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Abstract. Streamflow forecasts are traditionally effective in mitigating water scarcity and flood defense. This study developed 

an Artificial Intelligence (AI)-based management methodology that integrated multi-step streamflow forecasts and multi-

objective reservoir operation optimization for water resource allocation. Following the methodology, we aimed to a ssess 10 

forecast quality and forecast-informed reservoir operations performance together due to the influence of inflow forecast 

uncertainty. Varying combinations of climate and hydrological variables were inputs into three AI-based models, namely Long 

Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Least Squares Support Vector Machine (LSSVM), to forecast 

short-term streamflow. Based on three deterministic forecasts, the stochastic inflow scenarios were further developed using 

Bayesian Model Averaging (BMA) for quantifying uncertainty. The forecasting scheme was further coupled with a multi-15 

reservoir optimization model, and the multi-objective programming was solved using the parameterized Multi-Objective 

Robust Decision Making (MORDM) approach. The AI-based management framework was applied and demonstrated over a 

multi-reservoir system (25 reservoirs) in the Zhoushan Islands, China. Three main conclusions were drawn from this study: 1) 

GRU and LSTM performed equally well on streamflow forecasts, and GRU might be the preferred method over LSTM, given 

that it had simpler structures and less modeling time; 2) Higher forecast performance could lead to improved reservoir 20 

operation, while uncertain forecasts were more valuable than deterministic forecasts, regarding two performance metrics, i.e., 

water supply reliability and operating costs; 3) The relationship between forecast horizon and reservoir operation was complex 

and depended on the operating configurations (forecast quality and uncertainty) and performance measures. This study 

reinforces the potential of an AI-based stochastic streamflow forecasting scheme to seek robust strategies under uncertainty. 

 25 
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1 Introduction 

Multi-step streamflow forecast is of great importance for reservoir operations to determine optimal water allocations 

considering the current use and the carry-out storage for mitigating water scarcity risk in the future (Guo et al., 2018; Zhao et 

al., 2019). Previous studies have identified that real-time reservoir operations are influenced by multiple uncertainties (Xu et 30 
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al., 2020), among which inflow forecast uncertainty has been determined as the primary source, resulting in the risk of water 

shortage when the forecast inflow overestimates the actual inflow. Ensemble forecasting techniques are commonly used to 

characterize various uncertainties in streamflow forecasts. According to comparative analysis for various probabilistic 

forecasting techniques (Nott et al., 2012; Fang et al., 2018a; Zhai and Chen, 2018; Zhou et al., 2020b), Bayesian Model 

Averaging (BMA) (Hoeting et al., 1999) has been found to be an effective and most commonly used method to evaluate 35 

uncertainty and thus can be used in streamflow forecast.  

Any ensemble forecast approach relies upon model diversity that different models produce, with specific emphasis and 

different aspects of the features they want to model (Zhou et al., 2020a). In the last few decades, many approaches have been 

developed to forecast streamflow, including physically-based and data-driven models (Tikhamarine et al., 2020; Zuo et al., 

2020). Although physically-based models can help understand underlying physical processes, they usually require a large 40 

amount of input information, such as meteorological data, geographic data, soil, and land use characteristics (Guo et al., 2018; 

Guo et al., 2020a). Different from physically-based models, data-driven models based on statistical modeling have attracted 

significant interests due to their simplicity and satisfactory forecast results with low information requirements (Al-Sudani et 

al., 2019; Mehdizadeh et al., 2019; Osman et al., 2020). Artificial intelligence (AI)-based approaches, i.e., machine learning 

(ML) methods, belong to the latter group. The widely used ML approaches include Artificial neural network (ANN) and Least 45 

Squares Support Vector Machine (LSSVM) (Ghumman et al., 2018; Kisi et al., 2019; Meng et al., 2019; Adnan et al., 2020; 

Ali and Shahbaz, 2020). Such models have been proven to be efficient tools to model qualitative and quantitative hydrological 

variables and deal with non-linear features in streamflow. In recent years, the booming development of deep learning 

technology has brought many new approaches, such as recurrent neural networks (RNNs) (Elman, 1990), one of the most 

popular neural networks in the deep learning field. RNNs can preserve and remember the short-past and long-past information 50 

and thus are preferred for a complex and highly non-linear timing problem. Long Short-Term Memory (LSTM) (Hochreiter 

and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) are two different versions of RNNs. LSTM and 

GRU networks have been successfully applied in many fields (Greff et al., 2017; Zhang et al., 2018; Gao et al., 2020; Jung et 

al., 2020 ; Shahid et al., 2020; Ayzel and Heistermann, 2021), and they They have been are demonstrated to generate 

comparable performances, , Bbut GRU has a more straightforward structure and a higher operation speed than LSTM. 55 

Although LSTM and GRU networks have been successfully applied in many fields (Greff et al., 2017; Zhang et al., 2018; Gao 

et al., 2020; Jung et al., 2020), few applications Recently, many applications that assessed them together are also found in the 

hydrological field (Gao et al., 2020;. Muhammad et al., 2020)that assessed them together have been found in the hydrological 

field. 

While a considerable research effort has been made to evaluate and improve the qua lity of streamflow forecasts (Gibbs et al., 60 

2018; Nanda et al., 2019; Sharma et al., 2019; Van Osnabrugge et al., 2019; Feng et al., 2020; Pechlivanidis et al., 2020), how 

forecasts impact decision-making in the real-time reservoir operations has also gradually gained researchers’ attention 

(Goddard et al., 2010; Shamir, 2017; Anghileri et al., 2019; Alexander et al., 2020; Hadi et al., 2020), e.g., do high-quality 

forecasts mean improved decisionNevertheless, while a considerable research effort has been made to evaluate and improve 



3 

the quality of streamflow forecasts (Gibbs et al., 2018; Nanda et al., 2019; Sharma et al., 2019; Van Osnabrugge et al., 2019; 65 

Feng et al., 2020; Pechlivanidis et al., 2020), how forecasts impact decision-making in the real-time reservoir operations has 

not been investigated thoroughly, e.g., do high-quality forecasts mean improved decision? Traditionally, a skillful forecast is 

vital for the reliability of the forecasts and is essential to promote the use of forecasts in real-world applications by decision 

makers. In fact, forecast value is expected to increase with forecast quality, but it may also vary based on other factors such as 

reservoir capacity and operating objectives (Anghileri et al., 2016). Some studies even have disproved the intuitive assumption 70 

that higher forecast performance always leads to better operation decisions, for example, in agricultural water management 

(Chiew et al., 2003) and water resources allocation (Turner et al., 2017). Therefore, when forecasts are used to support reservoir 

operation, they should be assessed in which conditions they can help make better decisions. Moreover, forecast uncertainty 

and error generally grow up with the increase of the forecast horizon (Maurer and Lettenmaier, 2004; Denaro et al., 2017; 

Zhao et al., 2019). A decision maker may doubt whether longer forecast lead times provide more sufficient information for a 75 

decision purpose or not. There is often a mismatch between the information needed for reservoir operations and the skillful 

lead time of the reservoir inflow forecast (Anghileri et al., 2016). It is crucial to demonstrate the applicability and effectiveness 

of the forecast horizon in a forecast-based reservoir operation system (Xu et al., 2014)It is crucial to determine an efficient 

forecast lead time that can provide appropriate inflow information for reliable reservoir release decisions for making the best 

use of forecast information. However, few studies have demonstrated the applicability and effectiveness of the forecast horizon 80 

in a forecast-based reservoir operation system (Xu et al., 2014; Anghileri et al., 2016). Overall, Tthere is a continuous need for 

in-depth study to conduct posterior evaluations of forecasts with different forecast lead times and obtain the efficient forecast 

horizon for water allocation.  

