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Abstract. Streamflow forecasts are traditionally effective in mitigating water scarcity and flood defense. This study developed 

an Artificial Intelligence (AI)-based management methodology that integrated multi-step streamflow forecasts and multi-

objective reservoir operation optimization for water resource allocation. Following the methodology, we aimed to assess 10 

forecast quality and forecast-informed reservoir operations performance together due to the influence of inflow forecast 

uncertainty. Varying combinations of climate and hydrological variables were input into three AI-based models, namely Long 

Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Least Squares Support Vector Machine (LSSVM), to forecast 

short-term streamflow. Based on three deterministic forecasts, the stochastic inflow scenarios were further developed using 

Bayesian Model Averaging (BMA) for quantifying uncertainty. The forecasting scheme was further coupled with a multi-15 

reservoir optimization model, and the multi-objective programming was solved using the parameterized Multi-Objective 

Robust Decision Making (MORDM) approach. The AI-based management framework was applied and demonstrated over a 

multi-reservoir system (25 reservoirs) in the Zhoushan Islands, China. Three main conclusions were drawn from this study: 1) 

GRU and LSTM performed equally well on streamflow forecasts, and GRU might be the preferred method over LSTM, given 

that it had simpler structures and less modeling time; 2) Higher forecast performance could lead to improved reservoir 20 

operation, while uncertain forecasts were more valuable than deterministic forecasts, regarding two performance metrics, i.e., 

water supply reliability and operating costs; 3) The relationship between forecast horizon and reservoir operation was complex 

and depended on the operating configurations (forecast quality and uncertainty) and performance measures. This study 

reinforces the potential of an AI-based stochastic streamflow forecasting scheme to seek robust strategies under uncertainty. 

 25 
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1 Introduction 

Multi-step streamflow forecast is of great importance for reservoir operations to determine optimal water allocations 

considering the current use and the carry-out storage for mitigating water scarcity risk in the future (Guo et al., 2018; Zhao et 

al., 2019). Previous studies have identified that real-time reservoir operations are influenced by multiple uncertainties (Xu et 30 
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al., 2020), among which inflow forecast uncertainty has been determined as the primary source, resulting in the risk of water 

shortage when the forecast inflow overestimates the actual inflow. Ensemble forecasting techniques are commonly used to 

characterize various uncertainties in streamflow forecasts. According to comparative analysis for various probabilistic 

forecasting techniques (Nott et al., 2012; Fang et al., 2018a; Zhai and Chen, 2018; Zhou et al., 2020b), Bayesian Model 

Averaging (BMA) (Hoeting et al., 1999) has been found to be an effective and most commonly used method to evaluate 35 

uncertainty and thus can be used in streamflow forecast.  

Any ensemble forecast approach relies upon model diversity that different models produce, with specific emphasis and 

different aspects of the features they want to model (Zhou et al., 2020a). In the last few decades, many approaches have been 

developed to forecast streamflow, including physically-based and data-driven models (Tikhamarine et al., 2020; Zuo et al., 

2020). Although physically-based models can help understand underlying physical processes, they usually require a large 40 

amount of input information, such as meteorological data, geographic data, soil, and land use characteristics (Guo et al., 2018; 

Guo et al., 2020a). Different from physically-based models, data-driven models based on statistical modeling have attracted 

significant interest due to their simplicity and satisfactory forecast results with low information requirements (Al-Sudani et al., 

2019; Mehdizadeh et al., 2019; Osman et al., 2020). Artificial intelligence (AI)-based approaches, i.e., machine learning (ML) 

methods, belong to the latter group. The widely used ML approaches include Artificial neural network (ANN) and Least 45 

Squares Support Vector Machine (LSSVM) (Ghumman et al., 2018; Kisi et al., 2019; Meng et al., 2019; Adnan et al., 2020; 

Ali and Shahbaz, 2020). Such models have been proven to be efficient tools to model qualitative and quantitative hydrological 

variables and deal with non-linear features in streamflow. In recent years, the booming development of deep learning 

technology has brought many new approaches, such as recurrent neural networks (RNNs) (Elman, 1990), one of the most 

popular neural networks in the deep learning field. RNNs can preserve and remember the short-past and long-past information 50 

and thus are preferred for a complex and highly non-linear timing problem. Long Short-Term Memory (LSTM) (Hochreiter 

and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) are two different versions of RNNs. LSTM and 

GRU networks have been successfully applied in many fields (Greff et al., 2017; Zhang et al., 2018; Jung et al., 2020; Shahid 

et al., 2020; Ayzel and Heistermann, 2021), and they are demonstrated to generate comparable performances, But GRU has a 

more straightforward structure and a higher operation speed than LSTM. Recently, many applications that assessed them 55 

together are also found in the hydrological field (Gao et al., 2020; Muhammad et al., 2020). 

While a considerable research effort has been made to evaluate and improve the quality of streamflow forecasts (Gibbs et al., 

2018; Nanda et al., 2019; Sharma et al., 2019; Van Osnabrugge et al., 2019; Feng et al., 2020; Pechlivanidis et al., 2020), how 

forecasts impact decision-making in the real-time reservoir operations has also gradually gained researchers’ attention 

(Goddard et al., 2010; Shamir, 2017; Anghileri et al., 2019; Alexander et al., 2020; Hadi et al., 2020), e.g., do high-quality 60 

forecasts mean improved decision? Traditionally, a skillful forecast is vital for the reliability of the forecasts and is essential 

to promote the use of forecasts in real-world applications by decision-makers. In fact, forecast value is expected to increase 

with forecast quality, but it may also vary based on other factors such as reservoir capacity and operating objectives (Anghileri 

et al., 2016). Some studies even have disproved the intuitive assumption that higher forecast performance always leads to 
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better operation decisions, for example, in agricultural water management (Chiew et al., 2003) and water resources allocation 65 

(Turner et al., 2017). Therefore, when forecasts are used to support reservoir operation, they should be assessed in which 

conditions they can help make better decisions. Moreover, forecast uncertainty and error generally grow up with the increase 

of the forecast horizon (Maurer and Lettenmaier, 2004; Denaro et al., 2017; Zhao et al., 2019). A decision-maker may doubt 

whether longer forecast lead times provide sufficient information for a decision purpose or not. There is often a mismatch 

between the information needed for reservoir operations and the skillful lead time of the reservoir inflow forecast (Anghileri 70 

et al., 2016). It is crucial to demonstrate the applicability and effectiveness of the forecast horizon in a forecast-based reservoir 

operation system (Xu et al., 2014). Overall, there is a continuous need for in-depth study to conduct posterior evaluations of 

forecasts with different forecast lead times and obtain the efficient forecast horizon for water allocation.  

A decision-maker must allocate limited water to different water use sectors considering the conflicting objectives (e.g., benefits 

and costs) and multiple uncertainties (e.g., forecast uncertainty) in a forecast-based reservoir operation system. Multi-objective 75 

programming (MOP) is a valuable tool for helping decision-makers facilitate decision-making with multiple conflicting 

objectives (Fang et al., 2018b; Guo et al., 2020c), which can offer feasible methods for generating compromise decision 

alternatives. Some MOP approaches have been widely developed to tackle the uncertainty associated with the decision making 

processes, such as multi-objective fuzzy programming (Zimmermann, 1978; Pishvaee and Razmi, 2012; Ren et al., 2017) and 

multi-objective stochastic programming (Xu et al., 2014; Xu et al., 2020; Zhang et al., 2020). These approaches generally 80 

convert the multi-objective functions into a single-objective deterministic problem through a fuzzy programming method or a 

constraint operator. They can effectively deal with the uncertainties between objectives and/or constraints by integrating the 

decision-makers aspiration levels. However, they may encounter difficulties due to the need for pre-determined individual 

preferences or reasonable bounds for all objectives. In comparison, multi-objective robust decision making (MORDM) is an 

effective way to handle such difficulties (Kasprzyk et al., 2013; Yan et al., 2017). It can generate many alternative solutions 85 

(Pareto solutions) that do not require assumptions about decision makers' preferences and enhance the robustness of the 

optimization process. Besides, MORDM, by parameterizing the decision space, can avoid the curse of dimensionality in some 

MOP approaches, and simplify computational complexity and reduce the running time (Giuliani et al., 2016; Salazar et al., 

2017).  

In summary, there are still several challenges in forecast-informed reservoir optimization. To address these challenges, the 90 

specific research questions of this study are:  

(1) Can GRU achieve the same accuracy in the streamflow forecast compared to LSTM with fewer parameters and more 

straightforward structures? 

(2) In which conditions can an improvement in forecast skill be translated into improved reservoir operation optimization? 

(3) How do such short-term inflow forecasts with different forecast horizons be used to optimize the multi-reservoir system to 95 

impact operation results? 

To answer the questions mentioned above, we build an AI-based management framework, which integrates multi-step 

streamflow forecasts and multi-reservoir operation optimization. We strive to: (1) simulate inflow using LSTM, GRU, and 
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LSSVM and verify their effectiveness on short-term deterministic streamflow forecasts; (2) generate stochastic inflow 

scenarios using BMA for refining uncertainty characterization; (3) develop the parameterized MORDM framework for a multi-100 

reservoir operation system and inform decision making by assessing the value, that is, the operation benefits gain or the induced 

cost of forecasts with a particular lead time. As a case study, including one recipient reservoir storing water from the continental 

diversion project and 24 supply reservoirs storing water from local rainfall, 25 reservoirs supplying water for four water plants 

in the Zhoushan Islands, China, are chosen to assess the performance of the AI-based forecast and the forecast-informed 

operation.  105 

2. Methodology  

The experimental approach followed in the study is shown in Figure 1 and described in the following sections.  

Figure 1 is here 

2.1 Machine learning (ML) methods 

This section gives a brief introduction to long short-term memory (LSTM), gated recurrent unit (GRU), and least square 110 

support vector machine (LSSVM). In this study, the mapping function between the forecasted streamflow Qt and hydrological 

variables xt can be represented by ( )f  . In LSTM and GRU, ( )1,t t tQ f x h −=  (ht-1 denotes the last hidden cell state and the 

initial state of ht is h0= 0), while in GWO-LSSVM, ( )t tQ f x= .  

