initiatives. It is well established that to obtain robust projections it is necessary
to consider several combinations of GCM/RCM, and the use of only one RCM strongly reduce
the relevance of the work (see Fernandez et al https://doi.org/10.1007/s00382-018-4181-8). In
addition, the RegCM version 3 is rather outdated (2006) since the current version is RegCM-4
(https://www.ictp.it/research/esp/models/regcm4.aspx).

Answer: We should have indeed commented on this choice. Our goal here is to build on the
carefully-designed regional projections developed specifically for the region by Tuel et al. (2020).
The choice of forcing GCM as well as MRCM parametrisation are discussed in detail in this ref-
erence. Also, we are not using RegCM3 but MRCM, a much improved version of this RCM.
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MRCM is simply based on RegCM3 the same way that RegCM4 is based on RegCM3. Admit-
tedly, we do not explore the full range of uncertainties (warming or precipitation trends, RCM
configurations, etc.) and this must be mentioned in the manuscript discussion, which we propose
to do as follows:
”The limitations of our approach introduce additional uncertainties. We rely on a single regional
climate model, and thus do not explore the full range of uncertainties related to model config-
uration and parametrizations. Still, the regional simulations we use here have been specifically
tailored to the area, particularly the choice of driving GCMs, and validated against a range of
observations (Tuel et al. 2020). The fact that the uncertainty in snowpack projections under
RCP8.5 is small could be further explored by using other GCM/RCM combinations, especially
ones that lead to less warming than projected in our three-member ensemble. As to the uncer-
tainty in precipitation trends, it is difficult to reconcile. As shown by Tuel and Eltahir (2020),
the magnitude of future wet-season precipitation in Northwestern Africa is mainly determined
by that of changes in Mediterranean atmospheric circulation. Spread in dynamical trends is dif-
ficult to reduce for this region. A GCM-selection approach based on storylines could be relevant
to determine plausible scenarios (Shepherd 2019).”

Comment 6 Page 5, line 142: the bias correction method is not detailed. What kind of ap-

proach is used beside the use of CDFt? In such a mountainous area, and since this study
consider several variables in RCM simulations (temperature, precipitation, humidity...) a pixel-
by-pixel and variable-by-variable bias correction with CDFt without considering the spatial
correlation and inter-variable dependencies can lead to strong uncertainties. See Vrac et al
https://hess.copernicus.org/articles/22/3175/2018/ It is quite surprising that the authors seems
to apply a simplistic method for bias correction of RCM outputs while they develop a high-
resolution physically based framework for snow simulations.

Answer: The CFDt method is the base of our bias-correction approach. You are correct to
point out that our pixel-by-pixel approach does not take spatial correlation and inter-variable
dependencies into account, and the R2D2 method could be interesting to apply here. R2D2
allows to correct for spatial correlations in the same variable, as well as inter-variable correlations
in time. For inter-variable correlations, one challenge though is that the target datasets used
in the bias-correction come from different sources (TRMM, MODIS, etc.), and thus we should
be very careful about relying on their correlations when correcting the data. To that end, it
would be better to correct from a single observational dataset that includes all the variables we
use, but obviously such a dataset does not exist. For spatial correlations, R2D2 could improve
our approach. One caveat though is that since we fit the snow model based on long-term snow
cover annual cycles (instead of an actual time series of observed snow cover), the role of inter-
annual variability is somewhat put aside, and the simple CDFt would probably perform just
as the more complex R2D2 method (since they will both yield roughly the same seasonal and
long-term values). Overall, other uncertainties (and they are admittedly many) most likely
dominate.

Comment 7 Page 6, line 178: similar to my comment above, how do you compute catchment-

averaged October-May precipitation ? with observed rainfall or TRMM ?

Answer: Catchment-averaged precipitation is computed with MRCM output data, biased-
corrected with TRMM. Station data is only used to validate the use of the TRMM dataset.
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Comment 8 Page 6, line 177: watershed-specific fixed effects, are the parameters fixed according

to size, land use etc. ?

Answer: In this simple model, watershed-specific effects are not specified other than by the
model intercept. We did look at whether the value of the intercept could be related to sim-
ple watershed metrics like elevation or slope distribution, land use, etc. but found no clear
relationships.

Comment 9 Page 6, line 180: It is not clear if these sentences are results of sensitivity analysis

or results of previous works

Answer: The sentences from lines 180-184 relate to results from previous works and more cita-
tions, in addition to Davenport et al. 2020, should be added in a revised version (e.g., Berghuijs et
al. 2017 https://doi.org/10.1002/2017WR021593; Duan et al. 2017 https://doi.org/10.5194/hess-
21-5517-2017).