A decision maker must allocate limited water to different water use sectors considering the conflicting objectives (e.g., benefits 

and costs) and multiple uncertainties (e.g., forecast uncertainty) in a forecast-based reservoir operation system. Multi-objective 85 

programming (MOP) is a useful tool for helping decision makers facilitate decision making with multiple conflicting objectives 

(Fang et al., 2018b; Guo et al., 2020c), which can offer feasible methods for generating compromise decision alternatives. 

Some MOP approaches have been widely developed to tackle the uncertainty associated with the decision making processes, 

such as multi-objective fuzzy programming (Zimmermann, 1978; Pishvaee and Razmi, 2012; Ren et al., 2017) and multi-

objective stochastic programming (Xu et al., 2014; Xu et al., 2020; Zhang et al., 2020). These approaches generally convert 90 

the multi-objective functions into a single-objective deterministic problem through a fuzzy programming method or a 

constraint operator. They can effectively deal with the uncertainties between objectives and/or constraints by integrating the 

decision makers' aspiration levels. However, they may encounter difficulties due to the need for pre-determined individual 

preference or reasonable bounds for all objectives. In comparison, multi-objective robust decision making (MORDM) is an 

effective way to handle such difficulties (Kasprzyk et al., 2013; Yan et al., 2017). It can generate many alternative solutions 95 

(Pareto solutions) that do not require assumptions about decision makers' preferences and enhance the robustness of the 

optimization process. Besides, MORDM, by parameterizing the decision space, can avoid the curse of dimensionality in some 
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MOP approaches, and simplify computational complexity and reduce the running time (Giuliani et al., 2016; Salazar et al., 

2017).  

In summary, there are still several challenges in forecast-informed reservoir optimization. To address these challenges, the 100 

specific research questions of this study are:  

(1) Can GRU achieve the same accuracy in the streamflow forecast compared to LSTM with fewer parameters and m ore 

straightforward structures? 

(2) In which conditions can an improvement in forecast skill be translated into an improvement in reservoir operation 

optimization? 105 

(3) How do such short-term inflow forecasts with different forecast horizons be used to optimize the multi-reservoir system to 

impact operation results? 

To answer the questions mentioned above, we build an AI-based management framework, which integrates multi-step 

streamflow forecasts and multi-reservoir operation optimization. We strive to: (1) simulate inflow using LSTM, GRU, and 

LSSVM and verify their effectiveness on short-term deterministic streamflow forecasts; (2) generate stochastic inflow 110 

scenarios using BMA for refining uncertainty characterization; (3) develop the parameterized MORDM framework for a multi-

reservoir operation system and inform decision making by assessing the value, that is, the operation benefits gain or the induced 

cost of forecasts with a particular lead time. As a case study, including one recipient reservoir storing water from the continental 

diversion project and 24 supply reservoirs storing water from local rainfall, 25 reservoirs supplying water for four water plants 

in the Zhoushan Islands, China, are chosen to assess the performance of the AI-based forecast and the forecast-informed 115 

operation.  

2. Methodology  

The experimental approach followed in the study is shown in Figure 1 and described in the following sections.  

Figure 1 is here 

2.1 Machine learning (ML) methods 120 

This part gives a brief introduction to long short-term memory (LSTM), gated recurrent unit (GRU), and least square support 

vector machine (LSSVM). 

2.1.1. Long short-term memory (LSTM) 

LSTM network is one of the recurrent neural networks (RNNs) developed by Hochreiter and Schmidhuber (1997), and the 

basic structure of an LSTM cell is illustrated in Figure 2(a). It is an improved RNN aiming to solve problems such as gradients 125 

in long-term memory and backpropagation. The LSTM cell has three gates maintaining and adjusting its cell state and hidden 

state, including the forget gate, input gate, and output gate. The forget gate determines what information would be thrown 
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away from the cell state. The input gate decides which information is used to update the cell state. The output gate controls 

which information stored in the current cell state flows into the new hidden state. In Figure 2(a), the state (ct), and the hidden 

state (ht) of the LSTM cell are updated as follows (Hochreiter and Schmidhuber, 1997): 130 

Forget gate: 1( )t f t f t ff W x U h b −= + + , (1) 

Input gate: 
1( )t i t i t ii W x U h b −= + + , (2) 

Potential cell state: ( )1+  c t c tt ctanh W x Uc h b− += , (3) 

Cell state: 1t t t t tc f c i c−= + , (4) 

Output state: 1( )t o t o t oo W x U h b −= + + , (5) 

Hidden state:  t t ttah nho c= , (6) 

where ,  ,  t t tf c o  and tc  represent the forget gate, input gate, output gate, and potential cell state, respectively. ☉ denotes the 

element-wise multiplication of vectors, tanh(·) is the hyperbolic tangent; xt represents the current input vector, ht-1 denotes the 

last hidden cell state and the initial state of ht is h0= 0. σ(·) represents the logistic sigmoid function.  [ ,  , ,  ]f i o cW W W W , 

 [ ,  , ,  ]f i o cU U U U , and  [ ,  , ,  ]f i o cb b b b  represent the input weight matrix, recurrent weight matrix, and bias vectors for the 

forget, input-output, and potential cell gates, respectively. 135 

2.1.2. Gated recurrent unit (GRU) 

GRU networks were proposed as a modification of LSTM networks with a more straightforward structure (Cho et al., 2014). 

The specific structure of the GRU cell is shown in Figure 2(b). Compared with LSTM, GRU has only two control gates, 

including a reset gate and an update gate. The update gate is applied to control how much information of the previous step is 

brought into the current step, while the reset gate is used to control the degree of ignoring the information of the previous state. 140 

In this way, GRU is superior to LSTM in terms of computer modelling time and parameter updates. In Figure 2(b), the state 

(ct) and the hidden state (ht) of the GRU cell are updated as follows (Cho et al., 2014): 

Reset state: ( )1t r t r t rr W x U h b −= + + , (7) 

Update state: ( )1+t z t z t zz W x U h b −= + , (8) 

Potential cell state: ( )( )1+  c t c t tt ctanh W x U bc r h − += , (9) 

Cell state: ( ) 11t t t t tc z c z c−= − + , (10) 

Hidden state: t th c= , (11) 
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where ,,  t tr z  and tc  represent the reset, update, and potential cell state, respectively. ☉ denotes the element-wise 

multiplication of vectors, tanh(·) is the hyperbolic tangent; xt represents the input vectors, ht-1 denotes the last hidden cell state 

and the initial state of ht is h0= 0. σ(·) represents the logistic sigmoid function. [ ,  ,  ]z crW W W , [ ,  ,   ]r czU U U , and [ ,  , ]r z cb b b  145 

represent the input weight matrix, recurrent weight matrix, and bias vectors for the reset, update, and potential cell gates, 

respectively. 