2.1.1. Long short-term memory (LSTM) 

LSTM network is one of the recurrent neural networks (RNNs) developed by Hochreiter and Schmidhuber (1997), and the 115 

basic structure of an LSTM cell is illustrated in Figure 2(a). It is an improved RNN aiming to solve problems such as gradients 

in long-term memory and backpropagation. The LSTM cell has three gates maintaining and adjusting its cell state and hidden 

state, including the forget gate, input gate, and output gate. The forget gate determines what information would be thrown 

away from the cell state. The input gate decides which information is used to update the cell state. The output gate controls 

which information stored in the current cell state flows into the new hidden state. In Figure 2(a), the state (ct), and the hidden 120 

state (ht) of the LSTM cell are updated as follows (Hochreiter and Schmidhuber, 1997): 

Forget gate: 1( )t f t f t fg W x U h b −= + + , (1) 

Input gate: 1( )t i t i t ii W x U h b −= + + , (2) 

Potential cell state: ( )1+  c t c tt ctanh W x Uc h b− += , (3) 

Cell state: 1t t t t tc f c i c−= + , (4) 
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Output state: 1( )t o t o t oo W x U h b −= + + , (5) 

Hidden state:  t t ttah nho c= , (6) 

where ,  ,  t t tg c o  and tc  represent the forget gate, input gate, output gate, and potential cell state, respectively. ☉ denotes the 

element-wise multiplication of vectors, tanh(·) is the hyperbolic tangent; xt represents the current input vector, ht-1 denotes the 

last hidden cell state and the initial state of ht is h0= 0. σ(·) represents the logistic sigmoid function.  [ ,  , ,  ]f i o cW W W W , 

 [ ,  , ,  ]f i o cU U U U , and  [ ,  , ,  ]f i o cb b b b  represent the input weight matrix, recurrent weight matrix, and bias vectors for the 125 

forget, input-output, and potential cell gates, respectively. 

2.1.2. Gated recurrent unit (GRU) 

GRU networks were proposed as a modification of LSTM networks with a more straightforward structure (Cho et al., 2014). 

The specific structure of the GRU cell is shown in Figure 2(b). Compared with LSTM, GRU has only two control gates, 

including a reset gate and an update gate. The update gate is applied to control how much information of the previous step is 130 

brought into the current step, while the reset gate is used to control the degree of ignoring the information of the previous state. 

In this way, GRU is superior to LSTM in terms of computer modelling time and parameter updates. In Figure 2(b), the state 

(ct) and the hidden state (ht) of the GRU cell are updated as follows (Cho et al., 2014): 

Reset state: ( )1t r t r t rr W x U h b −= + + , (7) 

Update state: ( )1+t z t z t zz W x U h b −= + , (8) 

Potential cell state: ( )( )1+  c t c t tt ctanh W x U bc r h − += , (9) 

Cell state: ( ) 11t t t t tc z c z c−= − + , (10) 

Hidden state: t th c= , (11) 

where ,,  t tr z  and tc  represent the reset, update, and potential cell state, respectively. ☉ denotes the element-wise 

multiplication of vectors, tanh(·) is the hyperbolic tangent; xt represents the input vectors, ht-1 denotes the last hidden cell state 135 

and the initial state of ht is h0= 0. σ(·) represents the logistic sigmoid function. [ ,  ,  ]z crW W W , [ ,  ,   ]r czU U U , and [ ,  , ]r z cb b b  

represent the input weight matrix, recurrent weight matrix, and bias vectors for the reset, update, and potential cell gates, 

respectively. 

Figure 2 is here 
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2.1.3. Least squares support vector machine with grey wolf optimizer (GWO-LSSVM) 140 

LSSVM is a modified version of SVM, proposed by Suykens and Vandewalle (1999), to reduce the computational time of 

SVM. SVM uses the quadratic program to formulate the training process of the modeling procedure, while LSSVM aims to 

employ the least-squares loss functions. The LSSVM non-linear function is expressed as  (Suykens et al., 2002): 

( ) ( )Tf x w x b= + ,  (12) 

where ( )   is the mapping function that maps the input x into a d-dimensional feature vector, w is a weight vector, and b 

represents bias. In LSSVM, a minimum objective function is proposed to estimate ω and b (Suykens et al., 2002). 145 

( ) 2

1

1 1
min ,

2 2

N
T

i

i

J w e w w e
=

= +  , 
 

(13) 

that has the following constraints (Suykens et al., 2002): 

( )T

i i iy w x b e= + + ,  (14) 

where e is the error variable and γ is the regulative constant. The objective function can be obtained to solve the optimization 

problems in Eq. (15) by introducing the Lagrange multipliers α and transferring the constraint problem into an unconstrained 

one (Suykens et al., 2002): 

( ) ( )( )2

1 1

1 1
, , ,

2 2

N N
T T

i i i i i

i i

L w b e w w e w x b e y   
= =

= + − + + −  , 
 

(15) 

By finding the partial derivative of Eq. (16) with respect to w, b, αi, and ei, the following equation can be derived: 150 

( ) ( )( ) ( )
1 1

,  
N N

T

i i i i

i i

y x x b K x x b   
= =

= + = +  , 
 

(16) 

where ( ),  iK x x  is the kernel function. Many kernel functions such as linear, polynomial, radial basis, and sigmoidal have 

been proposed for LSSVM (Bemani et al., 2020). We adopt the most widely used kernel function, Radial Basis Function (RBF), 

in this study. The RBF is expressed as: 

( ) ( )2 2,  =exp 2i iK x x x x − − ,  
(17) 

where σ2 is the kernel parameter. In this study, the parameter γ and σ were optimized using grey wolf optimizer (GWO). Please 

see more details on GWO in Guo et al. (2020d). 155 

2.2 Bayesian model averaging (BMA) 

Generally, it is difficult to determine which model is the best one, leading to model uncertainty. BMA is proposed to solve the 

uncertainty of the models through averaged estimations from individual models (Liu and Merwade, 2019; Samadi et al., 2020). 

The weight for each model is based on the simulated decision probability density function, i.e., the posterior probability of the 
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model. Suppose Q is the unknown quantity we want to predict, given a subset of model forecasts  1 2, , , Kf f f f=  160 

(k=1,2,…,K, K is the number of individual model) and the observed data D, the posterior distribution of Q can be calculated 

as (Hoeting et al., 1999): 

( ) ( ) ( ) ( )
1 1

= , = ,
K K

k k k k k k

i i

p Q D p f D p Q f D w p Q f D
= =

   , 
 

(18) 

where ( ),k kp Q f D  is the posterior distribution of Q given the model forecast kf  and the observed data D, and ( )kp f D  is 

the posterior probability. In this case, posterior probabilities are the weighting factor for each model, and 
1

1
K

k

k

w
=

= . The 

posterior mean (E) and variance (V) of Q are as follows (Hoeting et al., 1999): 165 

( )
1 1

= ,
K K

k k k k k

k k

E Q D w E p Q f D w f
= =

    =     , 
 

(19) 

2

2

1 1 1

= +
K K K

k k k k k k

k k k

V Q D w f w f w 
= = =

 
   −  

 
   , 

 
(20) 

where 
kw  and 

2

k  are the posterior mean (weight) and variance of kth forecast model. In this study, a log-likelihood function 

is maximized to estimate the parameters (weight kw  and variance 
2

k ) as shown in Eq. (21).  

( ) ( )( )2

1

log ,
K

t

k k k

k

l w g Q f 
=

 
=  

 
 ,  (21) 

where   is the vector of parameters  2, , 1,2,...,k kw k K = . ( )2,t

k kg Q f   is Gaussian distribution function where 
kw  is 

the weight and 
2

k  is the variance. 

The Expectation-Maximization (EM) algorithm (Lee et al., 2020) is used to find out the maximum likelihood with a termination 170 

criterion (early stopping or a maximal iteration). As the EM proceeds, the parameters of weight kw  and variance 
2

k  are 

updated as follows. 

( ) ( )

1

1 Iter
NT

Iter t

k k

t

w z
NT =

 
=  

 
 , 

 
(22) 

( )
( )

2

2 1

1

Iter

Iter

Iter

NT
t t t

k k

t
k NT

t

k

t

z Y f

z

 =

=

 −

=



, 

 

(23) 
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( )

( )

( )
( )

( )

1

1

2

2

1

,

,

Iter

Iter

Iter

t

k k
t

k K
t

k k

k

g Q f
z

g Q f





−

−

=

=


, 

 

(24) 

( )
( ) ( ) ( )

( )( )2

1 1

log ,
Iter

NT K
Iter Iter t

k k k

t k

l w g Q f 
= =

 
=  

 
  , 

 
(25) 

where Iter is the number of iterations. NT is the length of calibration periods. 
tY  and 

t

kf  are the observed and forecast 

streamflow at tth time step, respectively (m3/s), 
( )Iter

t

kz  is the latent variable for the kth model at tth time step in the Iter iteration. 

Then we use the Monte Carlo simulation method to generate BMA ensemble forecasts. Assume M is the number of Monte 175 

Carlo simulations, and the procedure is described below (Zhou et al., 2020a). 

(a) Set the initial cumulative weight 
*

0 0w =  and calculate the cumulative weight 
* *

1k k kw w w−= +  for k=1,2,…, K. Create a 

random variable u between 0 and 1. If 
* *

1k kw u w−   , the kth forecast model would be used as the target forecast. 

(b) Generate a realization of the forecasts Qt using the Gaussian distribution function ( )2,t

k ktg fQ  . In such a way, there are 

a set of alternative forecasts to be chosen from as the final forecast. 180 

(c) Repeat Steps (a) & (b) for M times and obtain a set of streamflow series 

1,1 2,1 ,1

1,2 2,2 ,2

1, 1, ,

T

T

T M

M M T M

Q Q Q

Q Q Q
Q

Q Q Q



 
 
 =
 
 
  

. Furthermore, 90% 

confidence intervals between the 5% and 95% quantities are employed to represent the uncertainty of BMA ensemble forecasts. 

2.3 Forecast performance measures 

Three performance indicators are applied to assess the deterministic forecast performance of the three data-process models. 

They are Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), root mean square errors (RMSE) (Karunanithi et al., 185 

1994), and mean absolute error (MAE) (Legates and McCabe Jr., 1999). They are expressed as below: 

( )

( )

2

, ,

1

2

,

1

1

T

m t o t

t

T

o t o

t

Q Q

NSE

Q Q

=

=

−

= −

−




, 

 

(26) 

( )
2

, ,

1

1 T

m t o t

t

RMSE Q Q
T =

= − , 
 

(27) 
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, ,

1

1 T

m t o t

t

MAE Q Q
T =

= − , 
 

(28) 

where T is the number of samples, ,m tQ  is the forecasted reservoir inflow (m3/s), ,o tQ  is the observed inflow (m3/s), and oQ  is 

the average of the observed inflow (m3/s). The NSE can be used to evaluate the stability of the forecasted value. In contrast, 

RMSE and MAE are used to characterize the overall forecast accuracy. NSE value is (−∞, 1], while MAE and RMSE values 

are (0, +∞). Generally, models with larger values of NSE or smaller values of RMSE and MAE provide better forecasting 190 

accuracy. 

In addition, two performance indicators are used to evaluate the performance of ensemble forecast models, i.e., the containing 

ratio (CR), and average deviation amplitude (D), which were adopted for assessing the goodness of the prediction bounds 

(Xiong et al., 2009). 

, , ,

1

ˆ ˆ1    if  1
100%   

0   else

T
l t o t u t

t t

t

Q Q Q
CR N N

T =

  
=  = 


 , 

 

(29) 

( ), , ,

1

1 1 ˆ ˆ
2

T

l t u t o t

t

D Q Q Q
T =

= + − , 
 

(30) 

where 
,

ˆ
l tQ  and 

,
ˆ

u tQ  represent the lower and upper prediction bounds of streamflow (m3/s), respectively. Clearly, models 195 

with higher CR values but lower D values would produce better performance. 