Comment 10 Page 6, line 185: Only precipitation and temperature are bias-corrected ? Line 125

the author state they use 6-hourly wind speed, specific humidity, air temperature, precipitation,
and downward longwave and shortwave from the RCM simulations. Later on in the text, relative
humidity seems to be an important driver of change, therefore better explanations on the method
used to bias correct this parameter (and others) are required

Answer: This is a mistake, all the variables used in the model are bias-corrected (precipitation
and temperature using satellite observations, other variables using the ERA-Interim reference
run. The sentence ”with temperature and precipitation bias-corrected as described previously”
should simply be removed.

Comment 11 Page 7, line 188, I don’t understand this sentence ”Therefore, we use the ERA/MRCM

precipitation data, bias-corrected with TRMM,”

Answer: The paragraph is indeed confusing. We simply mean to recall that precipitation in
the MRCM runs is bias-corrected with the TRMM data (lines 125-128). These sentences would
be removed in a revised version since the information is already contained in section 2.3.

Comment 12 Page 8, line 213: the author mention a ”statistical downscaling of the MRCM

output to 1km,”, but nothing in the method section about this. How is it possible to downscale
12km RCM simulations to 1km, with ”reference” precipitation being TRMM data at 25km
spatial resolution ? there is a confusion here between ”downscaling” and ”bias correction”.

Answer: More details are given in Tuel et al. 2020 J Hydrology but your remark makes it
clear that we need to be more explicit about the methods. The approach involves a mixture of
bias-correction and downscaling. The snow model is run at a resolution of 1km, but the bias-
correction is applied at various resolutions depending on the resolution of the target datasets.
Temperature is bias-corrected based on the MODIS data at a 1km resolution. Precipitation is
bias-corrected at the TRMM resolution of 0.25◦. Wind and humidity data are bias-corrected
at the 12km resolution of the MRCM runs. Precipitation, downward longwave and shortwave,
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wind and humidity are then further downscaled to the MODIS 1km resolution, using equation
(1) (line 138) for humidity, but keeping the same value for precipitation, radiation and wind (i.e.
no elevation correction).
We suggest moving the end of section 2.3 to a new first section in the methods and to refor-
mulate it as follows: 6-hourly wind speed, specific humidity, air temperature, precipitation, and
downward longwave and shortwave are extracted from the MRCM output over our domain. For
all three GCM-driven simulations, as well as the ERA-Interim driven run (hereafter referred
to as ERA/MRCM), air temperature and precipitation data are bias-corrected at the 6-hourly
timescale using MODIS LST-derived air temperature and TRMM precipitation at their native
resolutions as respective targets, via the CDF-transform method (Michelangeli et al. 2009).
Bias-corrected temperature data is thus obtained at a 1km resolution, and bias-corrected precip-
itation data at a 0.25◦ resolution. Alone among the three GCMs, the IPSL-CM5A-LR model
exhibits a negative bias in wet days that we correct at each grid cell by randomly generating
wet days of magnitude drawn from the corresponding distribution of wet-day precipitation in the
TRMM dataset. For bias correction, reference periods for ”perfect” observations are 1998-2011
for TRMM and 2000-2011 for MODIS. The corresponding periods in the simulations are the
same for ERA/MRCM, and the 1992-2005 and 1994-2005 periods, respectively, for each of the
GCM-driven simulations. All bias corrections are performed for the cold (November-April) and
warm (May-October) seasons separately. Additionally, we use wind speed, downward long- and
shortwave radiation and specific humidity from the ERA/MRCM simulation over the 1982-2005
period as reference, since no observations are available. The corresponding variables in each
GCM-driven simulation are therefore bias-corrected using the ERA/MRCM data as target.
All bias-corrected variables at resolutions coarser than the MODIS 1km grid used for the snow
model are then further downscaled to a 1km resolution. Wind, radiation and precipitation data
are left unchanged, but specific humidity is downscaled based on an empirical lapse-rate µ esti-
mated at each time step:

log(q) = log(q12) + µ · (z − z12) (1)

where q12 is the specific humidity in a given 12-km resolution grid cell of elevation z12, and
q the downscaled value at elevation z.