Figure 2 is here 

2.1.3. Least squares support vector machine with grey wolf optimizer (GWO-LSSVM) 

LSSVM is a modified version of SVM, proposed by Suykens and Vandewalle (1999), to reduce the computational time of 150 

SVM. SVM uses the quadratic program to formulate the training process of modeling procedure, while LSSVM aims to employ 

the least-squares loss functions. The LSSVM non-linear function is expressed as  (Suykens et a l., 2002): 

( ) ( )Tf x w x b= + ,  (12) 

where ( )   is the mapping function that maps the input x into a d-dimensional feature vector, w is a weight vector, and b 

represents bias. In LSSVM, a minimum objective function is proposed to estimate ω and b (Suykens et al., 2002). 

( ) 2

1

1 1
min ,

2 2

N
T

i

i

J w e w w e
=

= +  , 
 

(13) 

that has the following constraints (Suykens et al., 2002): 155 

( )T

i i iy w x b e= + + ,  (14) 

where e is the error variable and γ is the regulative constant. The objective function can be obtained to solve the optimization 

problems in Eq. (13)(13) by introducing the Lagrange multipliers α and transferring the constraint problem into an 

unconstrained one (Suykens et al., 2002): 

( ) ( )( )2

1 1

1 1
, , ,

2 2

N N
T T

i i i i i

i i

L w b e w w e w x b e y   
= =

= + − + + −  , 
 

(15) 

By finding the partial derivative of Eq. (15)(15) with respect to w, b, αi, and ei, the following equation can be derived: 

( ) ( )( ) ( )
1 1

,  
N N

T

i i i i

i i

y x x b K x x b   
= =

= + = +  , 
 

(16) 

where ( ),  iK x x  is the kernel function. Many kernel functions such as linear, polynomial, radial basis, and sigmoidal have 160 

been proposed for LSSVM (Bemani et al., 2020). We adopt the most widely used kernel function, Radial Basis Function (RBF), 

in this study. The RBF is expressed as: 

Formatted: English (United Kingdom)
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( ) ( )2 2,  =exp 2i iK x x x x − − ,  
(17) 

where σ2 is the kernel parameter. In this study, the parameter γ and σ were optimized using grey wolf optimizer (GWO). Please 

see more details on GWO in Guo et al. (2020d). 

2.2 Bayesian model averaging (BMA) 165 

Generally, it is difficult to determine which model is the best one, leading to model uncertainty. BMA is proposed to solve the 

uncertainty of the models through averaged estimations from individual models (Liu and Merwade, 2019; Samadi et al., 2020). 

The weight for each model is based on the simulated decision probability density function, i.e., the posterior probability of the 

model kf . Suppose Q is the unknown quantity we want to predict, given a subset of model forecasts  models 

 1 2, , , Kf f f f=  ( 1,2, ,k K= k=1,2,…,K, K is the number of individual model) and the observed data D, the posterior 170 

distribution of Q can be calculated as (Hoeting et al., 1999): 

( ) ( ) ( ) ( )
1 1

= , = ,
K K

k k k k k k

i i

p Q D p f D p Q f D w p Q f D
= =

   , 
 

(18) 

where ( ),k kp Q f D  is the posterior distribution of Q given the model model forecast kf  and the observed data D, and 

( )kp f D  is the posterior probability. In this case, posterior probabilities are the weighting factor for each model, and 
1

1
K

k

k

w
=

= . 

The posterior mean (E) and variance (V) of Q are as follows (Hoeting et al., 1999): 

( )
1 1

= ,
K K

k k k k k

i i

E Q D w E p Q f D w f
= =

    =     , 
 

(19) 

2

2

1 1 1

= +
K K K

k k k k k k

i i i

V Q D w f w f w 
= = =

 
   −  

 
   , 

 
(20) 

where kw  and 
2

k  is are the posterior mean (weight) and variance of kth forecast model . of the model kf . BMA weights can 175 

be calculated using optimization methods.In this study, a log-likeli hood function is maximized to estimate the parameters 

(weight kw  and variance 
2

k ) as shown in Eq (21).  

( ) ( )( )2

1

log ,
K

t

k k k

k

l w g Q f 
=

 
=  

 
 ,  (21) 

where   is the vector of parameters  2, , 1,2,...,k kw k K = . 
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The Expectation-Maximization (EM) algorithm (Lee et a l., 2020) is used to find out the maximum likelihood with a termination 

criterion (early stopping or a maximal iteration). As the EM proceeds, the parameters of weight kw  and variance 
2

k  are 180 

updated as follows. 

( ) ( )

1

1 Iter
NT

Iter t

k k

t

w z
NT =

 
=  

 
 , 

 
(22) 

( )
( )

2

2 1

1

Iter

Iter

Iter

NT
t t t

k k

t
k NT

t

k

t

z Y f

z

 =

=

 −

=



, 

 

(23) 

( )

( )

( )
( )

( )

1

1

2

2

1

,

,

Iter

Iter

Iter

t

k k
t

k K
t

k k

k

g Q f
z

g Q f





−

−

=

=


, 

 

(24) 

( )
( ) ( ) ( )

( )( )2

1 1

log ,
Iter

NT K
Iter Iter t

k k k

t k

l w g Q f 
= =

 
=  

 
  , 

 
(25) 

where Iter is the number of iterations. NT is the length of calibration periods. 
tY  and 

t

kf  are the observed and forecast 

streamflow at tth time step, respectively (m3/s), 
( )Iter

t

kz  is the latent variable for the kth model at tth time in the Iter iteration. Then  

 we use the Monte Carlo simulation method to generate BMA ensemble forecasts. Assume M is the number of Monte Carlo 

simulation and we set M as 1000 in this study. The procedure is described as bellows (Zhou et.al., 2020). 185 

a) Set the initial cumulative weight 
*

0 0w =  and calculate cumulative weight 
* *

1i i iw w w−= +  for i=1,2,…,K. Create a random 

variable u between 0 and 1. If 
* *

1 1i iw u w− −  , the ith model forecast would be used as the target forecast. 

b) Generate a realization of the observation yt using the PDF ( )2,t

k ktg fy  . 

c) Repeat steps (a) & (b) for M times. Furthermore, 90% confidence intervals between the 5% and 95% quantities are employed 

to reveal the uncertainty of BMA ensemble forecasts. 190 

 In this study, the Expectation-Maximization (EM) is used to identify the BMA parameters (weight kw  and variance 
2

k ) and 

then to estimate the release interval (Lee et al., 2020). Details of BMA can also be found in Hoeting et al. (1999). 
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2.3 Forecast performance measures 

Three performance indicators were are applied to assess the deterministic forecast performance of the three data -process 

models. They were are Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), root mean square errors (RMSE) 195 

(Karunanithi et al., 1994), and mean absolute error (MAE) (Legates and McCabe Jr., 1999). They are expressed as below. : 

( )

( )

2

, ,

1

2

,

1

1

T

m t o t

t

T

o t o

t

Q Q

NSE

Q Q

=

=

−

= −

−




, 

 

(2621) 

( )
2

, ,

1

1 T

m t o t

t

RMSE Q Q
T =

= − , 
 

(2722) 

, ,

1

1 T

m t o t

t

MAE Q Q
T =

= − , 
 

(2823) 

where T is the number of samples; , ,m tQ  is the forecasted reservoir inflow (m3/s); ), ,o tQ  is the observed inflow (m3/s), and 

oQ  is the average of the observed inflow (m3/s). The NSE can be used to evaluate the stability of the forecasted value. In 

contrast, RMSE and MAE are used to characterize the overall forecast accuracy. NSE value is (−∞, 1], while MAE and RMSE 

values are (0, +∞). Generally, models with larger values of NSE or smaller values of RMSE and MAE provide better 200 

forecasting accuracy. 