2.4 Parameterized multi-objective robust decision making (MORDM) 

This study proposes a parameterized multi-objective robust decision-making approach to design operating policies for the 

multi-objective reservoir operations by combining direct policy search (DPS) and multi-objective robust decision making 

(MORDM). In the parameterized MORDM, instead of using the volumes of water to be allocated as the decision variables, we 200 

prescribe decisions approximated as non-linear functions conditioned on system state variables (e.g., fore-bay water level 

observed or predicted inflows, and precipitation) (Giuliani et al., 2016; Quinn et al., 2017b; Salazar et al., 2017). The non-

linear functions can be realized by the DPS approach. DPS is based on the parameterization of the operating policy p  and 

the exploration of the parameter space Θ to find a parameterized policy that optimizes the expected function, i.e., 

( )1 2=arg min ,  , , . . M pp
p J J J s t


   ,  (31) 

where 
1 2,  , , MJ J J are the objective functions, M is the number of objectives. p


 is the corresponding optimal policy with 205 

parameters  
. Different DPS approaches have been proposed, where two nonlinear approximating networks, namely artificial 

neural networks (ANNs) and radial basis functions (RBFs), have become widely adopted as universal approximators in many 

applications (Deisenroth et al., 2013). In particular, we parameterize the operating policy as RBFs because they have been 
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demonstrated to be effective in solving multi-objective water resources management problems (Giuliani et al., 2014; 2015) 

and the kth decision variable in the vector ut (with  1,  ,k K=  ) is defined as: 210 

, ,

1

( )
N

k

t i k i k t

i

u  
=

=  , 
 

(32) 

where N is the number of RBFs ( )  , t  is the policy input vectors at tth time step including exogenous information (e.g., fore-

bay water level observed or predicted inflows and precipitation) and ,i k  is the weight of the ith RBF, , ,

1

1 0
N

i k i k

i

 
=

=  . 

The single RBF is defined as follows: 

,

2

,

, 2
1

( )
( )= exp

j i

M
t j j i

i k t

j

c

b


=

   −   −
 
 

 , 

 

(33) 

where ( )t j  is the jth policy input at tth time step and M denotes the number of policy input vectors 
t , j=1,2,…M. ci and bi 

are the M-dimensional center and radius vectors of the ith RBF, respectively. The centers of the RBF must lie within the 215 

bounded input space (Yang et al., 2017). The parameter vector θ is defined as , , , , , ,= , ,i j k i j k i j kc b     with the number of   is 

( )= 2 1n N K M    + . In general, when DPS problems involve multiple objectives, they can be coupled with truly 

multiobjective optimization methods, such as MOEAs, which allow an approximation of the Pareto front in a single run of the 

algorithm. 

In our study, the parameterized MORDM approach will be coupled with a rolling horizon scheme over one year period to 220 

solve the multi-objective reservoir operation problem. Given the lead time of 7 days (forecast horizon is equal to operation 

horizon) as an example, it is operated following two steps: the optimization model is first operated daily over a 7-day horizon 

using the parameterized MORDM; after implementing current water allocation decisions, the status, inflow, and other 

information of reservoirs update as time evolves, and then the remainder is subsequently operated. The two steps are repeated 

until the process (one year period) is completed. In each operating horizon, the main steps of the parameterized MORDM are 225 

described below and presented in Figure 3. 

(1) Problem formulation, including the performance measures and constraints.  

(2) Generate alternative parameterized policies subjecting to all the constraints, and the objectives are evaluated over stochastic 

inflows with the following procedures (Giuliani, et al., 2016): 

a) The operating policies are parameterized using RBFs; 230 

b) Run a system simulation from t=1,2,…7d upon each individual parameterized policy pθ for each inflow series and obtain 

the system trajectories;  

c) Compute the parameterized policies performance in terms of the operating objectives as a function of system trajectories. 

(3) Recompute the parameterized policies performance with robust criteria, for instance, the principle of insufficient reason, 
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minimax, and minimax regret (Guo et al., 2020b). Among them, the principle of insufficient reason transforming the problem 235 

under uncertainty into a decision-making problem under risk has been used in the water resources problems (Giuliani and 

Castelletti, 2016). The principle of insufficient reason suggests that in the absence of knowledge on the probabilities associated 

with the different states, the decision could be taken by assigning equal probability to all the states (i.e., P 1j n= ). The robust 

parameterized policies performance can be expressed as: 

1

1
 min   ( , )

n

j

j

Obj p s
n


=

 
 
 
 ， (34) 

where ( , )jObj p s   is the performance function using parameterized policy p  upon jth streamflow series, js   denotes the 240 

scenario of the jth streamflow series, and n is the number of stochastic streamflow series.  

(4) Optimizing the parameterized policies using multi-objective evolutionary algorithms (MOEAs) based on the robust 

performance objectives. Repeat Steps (2), (3), and (4) until the times of population iteration are reached and export the optimal 

Pareto solutions. In this study, the optimization is solved by applying NSGA-II to search the space of decision variables and 

identify the trajectories. 245 

It should be noted that the parameterized MORDM in this study aims to solve optimization problems under uncertainty, and 

thereby one streamflow series need to be repeated multiple times. 

Figure 3 is here 

3. Case study  

3.1 Study area and data 250 

The Zhoushan Islands are located in the northeast of Zhejiang Province, China, with a total area of 22,000 km2 and 1,390 

islands (Figure 4). The climate is governed by monsoon-influenced subtropical marine weather systems, and the annual mean 

temperature and precipitation are 17 °C and 1,300 mm, respectively. There are no large rivers in the islands, and the insufficient 

freshwater resources severely limit the development of industry and population in the Zhoushan Islands. Recently, a continental 

diversion project transferring water from Ningbo City to Zhoushan Islands is treated as an effective solution to overcome the 255 

water scarcity problem partially. The transferred water is stored in Huangjinwan Reservoir and then operated together with the 

limited freshwater resources in the remaining 24 reservoirs to supply water to four water plants, i.e., Daobei, Hongqiao, 

Lincheng, and Pingyangpu. Data for this study includes historical inflow and state of reservoirs, water demand of water plants, 

and climate forcing data over 2002-2008. The climate data, including daily precipitation and evaporation, are observed at one 

meteorological station and three rainfall stations. The characteristics of the reservoirs are listed in Table 1. 260 

Figure 4 is here 

Table 1 is here 
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3.2 Problem formulation 

Figure 5 shows the simplified schematic diagram of the water supply system in Zhoushan Islands, including reservoirs, 

pumping stations, pipelines, and water plants. The pipeline arrow indicates the direction of the water flow. It covers the 265 

processes associated with water abstraction from resources, water distribution through the network involving the use of 

pumping stations and pipelines, and main activities relevant to water flow. In this study, water resources include local surface 

water and imported water. The surface water is the water stored in local reservoirs (a number of 24 reservoirs), while the 

imported water is the water transferred from Ningbo City (stored in Huangjinwang Reservoir). The imported water is 

transferred from Ningbo City to Zhoushan Islands through Lixidu and Lanshan pumping stations. End-users within the water 270 

supply system are generally divided into the household, industry, agriculture, and environmental use. This study mainly 

considers household and industry use, which water plants can supply. The agriculture and environmental use are satisfied 

through operating the reservoir storage above a specific value. That is to say, the main goal of the water allocation plan is to 

ensure sufficient water flows into the four plants in Zhoushan Islands. They are Daobei, Lincheng, Hongqiao, and Pingyangpu 

plants, respectively. Releases from the reservoirs (Huangjinwan Reservoir and the remaining 24 local reservoirs) must meet 275 

the requirements of water plants. As observed in Figure 5, the reservoirs supplying plants can be divided into two categories. 

Some reservoirs can directly release water into the plants or reservoirs, including Longtan, Ludong, Shatianao, Nanao, Chenao, 

Cengang, Tuanjie, and Changchunling reservoirs. In contrast, the other reservoirs can only release water into the plants or 

reservoirs using pumping stations. In such a way, the pumping flow can be obtained by summing reservoir releases through 

the corresponding pumping station, using the following equation. 280 

1

, ,

1

=
N

p r

t j t n

n

Q Q
=

 , (35) 

where ,

p

t jQ  denotes the jth pumping flow at tth time step in (m3/s), ,

r

t nQ  denotes the release of the nth reservoir at tth time step in 

(m3/s), and N1 is the number of reservoirs pumped by the jth pumping station.  

It can be noted in Figure 5 that there are no specific hydraulic connections between most of the reservoirs, while Chahe, 

Hongwei, Chengbei, and Xiamen reservoirs can release water into Hongqiao Reservoir (the largest reservoir in Zhoushan 

Islands). With a water plant as a center, the whole islands are divided into four districts, i.e., Daobei, Lincheng, Hongqiao, and 285 

Dongbu. The dashed line represents the district boundary. Each district includes a water plant, several pumping stations, and 

reservoirs to supply water for the water plant. The hydraulic connection between such a water plant and corresponding pumping 

stations and reservoirs can be expressed as: 

2

, ,

1 1

+
NJ

s p r

t t j t n

j n

W Q t Q t
= =

=    , (36) 

where s

tW  is the amount of water supply for a water plant at tth time step (m3), J is the number of pumping stations flowing 

into the water plant, and N2 is the number of reservoirs directly releasing into the water plant. 290 
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In Figure 5, every two system elements are connected by the pipelines, e.g., reservoir and reservoir, reservoir and pumping 

station, and pumping station and water plant. In some cases, more than one reservoir or pumping station share one pipeline, 

leading to competition on channel flow. However, since the multi-objective optimization problem is operated on a daily time 

step in our study and we assume that reservoir releases or pumping station flows into the water plant without considering the 

channel flow limitation, and thereby, regardless of the specific hydrologic connections between channels or pipelines. 295 

Figure 5 is here 

Three objectives are identified to evaluate the performance of the strategies. The conflicting objectives are to minimize the 

water deficiency ratio of the Daobei Plant, minimize the water deficiency ratio of the remaining three plants (Hongqiao, 

Lincheng, and Pingyangpu), and maximize the net benefits. The three plants can feed each other and thus are considered 

together in our study. A decision-maker would consider a different suite of costs depending on whether an existing system is 300 

being managed or a completely new system is being designed. As water supply occurs in an existing system, costs considered 

in this study are the operating costs. These objective functions are given as follows: 

( ) , , ,

1

1 1 1

Min   100%
T T T

n db s db n db

t t t

t t t

Obj x W W W
= = =

 
= −  
 
   ,  (37) 

( )
3 3 3

, , ,

2 , , ,

1 1 1 1 1 1

Min    100%
T T T

n th s th n th

t k t k t k

k t k t i t

Obj x W W W
= = = = = =

 
= −  
 
   ,  (38) 

( ) ( )3Min    lw iw

c c rObj x M M M= + − ,  (39) 

where Obj1 and Obj2 are the water deficiency ratio of Daobei Plant and the sum of the remaining three plants, respectively (%); 