Comment 13 Section 4, results I see no validation of the methods applied, prior to produce future

scenarios. What about the efficiency of bias-correction ? What about the efficiency of panel
regression to reproduce the inter-annual variability of runoff coefficients ? Since the authors rely
on TRMM rainfall, it would be interesting to see a comparison of the model driven by either
observed rainfall or TRMM to reproduce discharge dynamics

Answer: The efficiency of the bias-correction approach in general is discussed in detail in Tuel
et al. 2020 J Hydrology, where we also compare to station data (not used in the bias-correction).
We should add a reference to it in the revised version. The quality of the bias-correction is also
discussed (though indirectly in the current version) when describing the performance of the
individual simulations in reproducing accurate snowpack dynamics (snow cover on Figs. 5 and
6, snow-to-precipitation fraction on Fig. 10 and sublimation on Fig. 11). The results could be
detailed, for instance with Table 1 which shows how the GCM-driven simulations compare in
terms of input data and snow model output to the observations.
Regarding the efficiency of the panel regression method, it is already shown in Figure 12 and
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discussed starting at line 256. However we agree that showing the performance of the model in
reproducing river discharge for the recent (post-2000) period, using TRMM precipitation, with
a cross-validation approach, would be useful. Results are shown in Fig. R1.
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Figure R1: Observed and predicted annual October-May discharge (MCM) for the seven sub-
catchments (2001-2010). The prediction is made using TRMM precipitation and runoff coeffi-
cients predicted by the statistical runoff coefficient model fitted on 1982-2000 data only.

Comment 14 Page 10, line 280: it should be noted that the Oum Rbia basins has several areas

with karstic functioning

Answer: This is an important point to add to the discussion indeed. We suggest adding the
following sentence on line 278: ”Kartic areas are in addition quite frequent within the Oum-Er-
Rbia watershed (Akdim 2015), with important implications for infiltration, aquifer and spring
regimes in our study area.”

Comment 15 Page 10, line 294-297: this is not a result and should be in the introduction. The

”Source: Direction de la Recherche et de la Planification de l’Eau, Rabat” is not in the reference
list. This is not a result of the present study since the data and method used to obtain this
result are not presented.

Answer: You are correct and this sentence should be moved to the introduction.

6



E
le
v
a
ti
o
n

A
n
n
.

p
re

c
.

(m
m
)1

D
J
F
M

p
re

c
.

(m
m
)2

A
n
n
.

sn
o
w

(m
m
)3

D
J
F
M

sn
o
w

(m
m
)4

S
n
o
w

fr
a
c
.

(%
)5

M
e
lt

(m
m
)6

D
J
F
M

T
e
m
p
.

(◦
C
)7

D
J
F
M

w
in
d

(m
/
s)

8

D
J
F
M

R
H

(%
)9

D
J
F
M

S
W

E

(m
m
)1

1

S
u
b
li
m
.

(m
m
)1

3

A
ll

41
9

19
4

95
7
0

2
3

8
7

4
.5

2
.6

5
2

6
8

43
3

21
7

84
6
3

1
9

8
0

4
.4

2
.6

5
6

6
5

40
6/

46
0

20
5/

23
2

65
/1

20
5
0
/
7
4

1
1
/
3
3

5
3
/
1
3
2

3
.9

/
4.