In addition, two performance indicators were are used to evaluate the performance of ensemble forecast models, i.e., the 

containing ratio (CR), and average deviation amplitude (D), were adopted for assessing the goodness of the prediction bounds 

(Xiong et al., 2009). 

, , ,

1

ˆ ˆ1    if  1
100%   

0   else

T
l t o t u t

t t

t

Q Q Q
CR N N

T =

  
=  = 


 , 

 

(2924) 

( ), , ,

1

1 1 ˆ ˆ
2

T

l t u t o t

t

D Q Q Q
T =

= + − , 
 

(3025) 

where ,
ˆ

l tQ  and ,
ˆ

u tQ  represent the lower and upper prediction bounds of streamflow (m3/s), respectively. Clearly, models with 205 

higher CR values but lower D values would produce better performance. 

2.4 Parameterized multi-objective robust decision making (MORDM) 

This study proposes a parameterized multi-objective robust decision-making approach to design operating policies for 

the multi-objective reservoir operations by combing direct policy search (DPS) and multi-objective robust decision making 

(MORDM). In the parameterized MORDM, instead of using the volumes of water to be allocated as the decision variables, we 210 

prescribe decisions approximated as non-linear functions conditioned on system state variables (e.g., fore-bay water level 
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observed or predicted inflows, and precipitation) (Giuliani et al., 2016; Quinn et al., 2017b; Salazar et al., 2017). The non-

linear functions can be realized by the DPS approach. DPS is based on the parameterization of the operating policy p  and 

the exploration of the parameter space Θ to find a parameterized policy that optimizes the expected function, i.e.,Multi-

objective robust decision making (MORDM) provides a mechanism for stress-testing operational alternatives under 215 

uncertainty. We identify and evaluate different operational transfer strategies for water allocation in the Zhoushan Islands 

using the MORDM method. The main steps of the MORDM framework are (Hadjimichael et al., 2020): (1) problem 

formulation, including the possible actions (i.e., decision variables) and performance measures; (2) generating alternative 

management actions using multi-objective evolutionary algorithms (MOEAs); (3) perform an uncertainty analysis and identify 

robust solutions. Problem formulation is a critical step in the MORDM framework (Zeff et al., 2014). To reinforce reservoir 220 

operation under uncertain forecasts, the objectives are instead evaluated over stochastic inflows. The uncertainties are then 

mitigated using a robust approach (Giuliani and Castelletti, 2016; Guo et al., 2020b), e.g., the principle of insufficient reason, 

minimax, and minimax regret approaches.  

In general, the decision variables in the multi-reservoir optimization problem are the volumes of water to be allocated each 

day. Open-loop strategies prefer each decision in a time series as an independent decision. In contrast, closed-loop control 225 

strategies prescribe decisions conditioned on system state variables (Quinn et a l., 2017a). We use the direct policy search 

(DPS), where the rules for operational strategies are approximated as non-linear functions that vary with specific parameters 

and system states to derive closed-loop control strategies (Giuliani et al., 2016; Quinn et al., 2017b; Salazar et al., 2017). DPS 

is based on the parameterization of the operating policy p and the exploration of the parameter space Θ to find a 

parameterized policy that optimizes the expected long-term cost, i.e., 230 

( )1 2=arg min ,  , , . . M pp
p J J J s t


   ,  (3126) 

where 1 2,  , , MJ J J J  isare the objective functions, M is the number of objectives. p


 is the corresponding optimal policy  

with parameters  
. Different DPS approaches have been proposed (Deisenroth et al., 2013)., where two nonlinear 

approximating networks, namely artificial neural networks (ANNs) and radial basis functions (RBFs) have become widely 

adopted as universal approximators in many applications (Deisenroth et al., 2013). In particular, we parameterize the operating 

policy as RBFs, because they have been demonstrated to be effective in solving multi-objective water resources management 235 

problems (Giuliani et al., 2014; 2015)In this study, we use Radial Basis Functions (RBFs) to parameterize the policy and the 

kth decision variable in the vector ut (with  1,  ,k K=  ) is defined as: 

, ,

1

( )
N

k

t i k i k t

i

u  
=

=  , 
 

(3227) 
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where N is the number of RBFs ( )  , t  is ith the policy inputs including exogenous information (e.g., fore-bay water level 

observed or predicted inflows and precipitation) and ,i k  is the weight of the ith RBF, , ,

1

1 0
N

i k i k

i

 
=

=  . The single RBF 

is defined as follows: 240 

,

2

,

, 2
1

( )
( )= exp

j i

M
t j j i

i k t

j

c

b


=

   −   −
 
 

 , 

 

(3328) 

where M denotes the number of policy inputs t  and ci, bi are the M-dimensional center and radius vectors of the ith RBF, 

respectively. The centers of the RBF must lie within the bounded input space (Yang et al., 2017). The parameter vector θ is 

defined as , , , , , ,= , ,i j k i j k i j kc b     with the number of   is ( )= 2 1n N K M    + . In general, when DPS problems involve 

multiple objectives, they can be coupled with truly multiobjective optimization methods, such as MOEAs, which allow an 

approximation of the Pareto front in a single run of the algorithm .  245 

In our study, the parameterized MORDM approach will be coupled with a rolling horizon scheme over one year period to 

solve the multi-objective reservoir operation problem. Given the lead time of 7 days (forecast horizon is equal to operation 

horizon) as an example, it is operated following two steps: the optimization model is first operated daily over a 7-day horizon 

using the parameterized MORDM; after implementing current water allocation decisions, the status, inflow, and other 

information of reservoirs update as time evolves, and then the remainder is subsequently operated. The two steps are repeated 250 

until the process (one year period) is completed. In each operating horizon, the main steps of the parameterized MORDM are: 

(1) problem formulation, including the possible actions (i.e., RBF inputs and policies), performance measures, and constraints; 

(2) generate alternative RBF policies subjecting to all the constraints and the objectives are evaluated over stochastic inflows 

(i.e., BMA ensemble forecasts); (3) identify solutions with a robust rule (e.g., the principle of insufficient reason, minimax, 

and minimax regret) using multi-objective evolutionary algorithms (MOEAs) (Giuliani and Castelletti, 2016; Guo et al., 2020b). 255 

 

The parameterized MORDM approach is then coupled with a rolling horizon scheme to solve the short-term reservoir operation 

problem. Given the lead time of 7 days as an example, it is operated following two steps: the optimization model is first 

operated daily over a 7-day horizon using the parameterized MORDM; after implementing current water allocation decisions, 

the status, inflow, and other information of reservoirs update as time evolves, and then the remainder is subsequently operated. 260 

The two steps are repeated until the process is completed. 
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3. Case study  

3.1 Study area and data 

The Zhoushan Islands are located in the northeast of Zhejiang Province, China, with a total area of 22,000 km2 and 1,390 

islands (Figure 3). The climate is governed by monsoon-influenced subtropical marine weather systems, and the annual mean 265 

temperature and precipitation are 17 °C and 1,300 mm, respectively. There are no large rivers in the islands, and the insufficient 

freshwater resources severely limit the development of industry and population in Zhoushan. Recently, a continental diversion 

project transferring water from Ningbo City to Zhoushan is treated as an effective solution to partially overcome the water 

scarcity problem. The transferred water is stored in Huangjinwan Reservoir and then operated together with the limited 

freshwater resources in the remaining 24 reservoirs to supply water to four water plants, i.e., Daobei, Hongqiao, Lincheng, and 270 

Pingyangpu. Data for this study includes historical inflow and state of reservoirs, water demand of water plants, and climate 

forcing data over 2002-2008. The climate data, including daily precipitation and evaporation, are observed at one 

meteorological station and three rainfall stations. The characteristics of the reservoirs are listed in Table 1. 