Obj3 is the net operating costs (RMB); ,s db

tW  and ,n db

tW  are the amount of water supply and demand for Daobei Plant at tth 

time step, respectively (m3); 
,

,

n th

t kW  and 
,

,

n th

t kW  are the amount of water supply and demand for the kth plant (one of the remaining 305 

three plants) at tth time step, respectively (m3); lw

cM  and iw

cM  are the operating costs for water supply using local reservoir 

water and imported water, respectively (RMB); Mr is the revenue (RMB). The costs and revenue can be obtained according 

to:  

1) Operating costs for water supply using local reservoir water ( lw

cM , RMB) 

1 ,2 ,3

lw lw lw lw

c c c cM M M M= + +， ,  (40) 

,

,1 1

1

T
lw lw s lw

c t

t

M c W
=

=  , 
 

(41) 

,

,2 2

1

T
lw lw s lw

c t

t

M c W
=

=  , 
 

(42) 

,

,

,3 3 ,
1 1 max

p lw lwJ T
t j jlw lw

c p lw
j t j

Q P
M c

Q= =


= 

，

, 
 

(43) 
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where 1

lw

cM ， , ,2

lw

cM , and ,3

lw

cM  represent the water resource fees paid to the government, water fees paid to reservoir managers, 310 

and the electricity fees in Zhoushan Islands, respectively (RMB); 1

lwc , 2

lwc , and 3

lwc  denote the constant vectors, representing 

the unit price of water resources, water, and electricity in Zhoushan Islands, respectively (RMB/m3). t  is the time step; i is 

the index of a reservoir; j is the index of a pumping station; I denotes the number of reservoirs; J denotes the number of 

pumping stations in Zhoushan Islands; ,s lw

tW  denotes the amount of water supply for plants using local reservoir water at tth 

time step (m3); 
lw

jP  denotes the supporting motor power of the jth pumping station (Kw); 
,

,

p lw

t jQ  denotes the flow through the 315 

jth pumping station at tth time step in (m3/s); 
,

max

p lw

jQ ，  denotes the upper flow boundary of the jth pumping station in Zhoushan 

Islands (m3/s). 

2) Operating costs for water supply using imported water (
iw

cM , RMB) 

,1 ,2 ,3

iw iw iw iw

c c c cM M M M= + + ,  (44) 

,

1 1

1

T
iw iw s iw

c t

t

M c W
=

= ， , 
 

(45) 

,

2 2

1

T
iw iw s iw

c t

t

M c W
=

= ， , 
 

(46) 

,

,

,3 3 ,
1 1 ,max

p iwJ T
j t jiw iw

c p iw
j t j

L Q
M c

Q= =

+
=  , 

 
(47) 

where ,1

iw

cM , ,2

iw

cM , and ,3

iw

cM  represent the water resources fees paid to the government, water fees paid to the river managers, 

and electricity fees in Ningbo City, respectively (RMB); 
1

iwc , 
2

iwc , and 
3

iwc  denote the constant vectors, representing the unit 320 

price of water resources, water, and electricity in Ningbo City, respectively (RMB/m3); ,s iw

tW  denotes the amount of water 

supply for plants using imported water at tth time step (m3); 
,

,

p iw

t jQ  denotes the flow through the jth pumping station at tth time 

step, J is the number of pumping stations transferring water from Ningbo City, J=2, 
, ,

1 ,2=p iw p iw

t tQ Q， . Lj denotes the length of the 

continental diversion pipeline using jth pumping station (m) and ,

max

p iw

iQ，  denotes the upper flow boundary of the ith pumping 

station for water transfer (m3/s).  325 

3) Revenues (Mr, RMB) 

, ,

1

= +
T

s db s th

r t t

t

M b W W
=

 
 
 
 ,  (48) 

where b denotes the unit price of water supply revenue (RMB/m3). 

The optimization model is subject to the following constraints: 
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(1) Water balance: ( )1, , , ,

r

t i t i t i t iV V I Q t+ = + −  , (49) 

(2) Reservoir storage limits: , ,min , , ,maxt i t i t iV V V  , (50) 

(3) Reservoir release limits: , , ,max

r r

t i t iQ Q , (51) 

(4) Pumping station limits: , max,

p p

t j jQ Q , (52) 

where 
,t iI  is the inflow of the ith reservoir at tth time step (m3/s); 

,t iV  is the storage of ith reservoir at tth time step (m3); Vmin and 

Vmax are the lower and upper storage boundaries, respectively (m3); , ,max

r

t iQ is the maximum release of the ith reservoir at tth time 330 

step (m3/s). In some cases, ,

p

t jQ  obtained by the RBF policies can be greater than ,max

p

jQ , and we will do the following step 

to modify ,

r

t nQ . 

 
(53) 

3.3 Model development 

In this study, five input combination scenarios are considered to investigate whether the use of data-driven methods with 

climate forcing is efficient in inflow forecasts or not. These scenarios are described in Table 2. Pa represents antecedent 335 

precipitation, Ea represents antecedent evaporation, Qa represents antecedent streamflow, Pf represents forecast precipitation, 

and Ef represents forecast evaporation. 

Table 2 is here 

Several strategies have been proposed in the literature to tackle a multi-step-ahead forecast task (Kline, 2004), such as the 

recursive, direct, combination of direct and recursive strategies. In this study, we chose one of the most carried out strategies, 340 

i.e., the direct strategy (Ben Taieb et al., 2012), to forecast multi-step streamflow over the short-term horizon (1-7 days). In 

this case, the streamflow is forecasted using the following equations, given S3 as an example. 

( )

( )

( )

+1 1 1 1

2 1 1 1

7 1 1 1

1d: , ,..., , , ,..., , ,...,

2d: , ,..., , , ,..., , ,...,

...

7d:: , ,..., , , ,..., , ,...,

f

t t t t k t t t k t t k

f

t t t t k t t t k t t k

f

t t t t k t t t k t t k

Q f Q Q Q E E E P P

Q f Q Q Q E E E P P

Q f Q Q Q E E E P P

− − − − − −

+ − − − − − −

+ − − − − − −

=

=

=

, (54) 

where ( )f   is the mapping function between inputs and outputs, which can be modelled by LSTM, GRU, and GWO-

LSSVM in our case. The hydrological variables normalized to the same scale of [0, 1] are used as the inputs in the three ML 

methods. The normalization equation is given as follows: 345 

,'
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min

max min

x x
x

x x

−
 =

−
, (55) 

where x and xare the original and normalized values, respectively. 
minx  and 

maxx  are the minimum and maximum values of 

the original series, respectively. 

An issue with the ML methods is that they can easily overfit training data. To avoid this, the entire data is divided into three 

subsets in RNNs: (i) a training set, which is used to compute the gradient and update the weights and biases of the network, 

(ii) a validation set over which the errors are monitored during the training process and is used to decide when to stop training, 350 

(iii) a test set, which is used to assess the expected performance in the future. In addition, dropout is a regularization method 

where input and recurrent connections to LSTM and GRU units are probabilistically excluded from activation and weight 

updates while training a network. The strategies mentioned above have the effect of reducing overfitting and improving model 

performance in RNNs. Both LSTM and GRU are trained based on truncated Back Propagation Through Time (BPTT) (Cheng 

et al., 2020), which uses a back propagation network to update the parameters in iterations. The NSE function is used as the 355 

loss function to calibrate the LSTM and GRU models. As for LSSVM, we avoid overfitting by minimizing the NSE during 

the calibration and validation periods, while the test period is also used to assess the performance. In this study, Jan 2002 to 

Dec 2006 is used as the training period, while the validation and tests extend from Jan 2007 – Dec 2007 and Jan 2008 - Dec 

2008, respectively.  

The multi-reservoir operation optimization using inflow forecasts is performed over one year (April 1st, 2007- March 31st, 360 

2008) with 25 reservoirs. The period is selected to ensure that it does not cover the calibration datasets. For the short-term 

forecasting and reservoir operation purpose, a forecast horizon of 1-7 days ahead is chosen. In this study, we use the 

parametrized MORDM approach to design operating policies for the multi-objective reservoir operations under uncertainty. 

The optimized operations are regulated based on both deterministic and uncertain forecast inflow. To keep fair, we perform a 

simulation to generate deterministic and observed ensemble forecasts that each deterministic forecast and observed data are 365 

repeated 900 times, respectively. Using the uncertain streamflow forecasts (BMA, deterministic or observed ensemble 

forecasts) as policy inputs in the parametrized MORDM method, we can generate alternative RBF policies subjecting to all 

the constraints, and the objectives are evaluated over stochastic inflows. Under the parameterized MORDM, the decision 

variables in the optimization problem are not the volumes of water to be transferred from Ningbo City and the remaining 24 

reservoirs each day. Instead, the decision variables are the parameters of the RBF policies. The best operation is obtained by 370 

conditioning the operating policies upon the following two input variables, e.g., the initial fore-bay water level and current 

inflow of reservoir. The optimization is solved at each time step (a particular forecast horizon, e.g., 1-7 days) by applying 

NSGA-II to search the space of decision variables and identify the islands' water allocation trajectories.  
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3.4. Results and discussion 

3.4.1 Multi-step deterministic forecasts based on ML methods 375 

We consider five different input scenarios described in Section 3.3. Table 3 demonstrates the forecast analysis carried out with 

the different configurations (input combination and forecast model), tabulating the NSE ranges for lead times from 1 day-

ahead to 7 day-ahead over all reservoirs during the calibration, validation, and test periods. It can be seen that S1 using only 

the flow variables and S2 using only the antecedent climate variables are inferior to the other scenarios. The performance is 

generally improved when the flow variables are used in combination with the antecedent precipitation and evaporation under 380 

S3. However, in this case, the antecedent variables succeed to forecast only at 1-day ahead. The forecast performance decreases 

significantly as the forecast horizon increases from 1-day to7-day ahead. Herein, we suppose that the following precipitation 

and evaporation have been forecasted. It is clear that S4 and S5, with the forecast climate variables, make significant increments 

in streamflow forecasting. The NSE can remain relatively stable at different horizons. There are no apparent differences 

between the three forecast models during the calibration period. However, the two RNNs perform better than GWO-LSSVM 385 

during the validation period, while GWO-LSSVM outperforms during the test periods. Besides, given that GRU has more 

superficial structures and fewer parameters and requires less time for model training, it may be the preferred method for short-

term streamflow forecast compared with LSTM. The same results have been obtained in Gao et al. (2020) when they used 

LSTM and GRU to model short-term rainfall-runoff relationships. 

Table 3 is here 390 

We aim to compare how the forecasted climate variables impact the streamflow forecast and reservoir operation performance. 

For the sake of brevity, S3 and S5 are compared in detail in the following section. Recall that S3 uses flow variables, antecedent 

precipitation, and evaporation as inputs, while S5 uses flow variables as well as the antecedent and forecast climate forcing. 