8
2
.5

/
2
.6

5
5
/
5
9

3
/
8

4
/
5

≥
35

00
m

60
9

27
5

35
4

2
1
8

5
8

2
5
4

-6
.4

3
.2

6
2

1
0
8

1
0
0

63
4

29
5

34
9

2
3
0

6
2

2
7
4

-5
.9

3
.1

6
2

1
0
0

7
5

56
6/

68
0

24
4/

35
2

27
1/

46
7

1
9
9
/
2
6
5

4
0
/
9
2

2
4
2
/
5
0
1

-6
.4

/
-5

.8
3
/
3
.2

6
1
/
6
3

6
4
/
1
5
5

5
5
/
8
6

30
00

-3
50

0m

58
6

26
2

30
6

1
9
1

5
2

2
5
2

-4
.2

3
.0

6
3

7
5

5
4

62
6

29
3

34
5

2
1
3

5
8

3
0
3

-3
.8

2
.9

6
4

6
5

4
2

56
4/

67
0

25
6/

32
6

22
6/

51
0

1
8
5
/
2
4
5

3
6
/
9
0

2
2
0
/
4
3
7

-4
.5

/
-3

.3
1
.8

/
2
.9

6
2
/
6
6

4
3
/
9
2

3
1
/
4
7

25
00

-3
00

0m

45
7

20
5

18
7

1
2
3

4
1

1
6
2

-0
.3

3
.0

5
9

2
5

2
5

47
6

22
7

21
7

1
3
0

4
8

2
0
1

-0
.5

2
.9

6
1

1
9

1
7

42
6/

51
4

20
5/

24
0

12
7/

35
8

1
0
7
/
1
4
6

2
8
/
8
2

1
3
0
/
3
3
0

-1
.2

/
0

2
.8

/
2
.9

5
9
/
6
3

1
2
/
2
7

1
4
/
1
8

20
00

-2
50

0m

44
4

19
8

11
8

8
1

2
7

1
1
1

3
.3

2
.8

5
4

7
7

45
3

22
1

13
7

8
1

3
1

1
3
2

2
.9

2
.7

5
7

4
5

41
4/

48
7

20
7/

23
5

77
/2

39
6
2
/
1
0
1

1
7
/
5
3

7
7
/
2
2
8

2
.3

/
3
.4

–
5
6
/
6
0

2
/
7

5
/
6

15
00

-2
00

0m

40
9

18
2

47
3
9

1
1

4
6

7
.0

2
.5

4
9

2
1

41
5

20
6

33
1
9

8
3
2

6
.9

2
.4

5
3

0
1

39
4/

44
0

19
3/

22
5

17
/5

2
1
3
/
2
3

4
/
1
2

1
7
/
5
2

6
.5

/
7.

2
2
.4

/
2
.5

5
2
/
5
6

0
/
1

0
/
2

T
a
b

le
1:

S
n

ow
m

o
d

el
re

su
lt

s
an

d
in

p
u

t
d

at
a
,
av

er
ag

ed
fo

r
th

e
w

h
ol

e
st

u
d

y
ar

ea
an

d
va

ri
ou

s
al

ti
tu

d
in

a
l
b

a
n

d
s:

(1
)

A
n

n
u

a
l
p

re
ci

p
it

a
ti

on
;

(2
)

D
ec

em
b

er
-t

o-
M

ac
h

(D
J
F

M
)

p
re

ci
p

it
a
ti

o
n

;
(3

)
A

n
n
u

al
sn

ow
fa

ll
;

(4
)

D
J
F

M
sn

ow
fa

ll
;

(5
)

A
n

n
u
al

fr
ac

ti
o
n

of
so

li
d

p
re

ci
p

it
at

io
n

;
(6

)
A

n
n
u

al
sn

ow
m

el
t;

(7
)

D
J
F

M
a
ir

te
m

p
er

a
tu

re
;

(8
)

D
J
F

M
w

in
d

sp
ee

d
;

(9
)

D
J
F

M
re

la
ti

ve
h
u

m
id

it
y
;

(1
0)

D
J
F

M
av

er
ag

e
sn

ow
co

ve
r;

(1
1)

D
J
F

M
m

ea
n

sn
ow

w
a
te

r
eq

u
iv

a
le

n
t;

(1
2
)

F
ra

ct
io

n
of

ar
ea

w
it

h
≥

5%
sn

ow
co

ve
r

in
D

J
F

M
;

(1
3
)

A
n

n
u

a
l

su
b

li
m

a
ti

on
.

F
o
r

ea
ch

el
ev

a
ti

o
n

ra
n

ge
,

th
e

to
p

li
n

e
in

d
ic

a
te

s
”
o
b

se
rv

ed
”

va
lu

es
fo

r
th

e
20

01
-2

01
0

p
er

io
d

(p
re

ci
p

it
at

io
n

:
T

R
M

M
;

te
m

p
er

a
tu

re
:

M
O

D
IS

;
w

in
d

a
n

d
R

H
:

d
ow

n
sc

a
le

d
E

R
A

-I
n
te

ri
m

;
sn

ow
co

ve
r:

M
O

D
IS

;
an

d
ot

h
er

va
ri

ab
le

s:
as

si
m

il
at

ed
sn

ow
m

o
d

el
re

su
lt

s
fr

om
T

u
el

et
al

.
(2

02
0
a)

),
th

e
m

id
d

le
li

n
e

sh
ow

s
th

e
3-

G
C

M
av

er
ag

e
u

n
d

er
th

e
h

is
to

ri
ca

l
sc

en
ar

io
(1

99
5
-2

0
05

o
n

ly
),

a
n

d
th

e
b

o
tt

om
li

n
e

sh
ow

s
th

e
3-

m
o
d

el
ra

n
ge

.

7