Figure 3 is here 

Table 1 is here 275 

3.2 Problem formulation 

The main goal of the water allocation plan is to ensure sufficient water flows into the four plants in the Zhoushan Islands. This 

is realized by allocating water in Huangjinwan Reservoir and the remaining 24 reservoirs. Figure 4 shows the simplified 

schematic diagram of the operating system for the functions of water supply. According to the water pipe flow direction, the 

whole islands are divided into three districts, i.e., Daobei, Hongqiao, and Dongbu. 280 

Figure 4 is here 

Three objectives are identified to evaluate the performance of the strategies. The conflicting objectives are to minimize the 

water deficiency ratio of the Daobei Plant, minimize the water deficiency ratio of the remaining three plants (Hongqiao, 

Lincheng, and Pingyangpu), and maximize the net benefits. The three plants can feed each other and thus are considered 

together in our study. A decision-maker would consider a different suite of costs depending on whether an existing system is 285 

being managed or a completely new system is being designed. As water supply occurs in an existing system, costs considered 

in this study are the operating costs. These objective functions are given as follows: 

( ) , , ,

1

1 1 1

Min    100%
T T T

n db s db n db

t t t

t t t

f x W W W
= = =

 
= −  
 
   ,  (3429) 

( )
3 3 3

, , ,

2 , , ,

1 1 1 1 1 1

Min    100%
T T T

n th s th n th

t k t k t k

k t k t i t

f x W W W
= = = = = =

 
= −  
 
   ,  (3530) 
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( ) ( )3Min    island mainland

c c rf x M M M= + − ,  (3631) 

where f1 and f2 are the water deficiency ratio of Daobei Plant and the sum of the remaining three plants, respectively (%); f3 is 

the net operating costs (RMB); ,s db

tW Wdb,ns,t, and ,n db

tW  Wdb,sn,t are the amount of water supply , and demand for Daobei Plant 

at tth time step, respectively (m3);  
, ,

th

n t iW ,

,

n th

t kW  , and 
, ,

th

s t iW ,

,

n th

t kW  are the amounts of water demand and water supply and demand 290 

for the kth remaining three plants (one of the remaining three plants) at tth time step, respectively (m3); Mc, island and Mc, mainland 

island

cM  and mainland

cM  are the costs for water supply from the islands and the mainland, respectively (RMB); Mr is the revenue 

(RMB). The revenue can be obtained according to:  

1) Operating costs for water supply from islands ( c,islandM island

cM , RMB) 

1 ,2 ,3

island island island island

c c c cM M M M= + +， ,  (3732) 

, ,

,1 1 1 ,

1 1 1

T I T
island island s island island r island

c t t i

t i t

M c W c Q t
= = =

=  =     ,

,1 1 1 , ,

1 1 1 1

T J I T
island island island island island

c t t i j

t j i t

M c W c Q t
= = = =

=  =    , 

 

(3833) 

, ,

,2 2 2 ,

1 1 1

T I T
island island s island island r island

c t t i

t i t

M c W c Q t
= = =

=  =     ,

, ,2 ,2 , , 2 ,

1 1 1 1 1

J T J I T

c island island s t j island i t

j t j i t

M c W c Q t
= = = = =

=  =   ， , 

 

(3934) 

,

,

,3 3 ,
1 1 max

p island islandJ T
t j jisland island

c p island
j t j

Q P
M c

Q= =


= 

，

,, 
 

(4035) 

where 1

island

cM ， , 
,2

island

cM , and 
,3

island

cM  Mc,island,1, Mc,island,2, and Mc,island,3 represent the water resource fees paid to the government, 295 

water fees paid to reservoir managers, and the electricity fees in Zhoushan City, respectively (RMB); 1

islandc , 2

islandc , and 3

islandc  

cisland,1, cisland,2, and cisland,3 denote the constant vectors, representing the unit price of water resources, the unit price of water, 

and electricity the electric unit price in Zhoushan City, respectively (RMB/m3); t  is the time step; i is the number of a 

reservoir,; j is the number of a pump station,; I denotes the number of reservoirs, and; J denotes the number of pump stations 

in Zhoushan City; 
,s island

tW  denotes the amount of water supply for plants at tth time step (m3); Qisland 
,

,

r island

t iQ  denotes the 300 

amount of water flowingamount of water supply from  through the ith reservoir at tth time step in Zhoushan City the pumping 

station (m3/s); N denotes the numbers of a pumping set; Pn 
island

jP  denotes the supporting motor power of the nth ith pump pump 
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station (Kw);, ,

,

p island

t jQ  denotes the flow through the jth pump station at tth time step in (m3/s), where , ,

, ,

1

=
N

p island r island

t j t n

n

Q Q
=

 , N is 

the number of reservoirs pumped by the jth pump station; and Qmax_n ,

max

p island

jQ ，
 denotes the upper flow flow boundary of of the 

jth pump station in Zhoushan City the nth pump (m3/s). 305 

2) Operating costs for water supply from the mainland (
mainland

cM , RMB) 

, , 1 , ,2 , ,3c mainland c mainland c mainland c mainlandM M M M= + +， ,  (4136) 

, ,

1 1 1

1 1

T T
mainland mainland s mainland mainland p mainland

c t t

t t

M c W c Q t
= =

=  =   ，
, 

 
(4242) 

, ,

2 2 2

1 1

T T
mainland mainland s mainland mainland p mainland

c t t

t t

M c W c Q t
= =

=  =   ，

, ,2 ,2 ,

1

T

c mainland mainland mainland t

t

M c x t
=

=   , 

 

(4343) 

,

,

,3 3 ,
1 1 ,max

p mainlandJ T
j t jmainland mainland

c p mainland
j t j

L Q
M c

Q= =

+
=  , 

 
(4444) 

where Mc,mainland,1 ,1

mainland

cM , Mc,mainland,2 ,2

mainland

cM , and Mc,mainland,3 ,3

mainland

cM  represent the water resources fees paid to the 

government, water fees paid to the river managers, and electricity fees in Ningbo City, respectively (RMB); cmainland,1 1

mainlandc , 

2

mainlandc cmainland,2, and 
3

mainlandc  cmainland,3 denote the constant vectors, representing the unit price of water resources, the unit price 

of mainland water, and the electricity unit price in Ningbo City, respectively (RMB/m3); Qmainland 
,s mainland

tW  denotes the amount 310 

of water transferred from Ningbo City at tth time step (m3); 𝐿 d); ,p mainland

tQ  denotes the flow pumped from Ningbo City at tth 

time step (m3/s), ,

,

p mainland

t jQ  denotes the flow through the jth pump station at tth time step, J is the number of pump stations 

transferring water from Ningbo, J=2, , , ,

1 ,2= =p mainland p mainland p mainland

t t tQ Q Q， . Lj deenotes the total length of the continental diversion 

continental diversion pipeline using jth pump station (m) ; S denotes the cross-sectional area of the continental diversion 

pipeline (m2), and 
,

max

p mainland

iQ，  denotes the upper flow boundary of the ith pump station for water transfer (m3/s).Qmax denotes the 315 

upper flow boundary (m3/s).  