After assessing model validity, the next step is to compare the performance across the 24 reservoirs. The coefficient of variation 

(COV), defined as the ratio of the standard deviation of the inflow time series, is used to capture the varying characteristics of 395 

the incoming flow into the reservoir. Figure 6 reveals a strong negative relationship between COV and forecast performance 

under S3 at all lead times. The forecast performance decreases as the COV increases for all forecast models. This indicates 

that the more variation the flow has, the harder it is for data-driven methods to learn the flow pattern when there doesn’t exist 

enough input information. However, the negative signal under S5 (Figure 7) with forecasted climate variables (precipitation 

and evaporation in this study) is not as strong as that under S3, indicating that the forecast climate variables can help AI-based 400 

models mapping functions between inputs and outputs. The improvements are more significant for the two RNN models, i.e., 

LSTM and GRU, than LSSVM. This result demonstrates that the efficiency of deep-learning RNN methods is better and more 

accurate than LSSVM. 

Figure 6 is here 

Figure 7 is here 405 
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3.4.2 Multi-step stochastic forecasts based on BMA method 

Based on the forecast results of three data-driven models in the calibration period, the BMA method determines weights for 

LSTM, GRU, and GWO-LSSVM models. The weights reflecting the performance of the ensemble models during the 

calibration period are shown only for lead times of 1 and 7 days for the sake of brevity under S3 and S5 in Figure 8. The model 

weights reflect the comparative importance of all the competitive modelling predictions on one level. Figure 8 indicates that it 410 

is difficult to conclude which individual model provides the best prediction. For example, GRU outperforms the remaining 

two models for Hongqiao Reservoir, while LSTM performs best for Cenggang Reservoir in Figure 8(a1). Similar results can 

be obtained from Figure 8(b1). Comparatively, Figure 8(a2) shows that LSTM and GWO-LSSVM influence the BMA model 

more than GRU. This higher weight is assigned because the forecasts are more similar to observations than those less similar 

to observations using the BMA posterior processor. However, observed from Figure 8(b2), the prediction accuracy of GWO-415 

LSSVM is seriously affected and much less than that of GRU. It is consistent with the results obtained in Figure 7, indicating 

that RNNs outperform GWO-LSSVM when there exists more input information under S5. Overall, model uncertainty always 

exists whether forecast climate variables are involved or not, and it is necessary to analyze and evaluate the model uncertainty 

involved using BMA. 

Figure 8 is here 420 

To access model validity, the evaluation of the modelled streamflow is performed over calibration, validation, and test periods 

using NSE, RMSE, and MAE metrics. Table 4 shows the performance metric ranges for all 24 reservoirs of BMA methods 

under S3 and S5. Apparently, both the replicative (forecast performance in calibration sets) and predictive (forecast 

performance in validation and test sets) validity under S5 for forecast horizons are significantly better than those under S3. For 

example, Figure 9 demonstrates the improvement rates in terms of NSE, RMSE, and MAE of the BMA model compared with 425 

the three individual models. BMA produces the maximum NSE, minimum RMSE, and minimum MAE during the calibration 

period for both two scenarios, indicating that BMA has the best goodness-of-fit. This is because the weights are derived 

according to the individual forecast model in this period. With respect to validation and test periods, the BMA method shows 

better forecasts than the three comparative models except for the GRU modelling validation datasets under S5. Thus, it is 

shown that the BMA model well matches the actual streamflow. 430 

Table 4 is here 

Figure 9 is here 

The model validity is then assessed using (i) hydrographs and (ii) scatter plots of observed and modelled streamflow, as shown 

in Figure 10 and Figure 11. Herein, we only show three reservoirs, i.e., Hongqiao (the largest reservoir), Goushan (the medium 

reservoir), and Nanao (the smallest reservoir), for the sake of brevity. From Figure 10, it is clearly shown that the modelled 435 

streamflow deviates gradually from the 1:1 line and the forecast skill decreases with the increase of lead time under S3 as 

expected, which is consistent with the statistical results shown in Table 4. In contrast, the scatters of the observed and modelled 

streamflow implemented with forecasted climate variables fit well across the 1:1 line at different lead times under S5, observed 
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from Figure 11. The performance for Hongqiao Reservoir is affected explicitly by an extreme peak event that hit the reservoir 

during the calibration period shown in Figure 10, which does not occur over the training set of data. This causes heavy 440 

underestimations in the streamflow forecast. A more extended calibration period is required to improve the performance over 

such extreme peak flow events. However, the BMA method performs well on this extreme peak flow in Hongqiao Reservoir 

at all lead times when the forecast climate forcing is applied as inputs. This is because the reservoirs in Zhoushan Islands have 

relatively small drainage areas, and thus the flow concentrates in a very short time after an extreme rain event. 

Figure 10 is here 445 

Figure 11 is here 

We use the Monte Carlo simulation method to generate BMA ensemble forecasts. The number of simulations is set as 1000 in 

this study. To demonstrate the optimization results of multi-reservoir operations based on the data-driven forecast models 

under uncertainty, 90% confidence intervals associated with the deterministic predictions at BMA are further calculated. The 

confidence interval provides more alternatives that are possibly useful to a tradeoff between multiple objectives, such as flood 450 

control, hydropower generation, and improved navigation (Zhang et al., 2015). The interval performance metrics of Cr and D 

described in Section 2.3 are adopted to assess the performance of uncertain forecasts. Table 5 displays the averaged metrics 

for all the 24 reservoirs under S3 and S5. Both indicators under S5 are superior to those under S3. The 90% streamflow interval 

between the fifth and ninety-fifth percentiles of some representative reservoirs, e.g., Hongqiao, Goushan, and Nanao reservoirs, 

are presented in Figure 12 and Figure 13. The results are consistent with those in Figure 10 and Figure 11. It is observed from 455 

Figure 12 that the streamflow interval fails to capture the extreme peak flow for Hongqiao Reservoir under S3. The BMA 

performs gradually worse with increasing lead times for the three reservoirs. However, in Figure 13, the red dots represent the 

observed streamflow, most of which are covered by the 90% interval at both 1-day ahead and 7-days ahead. Therefore, the 

forecast climate variables will be conducive to reduce the predictive uncertainty of real-time streamflow forecasting. 

Table 5 is here 460 

Figure 12 is here 

Figure 13 is here 

3.4.3 Multi-objective reservoir operation performance evaluation  

The optimized operations are regulated based on both deterministic and uncertain forecast inflow. To demonstrate the 

relationship between the conflicting objectives, a set of Pareto solutions over a 7-day horizon at different periods under S5 is 465 

given as an example, as shown in Figure 14. The optimization using the Pareto concept allows the operator to choose an 

appropriate solution depending on the prevailing circumstances and analyzing the tradeoff between the conflicting objectives. 

In each of the plots, the water deficiency ratio of Daobei Plant and the sum of the remaining plants are plotted on the x and y 

axes, respectively. The color of the markers indicates the net operating costs with colors ranging from red, representing low 

value, to blue, representing high value. Thus, an ideal solution should be located at the left corner (low value of the water 470 
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deficiency ratio of Daobei Plant and the sum of the remaining three plants) of the plot and represented by a red (low net 

operating costs) marker. The black arrows have been added in the figure to guide the reader in understanding the directions of 

optimization. Generally, the water deficiency ratio of Daobei Plant has an inverse relationship with that of the sum of the 

remaining plants (inverse relationship, i.e., the former decrease with the increase of the latter). In contrast, the water deficiency 

ratio of the remaining three plants has a positive relationship with the net costs (positive relationship, i.e., the former increase 475 

with the increase of the latter).  

It is interesting to compare the performances associated with deterministic and uncertain forecasts. Uncertain conditions 

(Figure 14(b)) show a much broader scale on the three objectives than deterministic conditions (Figure 14(a)). For instance, 

uncertain forecasts produce the water deficiency ratio of Daobei Plant, ranging from -40% to 80%, during 2007 August 12th - 

2007 August 18st, while deterministic forecasts have a smaller range with a value from 30% to 100%. The water supply deficits 480 

under deterministic forecasts are due to the high demand happening in August, which can be mitigated when informing the 

reservoir operations with uncertain forecasts. In this way, we expect that if the ensemble streamflow forecasts are used in a 

stochastic optimization scheme, the reservoir operation could be further enhanced because the optimization considers possible 

uncertainty provided by uncertain forecasts and thus takes advantage of correcting the influences of uncertainty. 

Figure 14 is here 485 

(1) Performance evaluation with different forecast skills 

In general, forecasts are always useful for reservoir operations. The annual revenues, costs, and water supply reliability, are 

chosen as metrics to compare the performance of the operating policies derived from different configurations. Reliability is a 

measure of how well the water demand for users is met in a water transfer system. In this case, reliability is expressed as a 

percentage. The system performances are averaged over a set of solutions. The annual values during the period from 2007 490 

April 1st to 2008 March 31st at various configurations are provided in Table 6 with two decision horizons of 1 and 7 days. The 

multi-reservoir operation based on observation is designed as a benchmark. It can be seen from Table 6 that the performance 

indicators from the 1-day forecast horizon are better than those from 7-day using deterministic inflows (in the case of observed 

and forecasted inflows). Two scenarios (S3 and S5) with the 1-day forecast horizon show similar operating performance, which 

is consistent with the performance of the inflow forecast listed in Table 3. Recall again that S3 uses flow variables, antecedent 495 

precipitation, and evaporation as forecast inputs, while S5 uses flow variables as well as the antecedent and forecast climate 

forcing. In contrast to S3, the operating results of S5 with a 7-day forecast horizon are closest to that of the observation. This 

is due to the improved inflow forecast performance under S5. However, it is depicted in Table 6 that the indicator of water 

supply reliability and net costs under S5 are inferior to those under S3. As for the stochastic forecasts, S5 outperforms S3 with 

lower net costs and approximate water supply reliability. In this case, the improved performance may not lead to improved 500 

decisions in deterministic forecasts. 

Table 6 is here 
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The results obtained in Table 6 show that system performance derived from the observed inflows is inferior to that from other 

configurations. This finding cannot confirm the effectiveness of inflow forecasts. The reason for that is the forecast inflows  

may overestimate the actual inflows. For example, the mean value (0.14 m3/s) of the observed inflow of Hongqiao Reservoir 505 

is lower than that of the forecasted inflow (0.17 m3/s). In this case, the good performance presented in Table 6 is 'fake'. That 

is to say, although decision-makers can follow the strategies determined by the forecasted inflows, the system performance 

should be assessed using the actual inflows (i.e., observed inflows). We further re-evaluate the operating strategies optimized 

from different configurations mentioned above using the observed inflows. The performance metrics are listed in Table 7. It is 

expected that the results can reveal the maximum efficiency and reliability that could be achieved based on accurate 510 

information. In general, the indicator values under deterministic forecasts in Table 7 are reduced compared with those in Table 

6. The reason is that reservoir operating decisions in Table 6 are optimized based on a higher inflow series.  

Table 7 is here 

In terms of both deterministic and uncertain forecasts, net operating costs of S5 are improved significantly compared with that 

of S3, while water supply reliability is increased slightly. This result may suggest that improved forecasts are more skillful in 515 

making decisions when using forecast climate variables as inputs. We highlight that this result we obtained is specific for 

Zhoushan Islands. Indeed, many studies show that higher forecast performance did not lead to better operation decisions 

(Chiew et al., 2003; Goddard et al., 2010; Turner et al., 2017). However, some researchers draw the same conclusions as us. 