3) Revenues (Mr, RMB) 

, ,

1

= +
T

s db s th

r t t

t

M b W W
=

 
 
 
 ,  (4540) 

where b denotes the unit price of water supply revenue (RMB/m3).), and Ws,t,i is the amount of water that a reservoir supplies 

to a waterworks at a given time (m3). 
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The optimization model is subject to the following constraints: 320 

(1) Water balance: ( )1, , , ,

r

t i t i t i t iV V I Q t+ = + −  , (4641) 

(2) Reservoir storage limits: , ,min , , ,maxt i t i t iV V V  , (4742) 

(3) Reservoir Rrelease capacity limits (for 

the reservoir that supply water without 

pump station): 

, , ,max

r r

t i t iQ Q , (4843) 

(4) Pumping station limits: , max,

p p

t j jQ Q , (4944) 

where t  is the time step; i is the number of a reservoir; I 
,t iI  and Q areis the inflow and release, respectively of the ith 

reservoir at tth time step (m3/s); V ,t iV  is the reservoir storage of ith reservoir at tth time step (m3); Vmin and Vmax are the lower 

and upper storage boundaries, respectively (m3); Qmax , ,max

r

t iQ is the maximum reservoir release of the ith reservoir at tth time 

step (m3/s); 
pQ  represents the water pumped by the pumping station (m3/s), and max

pQ  is the maximum pumping capacity 

(m3/s). In some cases, 
,

p

t jQ  obtained by the RBF policies can be greater than 
,max

p

jQ , and we will do the following step 325 

,'

, ,max

,

=
j

r

t nr p

t n jN

r

t n

n

Q
Q Q

Q





 to modify 
,

r

t nQ . 

3.3 Modelling settingModel development 

 3.3.1 Forecast inputs model setting 

In this study, five input combination scenarios are considered to investigate whether the use of data -driven methods with 

climate forcing is efficient in inflow forecasts or not. These scenarios are described in Table 2. Pa represents antecedent 330 

precipitation, Ea represents antecedent evaporation, Qa represents antecedent streamflow, Pf represents forecast precipitation, 

and Ef represents forecast evaporation. 

Table 2 is here 

Several strategies have been proposed in the literature to tackle a multi-step-ahead forecast task (Kline, 2004), such as the 

recursive, direct, combination of direct and recursive strategies. In this study, we chose one of the most carried out strategies, 335 

i.e., the direct strategy (Ben Taieb et al., 2012), to forecast multi-step streamflow over the short-term horizon (1-7 days). In 

this case, the streamflow is forecasted using the following equations, given S3 as an example. 
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( )

( )

( )

+1 1 1 1

2 1 1 1

7 1 1 1

1d: , ,..., , , ,..., , ,...,

2d: , ,..., , , ,..., , ,...,

...

7d:: , ,..., , , ,..., , ,...,

f

t t t t k t t t k t t k

f

t t t t k t t t k t t k

f

t t t t k t t t k t t k

Q F Q Q Q E E E P P

Q F Q Q Q E E E P P

Q F Q Q Q E E E P P

− − − − − −

+ − − − − − −

+ − − − − − −

=

=

=

 

where F() is the mapping function between inputs and outputs.  

An issue with the ML methods is that they can easily overfit training data. To avoid this issue, the entire data is divided into 340 

three subsets in RNNs: (i) a training set, which is used to compute the gradient and update the weights and biases of the 

network, (ii) a  validation set over which the errors are monitored during the training process and is used to decide when to stop 

training, (iii) a  test set, which is used to assess the expected performance in the future. In addition, dropout is a regularization 

method where input and recurrent connections to LSTM and GRU units are probabilistically excluded from activation and 

weight updates while training a network. The strategies mentioned above have the effect of reducing overfitting and improving 345 

model performance in RNNs. Both LSTM and GRU are  trained based on truncated Back Propagation Through Time (BPTT) 

(Cheng et.al., 2020), which uses a back propagation network to update the parameters in iterations. The NSE function is used 

as the loss function to calibrate the LSTM and GRU models. As for LSSVM, we avoid overfitting by minimizing the NSE 

during the calibration,  and validation, and test periods, while the test period is also used to assess the performance. . In this 

study, Jan 2002 to Dec 2006 wasis used as the training period, while the validation and tests extended from Jan 2007 – Dec 350 

2007 and Jan 2008 - Dec 2008, respectively. The NSE was calculated for each lead-time of the modelled flow for assessing 

the performance. 

The multi-reservoir operation optimization using inflow forecasts is performed over one year (April 1st, 2007- March 31st, 

2008) with 25 reservoirs. The period is selected to ensure that it does not cover the calibration datasets. For the short-term 

forecasting and reservoir operation purpose, a forecast horizon of 1-7 days ahead is chosen. In this study, we use the 355 

parametrized MORDM approach to design operating policies for the multi-objective reservoir operations under uncertainty. 

The optimized operations are both regulated based on deterministic and uncertain forecast inflow. To keep fair, we perform a 

simulation to generate deterministic and observed ensemble forecasts that each deterministic forecast and observed data are 

repeated 900 times, respectively. Using the uncertain streamflow forecasts (BMA, deterministic or observed ensemble 

forecasts) as policy inputs in the parametrized MORDM method, we can generate alternative RBF policies subjecting to all 360 

the constraints and the objectives are evaluated over stochastic inflows. For the short-term forecasting and reservoir operation 

purpose, a forecast horizon of 1-7 days ahead was chosen. The model was operated following the MORDM approach under a 

rolling horizon scheme. Under the parameterized MORDM, the decision variables in the optimization problem wereare not 

the volumes of water to be transferred from Ningbo City and the remaining 24 reservoirs each day. Instead, the decision 

variables wereare the parameters of the RBF policies. The best operation wasis obtained by conditioning the operating policies 365 

upon the following two input variables, e.g., the previousinitial fore-bay water level  reservoir levels and current inflow of 

reservoir. The multi-reservoir operation optimization using inflow forecasts was performed over one year (April 1st, 2007- 

March 31st, 2008) with 25 reservoirs. The period was selected to ensure that it did not cover the calibration datasets. The 
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optimization wasis solved at each time step (a particular forecast horizon, e.g., 1-7 days) by applying NSGA-II to search the 

space of decision variables and identify the islands' water allocation trajectories.  370 

 

3.4. Results and discussion and discussion 

3.4.1 Multi-step deterministic forecasts based on ML methods 

An issue with the ML methods is that they can easily overfit training data. To avoid this issue, the entire data is divided into 

three subsets in RNNs: (i) a training set, which is used to compute the gradient and update the weights and biases of the 375 

network, (ii) a  validation set over which the errors are monitored during the training process and is used to decide when to stop 

training, (iii) a  test set, which is used to assess the expected performance in the future. In addition, dropout is a regularization 

method where input and recurrent connections to LSTM and GRU units are probabilistically excluded from activation and 

weight updates while training a network. The strategies mentioned above have the effect of reducing overfitting and improving 

model performance in RNNs. As for LSSVM, we avoid overfitting by minimizing the NSE during the calibration, validation, 380 

and test periods. In this study, Jan 2002 to Dec 2006 was used as the training period, while the validation and tests extended 

from Jan 2007 – Dec 2007 and Jan 2008 - Dec 2008, respectively. The NSE was calculated for each lead-time of the modelled 

flow for assessing the performance. 