For instance, Anghileri et al. (2016) declared that inflow forecasts with accurate weather components would produce much 

smaller water supply deficits. Moreover, Anghileri et al.  (2019) found that preprocessed forecasts (higher performance) were 520 

more valuable than the raw forecasts (less performance) regarding to two operation performance metrics, i.e., mean annual 

revenues and spilled water volume.  

There is also an interesting finding that the operating performance upon deterministic forecasts deteriorates, while the 

performance upon uncertain forecasts can keep relatively stable. This implies that the use of uncertain forecasts in reservoir 

operation can be more efficient and reliable than that of deterministic forecasts. The reason is that in a stochastic optimization 525 

scheme, the value can be further enhanced because the optimization can account for the total uncertainty provided by the 

ensemble forecasts. Similar results were obtained by Roulston and Smith (2003), who reported that the hydroelectric power 

production derived from the ensemble forecasts was increased compared with the deterministic forecasts. Boucher et al. (2012) 

also found that stochastic forecasts outperformed deterministic ones with the lower turbinate flow, higher generation 

production, and less spillage during a flood period. Overall, in most cases, a noticeable improvement can be achieved through 530 

the use of the stochastic decision-making assistance tool.  

We then assess the performance metrics of water supply reliability over different seasons. It is noted in Figure 15 that the 

deterministic forecasts are less skillful than the uncertain forecast when used in spring (JFM), summer (AMJ), autumn (JAS), 

and winter (OND) with the two forecast horizons. Although the operating performance using the deterministic forecast is lower 

due to its deterministic character, the main characteristics of the relationship between forecast quality and value remain 535 
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unchanged. That is to say, the benefits of considering the forecasts are more significant when the forecast quality is higher. It 

indicates that the optimization is capable of exploiting efficient information to improve reservoir operations. In our multi-

objective optimization modelling, we would like to make the best use of water resources and maximize water supply. However, 

the operating performance in autumn shows a lower value with respect to that in other seasons. This is because the water 

demand in autumn is usually much higher. The shortage does not imply the non-effectiveness of our proposed forecast-based 540 

management framework but is due to the limitation of available water and pies capacity. 

Figure 15 is here 

(2) Performance evaluation with different forecast horizons 

The impact of different forecast horizons on the operation performance is further evaluated under different configurations, as 

shown in Figure 16. It is noted that the operating policy optimized from uncertain forecast inflows upon S5 outperforms that 545 

from S3. In terms of deterministic conditions, S5 improves the operation on the metrics of water supply reliability of Daobei 

Plant, water supply reliability of the other plants, and net costs with a variation of 2.11~13.58%, 2.74~7.38%, and -19.94~-

10.30%, respectively, compared with S3. As for uncertain conditions, S5 improves by 0.24~1.90%, 0.06~1.32%, and -59.45~-

176.19%, respectively. Although the increments in water supply reliability are not insignificant, S5 can secure water demand 

with much less operating costs than S3, which decision-makers value most. Furthermore, uncertain forecasts produce an 550 

improved ratio of 31.52~65.01%, 19.98~46.60%, -116.45~-56.95% than deterministic forecasts regarding to the three metrics, 

respectively. Our results again highlight that uncertain forecasts are more valuable than deterministic forecasts when designing 

forecast-informed reservoir operations. 

Figure 16 is here 

With an increase in forecast horizon from 1 to 7 days, the performance in water supply reliability and net operating costs upon 555 

deterministic conditions are generally reduced. This suggests that considering a longer forecast horizon (up to 7 days) does not 

necessarily improve reservoir operation without future forecast climate variables as inputs (low forecast quality). The reduced 

performance in water supply reliability might be due to the fact that the optimization explores strategies to secure the whole 

water demand in a longer horizon, which results in reliability sacrifice on some particular days. This result is similar to the 

finding proposed in Xu et al. (2014), who argued that the use of longer-horizon (an efficient forecast horizon longer than one 560 

day) inflows could not improve hydropower performance when they set the forecast horizon as one to five days. Nevertheless, 

the increasing forecast horizon may not generate improved or decreased water supply reliability in uncertain conditions. 

Approximate water supply volume can lead to similar revenues or fees paid to the government and managers (water fees and 

water resources fees). Accordingly, the growing trend in net costs is caused by the increased operating costs, mainly dominated 

by electricity prices, when the multi-reservoir is operated to supply the demand in a longer horizon. In this case, the operation 565 

performance varies at different conditions. This demonstrates that the relationship between forecast horizon and reservoir 

operation is rather complex and depends not only on the configurations (i.e., inflow forecast quality and uncertainty) used to 

determine operating rules but also on the performance metrics used to assess operation.  
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4 Limitations and future work 

Our work suffers from some limitations which could be overcome in future studies. One of the limitations is that only one 570 

single indicator was used to calibrate the forecast models, while multiple indicators were used in assessing the performance of 

the models. It should be a more fair practice by using multi-criteria to do both calibration and assessment and can be interesting 

for future work. Another limitation is that we used the average observed price to calculate the revenues and operating costs. In 

an operational and deregulated market setting, the prices may fluctuate significantly (Anghileri et al., 2019). For instance, 

forecasting electricity prices is likely to improve short-term operation efficiency significantly. The combined effects of price 575 

and streamflow forecasts on water resource allocation are worth investigating in future studies. Our study also suffers from the 

drawback that instead of using the short-term weather forecasts from the Global Forecast System (GFS) or European Centre 

for Medium‐Range Weather Forecasts (ECMWF) model (Choong and El-Shafie, 2015; Schwanenberg et al., 2015; Peng et 

al., 2018; Ahmad and Hossain, 2019; Liu et al., 2019), we used the observed weather conditions as alternatives, which may 

result in an overestimation in forecast quality. However, forecast uncertainty and error that generally grow up with lead time. 580 

The usefulness of the forecast information can be reduced with the increase of the forecast horizon and thus the operating 

performance. This may influence the finding we highlight above that the relationship between forecast horizon and reservoir 

operation is not constant and specific. It would be interesting to analyze the reservoir operations performance when accounting 

for an ensemble numerical weather prediction. 

5. Conclusions  585 

In this study, we proposed an AI-based management methodology to assess forecast quality and forecast-informed reservoir 

operation performance together. The approach was tested on a water resources allocation system in Zhoushan Islands, China. 

Specifically, the findings are summarized below. 

A data-driven reservoir inflow forecasting system using ML methods (LSTM, GRU, and GWO-LSSVM) was first developed 

with a comprehensive calibration-validation-testing framework. The validity of the deterministic forecast was demonstrated 590 

by applying it over 25 reservoirs with varying climate and hydrological characteristics. Results showed that the more variation 

the streamflow has (a high COV value), the harder it was for the ML methods to learn the flow pattern when there didn’t exist 

enough input information. The forecast skill deteriorated with increasing lead times under such scenarios. However, short-

term forecast climate forcing was efficient and scalable in forecasting the multi-reservoir inflow over the forecast horizon (1-

7 days). LSTM and GRU models generated comparable performance under different configurations. Given that GRU has 595 

simpler structures and fewer parameters and required less time for modeling, it might be the preferred method for streamflow 

forecasts than LSTM.  

Then we used BMA to generate stochastic inflow scenarios for quantifying uncertainty based on LSTM, GRU, and GWO-

LSSVM deterministic forecasts. The results demonstrated that it was difficult to conclude which individual model provided 

the best prediction, but the BMA did display better forecast skills in comparison to the individual ones. Including one scenario 600 
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with antecedent conditions and one scenario with both antecedent and forecast information, two input combination scenarios 

were compared on the uncertain forecast performance in detail. The comparison indicated that forecast climate variables would 

help reduce the predictive uncertainty of short-term streamflow forecasting.  

The forecasting scheme was further coupled with a multi-objective reservoir operation model to optimize water resources 

allocation. Using a MORDM approach, we identified strategies that tradeoff between water supply reliability and operating 605 

costs in Zhoushan Islands. A rolling horizon scheme was employed to obtain optimal operating policy over the horizon of 1-7 

days. The long-term assessment over a year based on deterministic and stochastic forecasts showed quite different 

performances in terms of water supply reliability and net operating costs. Our averaged annual results showed that uncertain 

forecasts were more valuable than deterministic forecasts. The operating benefits of considering the forecasts were more 

significant when the forecast quality was higher. Similar results could be obtained at a seasonal scale. While showing the 610 

unquestionable benefit of implementing forecast-based reservoir operations, our results also demonstrated that the relationship 

between forecast horizon and reservoir operation was complex and depended on the operating configurations (forecast quality 

and uncertainty) and performance measures for the Zhoushan Islands system.  

Overall, the developed AI-based management framework has demonstrated a clear advantage in quantifying the uncertainties 

of inflow forecasts to improve the overall system performance of water allocation systems. Such a framework can be further 615 

applied to other study sites with similar problems. However, the results we obtained in this study are only specific for the 

Zhoushan Islands and should be exported with care to other study sites. 
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Figure 1: Framework of the AI-based management methodology.  
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Figure 2: Structure of an (a) LSTM and (b) GRU cell. 870 
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Figure 3: Schematization of the parameterized MORDM methods.  
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 875 

Figure 4: Location of the Zhoushan Islands. 

  



37 

Dongaonong

LinchengHuangjinwan

Lixidu Lanshan

Mamu

Dongaonong

Longtan

Cenggang

Cenggang

Xiamen
Lixi

Mahuangshan

Mahuangshan

Hongqiao
Hongqiao

Hongqiao

Chahe

Chengbei

Hongwei
Chengbei

Changmenli

Daobei

Shuijiangyang
Tuanjie

Changchunling

Baiquan

Baiquanling

Jinlin

Yaojiawan

Chenao

Dongao

Pingyang

pu

Nanao

Yingjiawan

Yingjiawan

Ludong

Shatianao

Dashiao

Dongao

Pingdi

Dashiao

Goushan

Goushan

Pingdi

Hongqiao

Daobeiqiao

Dongbu

Pump stations Waterworks Reservoir District boundary Pipelines
 

Figure 5: Schematic diagram of the Zhoushan Islands. 
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 880 

Figure 6: NSE values at lead times of 1 to 7 days plotted against the coefficient of variation (COV) for all the 24 

reservoirs during the period of (a) calibration, (b) validation, and (c) test under S3. 



39 

 

Figure 7: NSE values at lead times of 1 to 7 days plotted against the coefficient of variation (COV) for all the 24 

reservoirs during the period of (a) calibration, (b) validation, and (c) test under S5. 885 
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Figure 8: Weights of three individual forecast models for the BMA model for all reservoirs under (a) S3 and (b) S5. 
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Figure 9: Improvement rates in terms of averaged (a) NSE, (b) RMSE, and (c) MAE of the BMA model for forecasts 

as compared with the three individual models.  890 
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Figure 10: Forecast results of (a) Hongqiao, (b) Goushan, and (c) Nanao reservoirs under S3. 
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Figure 11: Forecast results of (a) Hongqiao, (b) Goushan, and (c) Nanao reservoirs under S5. 895 
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Figure 12: 90% streamflow interval of the BMA method under S3. 
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Figure 13: 90% streamflow interval of the BMA method under S5. 
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 900 

Figure 14: A set of Pareto solutions at different periods over a 7-day horizon under (a) deterministic and (b) uncertain 

forecasts. 
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Figure 15: Seasonal system performance of water supply reliability. 905 
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Figure 16: Annual system performance with different forecast horizons. 
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Table 1: Reservoir characteristics in the Zhoushan Islands. 920 

District 
Reservoir 

name 

Reservoir 

storage  

(104m3) 

Dead 

storage 

(104m3) 

Normal 

storage 

(104m3) 

Drainage 

area 

(km2) 

Mean 

flow 

(m3/s) 

Standard 

deviation 

of flow (m3/s) 

COV 

Hongqiao Hongqiao 1307 12 1015 13.4 0.15 0.77 5.08 

Chahe 254 35.08 185 8 0.11 0.49 4.34 

Hongwei 85 36 76.1 1.94 0.10 0.21 2.06 

Chengbei 123 45 111.1 4.98 0.10 0.33 3.34 

Mahuangshan 354 17.15 286.4 4.87 0.10 0.32 3.28 

Xiamen 281 42 240 4 0.10 0.29 2.92 

Cenggang 733 14.2 627 6.6 0.10 0.41 3.91 

Longtan 160 9 133.6 2.27 0.10 0.22 2.18 

Daobei Dongaonong 185 3.4 159.84 2.6 0.10 0.23 2.28 

Changmenli 205 49.49 179.5 2.3 0.10 0.22 2.17 

Tuanjie 122 30.4 106.6 2.05 0.10 0.21 2.09 

Changchunling 410 34.3 368.3 5.41 0.10 0.35 3.53 

Yaojiawan 124 31.09 105 1.46 0.10 0.22 2.23 

Jinlin 154 40.48 125.9 2.42 0.10 0.20 1.96 

BaiquanLing 204 12.56 177.4 3 0.10 0.24 2.44 

Chenao 236 59 195.2 4.13 0.10 0.29 2.99 

Dongbu Dashiao 293 49.1 254 2.8 0.10 0.23 2.37 

Pingdi 317 1 317.2 0.6 0.10 0.19 1.87 

Dongao 457.8 47.5 384 6.4 0.10 0.40 3.87 

Goushan 194 4.59 170 2.73 0.10 0.23 2.34 

Nanao 73 15.8 66.7 1.21 0.10 0.20 1.94 

Ludong 142 54 118.5 3.7 0.10 0.27 2.75 

Yingjiawan 124 31.09 105 1.46 0.10 0.31 3.17 

Shatianao 127 20.8 116.5 4.54 0.10 0.19 1.89 
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Table 2: Five input combination scenarios. 

ID Scenario Input combination 

1 S1 Qa 

2 S2 Pa, Ea 

3 S3 Qa, Pa, Ea 

4 S4 Pa, Pf, Ea, Ef 

5 S5 Qa, Pa, Pf, Ea, Ef 
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Table 3: NSE ranges ([min, max]) for all reservoirs with the different configurations during the calibration, validation, 

and test periods.  925 

Period 
Forecast 

horizon (d) 

LSTM GRU GWO-LSSVM 

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

Calibr-

ation 

1 [0.11, 

0.87] 

[0.57, 

0.94] 

[0.61, 

0.97] 

[0.8, 

0.96] 

[0.93, 

0.99] 

[0.18, 

0.87] 

[0.57, 

0.87] 

[0.53, 

0.98] 

[0.66, 

0.96] 

[0.89, 

0.99] 

[0.17, 

0.91] 

[0.54, 

0.86] 

[0.58, 

0.97] 

[0.87, 

0.97] 

[0.96, 

0.99] 

2 [0.05, 

0.58] 

[0.27, 

0.72] 

[0.34, 

0.93] 

[0.82, 

0.95] 

[0.91, 

0.99] 

[0.07, 

0.58] 

[0.29, 

0.66] 

[0.36, 

0.87] 

[0.78, 

0.96] 

[0.87, 

0.99] 

[0.08, 

0.58] 

[0.27, 

0.72] 

[0.31, 

0.83] 

[0.87, 

0.97] 

[0.94, 

0.97] 

3 [0.03, 

0.48] 

[0.11, 

0.55] 

[0.13, 

0.63] 

[0.75, 

0.94] 

[0.91, 

0.98] 

[0.05, 

0.51] 

[0.10, 

0.52] 

[0.14, 

0.62] 

[0.79, 

0.95] 

[0.92, 

0.98] 

[0.05, 

0.51] 

[0.13, 

0.55] 

[0.11, 

0.59] 

[0.86, 

0.94] 

[0.93, 

0.96] 

4 [0.03, 

0.44] 

[0.08, 

0.49] 

[0.10, 

0.56] 

[0.84, 

0.95] 

[0.94, 

0.98] 

[0.04, 

0.45] 

[0.08, 

0.45] 

[0.12, 

0.56] 

[0.80, 

0.95] 

[0.90, 

0.98] 

[0.05, 

0.45] 

[0.1, 

0.8] 

[0.09, 

0.54] 

[0.87, 

0.92] 

[0.92, 

0.95] 

5 [0.01, 

0.17] 

[0.02, 

0.16] 

[0.03, 

0.22] 

[0.74, 

0.95] 

[0.94, 

0.98] 

[0.02, 

0.17] 

[0.02, 

0.17] 

[0.05, 

0.22] 

[0.86, 

0.95] 

[0.89, 

0.98] 

[0.03, 

0.16] 

[0.05, 

0.46] 

[0.03, 

0.23] 

[0.87, 

0.93] 

[0.93, 

0.95] 

6 [0.01, 

0.39] 

[0.06, 

0.39] 

[0.07, 

0.44] 

[0.83, 

0.95] 

[0.93, 

0.98] 

[0.02, 

0.4] 

[0.05, 

0.38] 

[0.09, 

0.46] 

[0.8, 

0.95] 

[0.91, 

0.98] 

[0.03, 

0.41] 

[0.07, 

0.87] 

[0.05, 

0.45] 

[0.87, 

0.90] 

[0.89, 

0.94] 

7 [0.01, 

0.18] 

[0.04, 

0.19] 

[0.04, 

0.24] 

[0.84, 

0.96] 

[0.94, 

0.97] 

[0.02, 

0.19] 

[0.04, 

0.19] 

[0.07, 

0.26] 

[0.86, 

0.95] 

[0.93, 

0.97] 

[0.02, 

0.19] 

[0.06, 

0.81] 

[0.06, 

0.25] 

[0.84, 

0.88] 

[0.85, 

0.94] 

Valid-

ation 

1 [0.09, 

0.90] 

[0.45, 

0.93] 

[0.50, 

0.92] 

[0.79, 

0.96] 

[0.82, 

0.97] 

[0.11, 

0.87] 

[0.47, 

0.87] 

[0.51, 

0.98] 

[0.34, 

0.96] 

[0.81, 

0.99] 

[0.04, 

0.79] 

[0.5, 

0.95] 

[0.58, 

0.88] 

[0.70, 

0.93] 

[0.76, 

0.90] 

2 [0.08, 

0.85] 

[0.01, 

0.87] 

[0.01, 

0.90] 

[0.42, 

0.95] 

[0.64, 

0.95] 

[0.09, 

0.58] 

[0.09, 

0.66] 

[0.07, 

0.87] 

[0.54, 

0.96] 

[0.76, 

0.99] 

[0.00, 

0.74] 

[0.01, 

0.83] 

[0.03, 

0.86] 

[0.70, 

0.93] 

[0.67, 

0.95] 

3 [0.08, 

0.83] 

[0.02, 

0.83] 

[-0.01, 

0.87] 

[0.79, 

0.96] 

[0.68, 

0.96] 

[0.09, 

0.51] 

[0.09, 

0.52] 

[0.08, 

0.62] 

[0.52, 

0.95] 

[0.77, 

0.98] 

[0.00, 

0.74] 

[0.02, 

0.8] 

[0.03, 

0.83] 

[0.74, 

0.94] 

[0.76, 

0.95] 

4 [0.08, 

0.83] 

[0.01, 

0.84] 

[0.02, 

0.89] 

[0.80, 

0.96] 

[0.68, 

0.95] 

[0.09, 

0.45] 

[0.08, 

0.45] 

[0.07, 

0.56] 

[0.52, 

0.95] 

[0.78, 

0.98] 

[0.00, 

0.74] 

[0.01, 

0.81] 

[0.04, 

0.84] 

[0.73, 

0.94] 

[0.77, 

0.95] 

5 [0.08, 

0.81] 

[0.01, 

0.82] 

[0.01, 

0.85] 

[0.75, 

0.96] 

[0.67, 

0.96] 

[0.08, 

0.17] 

[0.07, 

0.17] 

[0.06, 

0.22] 

[0.52, 

0.95] 

[0.74, 

0.98] 

[0.00, 

0.72] 

[-0.01, 

0.78] 

[0.02, 

0.81] 

[0.70, 

0.94] 

[0.76, 

0.94] 

6 [0.08, 

0.80] 

[0.00, 

0.80] 

[0.00, 

0.84] 

[0.80, 

0.95] 

[0.67, 

0.94] 

[0.09, 

0.4] 

[0.07, 

0.38] 

[0.05, 

0.46] 

[0.51, 

0.95] 

[0.80, 

0.98] 

[0.01, 

0.71] 

[0.00, 

0.77] 

[0.02, 

0.79] 

[0.73, 

0.94] 

[0.76, 

0.94] 

7 [0.07, 

0.78] 

[0.01, 

0.79] 

[0.00, 

0.82] 

[0.76, 

0.96] 

[0.69, 

0.95] 

[0.08, 

0.19] 

[0.07, 

0.19] 

[0.06, 

0.26] 

[0.53, 

0.95] 

[0.76, 

0.97] 

[0.00, 

0.70] 

[0.00, 

0.76] 

[0.02, 

0.79] 

[0.77, 

0.95] 

[0.77, 

0.95] 

Test 1 [-0.04, 

0.69] 

[0.50, 

0.73] 

[0.56, 

0.89] 

[0.58, 

0.77] 

[0.54, 

0.87] 

[-0.09, 

0.71] 

[0.48, 

0.74] 

[0.54, 

0.87] 

[0.54, 

0.76] 

[0.65, 

0.89] 

[0.04, 

0.72] 

[0.53, 

0.71] 

[0.58, 

0.88] 

[0.69, 

0.79] 

[0.76, 

0.90] 

2 [-0.13, 

0.69] 

[0.04, 

0.62] 