We considered the five different input scenarios described in Section 3.3. Table 3 demonstrates the forecast analysis carried 

out with the different configurations (input combination and forecast model), tabulating the NSE ranges for lead times from 1 385 

day-ahead to 7 day-ahead over all reservoirs during the calibration, validation, and test periods. It can be seen that S1 using 

only the flow variables and S2 using only the antecedent climate variables are inferior to the other scenarios. The performance 

is generally improved when the flow variables are used in combination with the antecedent precipitation and evaporation under 

S3. However, in this case, the antecedent variables succeed to forecast only at 1-day ahead. The forecast performance decreases 

significantly as the forecast horizon increases from 1-day to7-day ahead. Herein, we suppose that the following precipitation 390 

and evaporation have been forecasted. It is clear that S4 and S5, with the forecast climate variables, make significant increments 

in streamflow forecasting. The NSE can remain relatively stable at different horizons. There are no apparent differences 

between the three forecast models during the calibration period. However, the two RNNs perform better than GWO-LSSVM 

during the validation period, while GWO-LSSVM outperforms during the test periods. Besides, given that GRU has more 

superficial structures and fewer parameters, and requires less time for model training, it may be the preferred method for short-395 

term streamflow forecast compared with LSTM. Same results have been obtained in Gao et al. (2020) when they used LSTM 

and GRU to model short-term rainfall-runoff relationships. 

Table 3 is here 

We aim to compare how the forecasted climate variables impact the streamflow forecast and reservoir operation performance. 

For the sake of brevity, S3 and S5 are compared in detail in the following section. Recall that S3 uses flow variables, antecedent 400 
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precipitation, and evaporation as inputs, while S5 uses flow variables as well as the antecedent and forecast climate forcing. 

After assessing model validity, the next step is to compare the performance across the 24 reservoirs. The coefficient of variation 

(COV), defined as the ratio of the standard deviation of the inflow time series, is used to capture the varying characteristics of 

the incoming flow into the reservoir. From Figure 5, it reveals a strong negative relationship between COV and forecast 

performance under S3 at all lead times. The forecast performance decreases as the COV increases for all forecast models. This 405 

indicates that the more variation the flow has, the harder it is for data-driven methods to learn the flow pattern when there 

exists not enough input information. However, the negative signal under S5 (Figure 6) with forecasted climate variables 

(precipitation and evaporation in this study) is not that strong as it that under S3, which indicates again that the forecast climate 

variables can help AI-based models mapping functions between inputs and outputs. The improvements are more significant 

for the two RNN models, i.e., LSTM and GRU. This result demonstrates that the efficiency of deep-learning RNN methods is 410 

better and more accurate than LSSVM. 

Figure 5 is here 

Figure 6 is here 

3.4.2 Multi-step stochastic forecasts based on BMA method 

Based on the forecast results of three data-driven models in the calibration period, the BMA method determines weights for 415 

LSTM, GRU, and GWO-LSSVM models. The weights reflecting the performance of the ensemble models during the 

calibration period are shown only for lead times of 1 and 7 days for the sake of brevity under S3 and S5 in Figure 7. The model 

weights reflect the comparative importance of all the competitive modelling predictions on one level. Figure 7 indicates that it 

is difficult to conclude which individual model provides the best prediction. For example, GRU outperforms the remaining 

two models for Hongqiao Reservoir, while LSTM performs best for Cenggang Reservoir in Figure 7(a1). Similar results can 420 

be obtained from Figure 7(b1). Comparatively, Figure 7(a2) shows that LSTM and GWO-LSSVM influence the BMA model 

more than GRU. This higher weight is assigned because the forecasts are more similar to observations than those less similar 

to observations using the BMA posterior processor. However, observed from Figure 7(b2), the prediction accuracy of GWO-

LSSVM is seriously affected, and much less than that of GRU. It is consistent with the results obtained in Figure 6, indicating 

that RNNs outperform GWO-LSSVM when there exists more input information under S5. Overall, model uncertainty always 425 

exists whether forecast climate variables are involved or not, and it is necessary to analyze and evaluate the model uncertainty 

involved using BMA. 

Figure 7 is here 

To access model validity, the evaluation of the modelled streamflow is performed over calibration, validation, and test periods 

using NSE, RMSE, and MAE metrics. Table 4 shows the performance metric ranges for all 24 reservoirs of BMA methods 430 

under S3 and S5. Apparently, both the replicative (forecast performance in calibration sets) and predictive (forecast  

performance in validation and test sets) validity under S5 for forecast horizons are significantly better than those under S3. For 
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example, Figure 8 demonstrates the improvement rates in terms of NSE, RMSE, and MAE of the BMA model compared with 

the three individual models. BMA produces the maximum NSE, minimum RMSE, and minimum MAE during the calibration 

period for both two scenarios, indicating that BMA has the best goodness-of-fit. This is because the weights are derived 435 

according to the individual forecast model in this period. With respect to validation and test periods, the BMA method shows 

better forecasts than the three comparative models except for the GRU modelling validation datasets under S5. Thus, it is 

shown that the BMA model well matches the actual streamflow. 

Table 4 is here 

Figure 8 is here 440 

The model validity is then assessed using (i) hydrographs and (ii) scatter plots of observed and modelled streamflow, as shown 

in Figure 9 and Figure 10. Herein, we only show three reservoirs, i.e., Hongqiao (the largest reservoir), Goushan (the medium 

reservoir), and Nanao (the smallest reservoir), for the sake of brevity. From Figure 9, it is clearly shown that the modelled 

streamflow deviate gradually from the 1:1 line and the forecast skill decreases with the increase of lead time under S3 as 

expected, which is consistent with the statistical results shown in Table 4. In contrast, the scatters of the observed and modelled 445 

streamflow implemented with forecasted climate variables fit well across the 1:1 line at different lead times under S5, observed 

from Figure 10. The performance for Hongqiao Reservoir is affected explicitly by an extreme peak event that hit the reservoir 

during the calibration period in Figure 9, which does not occur over the training set of data. This causes heavy underestimations 

in the streamflow forecast. A more extended calibration period is required to improve the performance over such extreme peak 

flow events. However, the BMA method performs well on this extreme peak flow in Hongqiao Reservoir at all lead times, 450 

when the forecast climate forcing is applied as inputs. This is because the reservoirs in the Zhoushan Islands have relatively 

small drainage areas, and thus the flow concentrates in a very short time after an extreme rain event. 

Figure 9 is here 

Figure 10 is here 

We use the Monte Carlo simulation method to generate BMA ensemble forecasts. The number of simulations is set as 1000 in 455 

this study. To demonstrate the optimization results of multi-reservoir operations based on the data -driven forecast models 

under uncertainty, 90% confidence intervals associated with the deterministic predictions at BMA are further calculated. The 

confidence interval provides more alternatives that are possibly useful to a tradeoff between multiple objectives, such as flood 

control, hydropower generation, and improved navigation (Zhang et al., 2015). The interval performance metrics of Cr and D 

described in Section 2.3 are adopted to assess the performance of uncertain forecasts. Table 5 displays the averaged metrics 460 

for all the 24 reservoirs under S3 and S5. Both indicators under S5 are superior to those under S3. The 90% streamflow interval 

between the fifth and ninety-fifth percentiles of some representative reservoirs, e.g., Hongqiao, Goushan, and Nanao reservoirs, 

are presented in Figure 11 and Figure 12. The results are consistent with those in Figure 9 and Figure 10. It is observed from 

Figure 11 that the streamflow interval fails to capture the extreme peak flow for Hongqiao Reservoir under S3. The BMA 

performs gradually worse with increasing lead times for the three reservoirs. However, in Figure 12, the red dots represent the 465 
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observed streamflow, most of which are covered by the 90% interval at both 1-day ahead and 7-days ahead. Therefore, the 

forecast climate variables will be conducive to reduce the predictive uncertainty of real-time streamflow forecasting. 