[0.03, 

0.75] 

[0.41, 

0.78] 

[0.63, 

0.85] 

[-0.16, 

0.66] 

[0.04, 

0.59] 

[0.03, 

0.7] 

[0.58, 

0.77] 

[0.61, 

0.86] 

[-0.01, 

0.71] 

[0.03, 

0.63] 

[0.03, 

0.78] 

[0.69, 

0.79] 

[0.75, 

0.86] 

3 [0.01, 

0.20] 

[0.48, 

0.65] 

[0.50, 

0.72] 

[0.58, 

0.73] 

[0.56, 

0.83] 

[0.03, 

0.2] 

[0.51, 

0.65] 

[0.48, 

0.71] 

[0.61, 

0.78] 

[0.69, 

0.82] 

[0.03, 

0.2] 

[0.50, 

0.63] 

[0.58, 

0.70] 

[0.67, 

0.74] 

[0.73, 

0.81] 

4 [-0.01, 

0.15] 

[0.02, 

0.13] 

[0.01, 

0.17] 

[0.41, 

0.77] 

[0.63, 

0.83] 

[-0.02, 

0.13] 

[0.02, 

0.13] 

[0.01, 

0.15] 

[0.57, 

0.77] 

[0.60, 

0.83] 

[-0.01, 

0.13] 

[0.01, 

0.12] 

[0.02, 

0.18] 

[0.68, 

0.81] 

[0.74, 

0.83] 

5 [-0.01, 

0.14] 

[0.01, 

0.14] 

[-0.01, 

0.17] 

[0.63, 

0.78] 

[0.63, 

0.81] 

[-0.02, 

0.14] 

[-0.01, 

0.15] 

[0.00, 

0.18] 

[0.53, 

0.75] 

[0.62, 

0.80] 

[0.00, 

0.12] 

[0.01, 

0.15] 

[0.01, 

0.21] 

[0.65, 

0.77] 

[0.69, 

0.80] 

6 [-0.01, 

0.05] 

[0.01, 

0.08] 

[0.00, 

0.10] 

[0.62, 

0.76] 

[0.62, 

0.80] 

[-0.01, 

0.05] 

[0.01, 

0.08] 

[0.00, 

0.08] 

[0.56, 

0.82] 

[0.58, 

0.82] 

[-0.01, 

0.04] 

[0.02, 

0.07] 

[0.01, 

0.08] 

[0.59, 

0.75] 

[0.62, 

0.77] 
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7 [-0.02, 

0.04] 

[0.23, 

0.40] 

[0.19, 

0.45] 

[0.57, 

0.74] 

[0.55, 

0.82] 

[-0.02, 

0.03] 

[0.22, 

0.47] 

[0.20, 

0.47] 

[0.59, 

0.81] 

[0.65, 

0.79] 

[-0.01, 

0.03] 

[0.24, 

0.34] 

[0.27, 

0.40] 

[0.69, 

0.82] 

[0.75, 

0.81] 
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Table 4: Performance metric ranges ([min, max]) for all 24 reservoirs of BMA methods under S3 and S5. 

Period 
Forecast 

horizon (d) 

NSE RMSE(m3/s) MAE(m3/s) 

S3 S5 S3 S5 S3 S5 

Calibration 1 [0.60, 0.98] [0.97, 0.99] [0.02, 0.36] [0.01, 0.09] [0.01, 0.09] [0.01, 0.03] 

2 [0.36, 0.92] [0.96, 0.99] [0.04, 0.46] [0.02, 0.10] [0.02, 0.13] [0.01, 0.04] 

3 [0.14, 0.63] [0.95, 0.98] [0.09, 0.53] [0.02, 0.11] [0.03, 0.15] [0.01, 0.04] 

4 [0.12, 0.57] [0.94, 0.98] [0.10, 0.54] [0.02, 0.12] [0.04, 0.17] [0.01, 0.04] 

5 [0.04, 0.23] [0.95, 0.98] [0.14, 0.56] [0.02, 0.12] [0.04, 0.17] [0.01, 0.04] 

6 [0.07, 0.46] [0.94, 0.98] [0.11, 0.55] [0.02, 0.10] [0.04, 0.17] [0.01, 0.04] 

7 [0.06, 0.25] [0.94, 0.97] [0.13, 0.52] [0.03, 0.11] [0.05, 0.15] [0.01, 0.04] 

Validation 1 [0.60, 0.92] [0.84, 0.96] [0.08, 0.66] [0.06, 0.39] [0.02, 0.13] [0.02, 0.10] 

2 [0.07, 0.93] [0.80, 0.96] [0.07, 1.09] [0.06, 0.33] [0.03, 0.19] [0.02, 0.09] 

3 [0.06, 0.90] [0.82, 0.95] [0.09, 1.09] [0.06, 0.30] [0.04, 0.21] [0.02, 0.09] 

4 [0.08, 0.91] [0.85, 0.96] [0.08, 1.07] [0.06, 0.34] [0.04, 0.19] [0.02, 0.09] 

5 [0.09, 0.85] [0.85, 0.96] [0.11, 1.08] [0.05, 0.29] [0.05, 0.22] [0.02, 0.09] 

6 [0.06, 0.83] [0.86, 0.95] [0.11, 1.08] [0.06, 0.34] [0.05, 0.21] [0.03, 0.09] 

7 [0.04, 0.82] [0.87, 0.96] [0.12, 1.10] [0.06, 0.35] [0.05, 0.22] [0.02, 0.10] 

Test 1 [0.60, 0.89] [0.76, 0.89] [0.08, 0.68] [0.08, 0.47] [0.03, 0.20] [0.03, 0.16] 

2 [0.05, 0.76] [0.68, 0.87] [0.12, 1.05] [0.09, 0.50] [0.05, 0.27] [0.04, 0.16] 

3 [0.59, 0.73] [0.68, 0.83] [0.13, 0.69] [0.10, 0.53] [0.05, 0.23] [0.04, 0.16] 

4 [0.03, 0.18] [0.69, 0.83] [0.22, 1.06] [0.10, 0.54] [0.08, 0.29] [0.04, 0.16] 

5 [0.01, 0.21] [0.68, 0.81] [0.21, 1.08] [0.11, 0.51] [0.08, 0.30] [0.04, 0.16] 

6 [0.02, 0.09] [0.64, 0.81] [0.23, 1.07] [0.11, 0.63] [0.09, 0.30] [0.04, 0.18] 

7 [0.25, 0.43] [0.67, 0.80] [0.19, 0.84] [0.12, 0.55] [0.09, 0.28] [0.05, 0.16] 
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Table 5: Ranges of interval performance metrics ([min, max]) for all the 24 reservoirs under S3 and S5. 

Period 
Forecast horizon 

(d) 

Cr(%) D(m3/s) 

S3 S5 S3 S5 

Calibration 1 [94.36, 99.86] [96.29, 99.86] [0.01, 0.06] [0.01, 0.03] 

2 [93.67, 99.17] [94.91, 99.66] [0.01, 0.05] [0.01, 0.03] 

3 [94.36, 98.21] [95.05, 99.59] [0.01, 0.04] [0.01, 0.03] 

4 [92.98, 96.97] [95.67, 99.72] [0.02, 0.04] [0.01, 0.04] 

5 [93.26, 96.22] [94.57, 99.79] [0.01, 0.04] [0.01, 0.04] 

6 [93.26, 96.70] [95.74, 99.66] [0.02, 0.05] [0.01, 0.04] 

7 [92.64, 96.15] [95.53, 99.72] [0.02, 0.05] [0.01, 0.03] 

Validation 1 [92.88, 99.73] [96.44, 100.00] [0.01, 0.05] [0.01, 0.03] 

2 [94.25, 99.45] [93.97, 100.00] [0.01, 0.05] [0.01, 0.03] 

3 [92.33, 97.26] [94.52, 100.00] [0.01, 0.02] [0.01, 0.04] 

4 [92.60, 96.16] [93.42, 99.73] [0.01, 0.06] [0.01, 0.04] 

5 [91.78, 94.79] [95.07, 100.00] [0.01, 0.04] [0.01, 0.04] 

6 [91.78, 94.79] [95.07, 100.00] [0.01, 0.04] [0.01, 0.04] 

7 [90.68, 93.42] [93.70, 99.73] [0.00, 0.03] [0.01, 0.03] 

Test 1 [90.83, 99.32] [93.84, 99.73] [0.03, 0.22] [0.03, 0.15] 

2 [92.75, 97.95] [94.25, 99.73] [0.04, 0.26] [0.03, 0.16] 

3 [92.48, 97.40] [94.39, 99.73] [0.05, 0.26] [0.03, 0.15] 

4 [91.66, 95.35] [94.39, 99.59] [0.07, 0.28] [0.04, 0.16] 

5 [90.70, 94.12] [94.66, 99.45] [0.07, 0.29] [0.04, 0.15] 

6 [90.83, 93.98] [93.43, 99.45] [0.08, 0.29] [0.05, 0.18] 

7 [89.88, 92.48] [93.57, 99.45] [0.08, 0.28] [0.04, 0.16] 
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Table 6: Annual system performance using forecast inflow information. 

Inflow 

Configuration 

Forecast 

horizon (d) 

Revenues 

(104RMB) 

Costs 

(104RMB) 

Net costs 

(104RMB) 

Reliability (%) 

Daobei Others 

Observation 1 3228.38 3336.52 108.15 79.22 86.10 

7 2651.01 2822.95 171.94 71.31 75.94 

Deterministic S3 1 3541.27 3633.50 92.23 79.68 96.90 

S5 1 3596.23 3690.32 94.09 79.59 96.31 

S3 7 3262.51 3401.53 139.02 80.93 91.84 

S5 7 2945.42 3118.95 173.53 76.10 85.27 

Uncertain S3 1 3931.58 3837.88 -93.70 93.49 99.80 

S5 1 3988.70 3791.54 -197.16 92.63 99.58 

S3 7 3946.61 3902.59 -44.02 94.03 100.00 

S5 7 3911.55 3846.44 -65.11 92.83 99.38 
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Table 7: Annual system performance using observed inflow information.  

Inflow 

Configurations 

Forecast 

horizon (d) 

Revenues 

(104RMB) 

Costs 

(104RMB) 

Net costs 

(104RMB) 

Reliability (%) 

Daobei Others 

Observation 1 3228.38 3336.52 108.15  79.22 86.10 

7 2651.01 2822.95 171.94  71.31 75.94 

Deterministic S3 1 2597.17 2783.31 186.14  67.42 79.10 

S5 1 2735.64 2884.66 149.02  71.79 82.00 

S3 7 2159.05 2454.79 295.75  57.08 67.04 

S5 7 2371.45 2631.57 260.11  64.15 71.80 

Uncertain S3 1 3788.08 3820.27 32.18  94.18 98.45 

S5 1 3805.98 3781.46 -24.52  94.42 98.38 

S3 7 3762.07 3884.75 122.68  93.64 98.28 

S5 7 3785.55 3835.29 49.75  94.99 98.46 

 