Table 5 is here 

Figure 11 is here 

Figure 12 is here 470 

3.4.3 Multi-objective reservoir operation performance evaluation optimization 

4.3.1 Multi-objective reservoir operation optimization results 

For the short-term forecasting and reservoir operation purpose, a forecast horizon of 1-7 days ahead was chosen. The model 

was operated following the MORDM approach under a rolling horizon scheme. Under parameterized MORDM, the decision 

variables in the optimization problem were not the volumes of water to be transferred from Ningbo City and the remaining 24 475 

reservoirs each day. Instead, the decision variables were the parameters of the RBF policies. The best operation was obtained 

by conditioning the operating policies upon the following two input variables, e.g., the previous reservoir levels and current 

inflow. The multi-reservoir operation optimization using inflow forecasts was performed over one year (April 1st, 2007- March 

31st, 2008) with 25 reservoirs. The period was selected to ensure that it did not cover the calibration datasets. The optimization 

was solved at each time step (a particular forecast horizon, e.g., 1-7 days) by applying NSGA-II to search the space of decision 480 

variables and identify the islands' water allocation trajectories.  

The optimized operations were are both regulated based on deterministic and uncertain forecast inflow. To demonstrate the 

relationship between the conflicting objectives, a set of Pareto solutions over a 7-day horizon at different periods under S5 is 

given as an example, as shown in Figure 13. The optimization using the Pareto concept allows the operator to choose an 

appropriate solution depending on the prevailing circumstances and analyzing the tradeoff between the conflicting objectives. 485 

In each of the plots, the water deficiency ratio of Daobei Plant and the sum of the remaining plants are plotted on the x and y 

axes, respectively. The colour of the markers indicates the net operating costs with colour ranging from red, representing low 

value, to blue, representing high value. Thus, an ideal solution would should be located at the left corner (low value of the 

water deficiency ratio of Daobei Plant and the sum of the remaining three plants) of the plot and represented by a red (low net 

operating costs) marker. The black arrows have been added in the figure to guide the reader in understanding the directions of 490 

optimization. Generally, the water deficiency ratio of Daobei Plant has an inverse relationship with that of the sum of the 

remaining plants (inverse relationship, i.e., the former decrease with the increase of the latter). In contrast, the water deficiency 

ratio of the remaining three plants has a positive relationship with the net costs (positive relationship, i.e., the former increase 

with the increase of the latter).  

It is interesting to compare the performances associated with deterministic and uncertain forecasts. Uncertain conditions 495 

(Figure 13(b)) show a much broader scale on the three objectives than deterministic conditions (Figure 13(a)). For instance, 

uncertain forecasts produce the water deficiency ratio of Daobei Plant, ranging from -40% to 80%, during 2007 August 12th - 
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2007 August 18st, while deterministic forecasts have a smaller range with a value from 30% to 100%. The water supply deficits 

under deterministic forecasts are due to the high demand happening in August, which can be mitigated when informing the 

reservoir operations with uncertain forecasts. In this way, we expect that if the ensemble streamflow forecasts are used in a 500 

stochastic optimization scheme, the reservoir operation could be further enhanced because the optimization considers possible 

uncertainty provided by uncertain forecasts and thus takes advantage of correcting the influences of uncertainty. 

Figure 13 is here 

(1) Performance evaluation with different forecast skills 

In general, forecasts are always useful for reservoir operations. The annual revenues, costs, and water supply reliability, 505 

wereare chosen as metrics to compare the performance of the operating policies derived from different configurations. 

Reliability is a measure of how well the water demand for users is met in a water transfer system. In this case, reliability is 

expressed as a percentage. The system performances are averaged over a set of solutions. The annual values during the period 

from 2007 April 1st to 2008 March 31st at various configurations are provided in Table 6 with two decision horizons of 1 and 

7 days. The multi-reservoir operation based on observation is designed as a benchmark. It can be seen from Table 6 that the 510 

performance indicators from the 1-day forecast horizon are better than those from 7-day using deterministic inflows (in the 

case of observed and forecasted inflows). Two scenarios (S3 and S5) with the 1-day forecast horizon show similar operating 

performance, which is consistent with the performance of the inflow forecast listed in Table 3. Recall again that S3 uses flow 

variables, antecedent precipitation, and evaporation as forecast inputs, while S5 uses flow variables as well as the antecedent 

and forecast climate forcing. In contrast to S3, the operating results of S5 with a 7-day forecast horizon are closest to that of 515 

the observation. This is due to the improved inflow forecast performance under S5. However, it is depicted in Table 6 that the 

indicator of water supply reliability and net costs under S5 are inferior to those under S3. As for the stochastic forecasts, S5 

outperforms S3 with lower net costs and approximate water supply reliability. In this case, the improved performance may not 

lead to improved decisions in deterministic forecasts. 

Table 6 is here 520 

The results obtained in Table 6 show that system performance derived from the observed inflows is inferior to that from other 

configurations. This finding cannot confirm the effectiveness of inflow forecasts. The reason for that is the forecast inflows 

may overestimate the actual inflows. For example, the mean value (0.14 m 3/s) of the observed inflow of Hongqiao Reservoir 

is lower than that of the forecasted inflow (0.17 m3/s). In this case, the good performance presented in Table 6 is 'fake'. That 

is to say, although decision-makers can follow the strategies determined by the forecasted inflows, the system performance 525 

should be assessed using the actual inflows (i.e., observed inflows). We further re-evaluate the operating strategies optimized 

from different configurations mentioned above using the observed inflows. The performance metrics wereare listed in Table 

7. It is expected that the results can reveal the maximum efficiency and reliability that could be achieved based on accurate 

information. In general, the indicator values under deterministic forecasts in Table 7 are reduced compared with those in Table 

6. The reason is that reservoir operating decisions in Table 6 are optimized based on a higher inflow series.  530 
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Table 7 is here 

In terms of both deterministic and uncertain forecasts, net operating costs of S5 are improved significantly compared with that 

of S3, while water supply reliability is increased slightly. This result may suggest that improved forecasts are more skillful in 

making decisions when using forecast climate variables as inputs. We highlight that this result we obtained is specific for the 

Zhoushan Islands. Indeed, many studies show that higher forecast performance did not lead to better operation decisions 535 

(Chiew et al., 2003; Goddard et al., 2010; Turner et al., 2017). However, some researchers draw the same conclusions as us. 

For instance, Anghileri et al. (2016) declared that inflow forecasts with accurate weather components would produce much 

smaller water supply deficits. Moreover, Anghileri et al.  (2019) found that preprocessed forecasts (higher performance) were 

more valuable than the raw forecasts (less performance) regarding to two operation performance metrics, i.e., mean annual 

revenues and spilled water volume.  540 

There is also an interesting finding from that the operating performance upon deterministic forecasts deteriorates, while the 

performance upon uncertain forecasts can keep relatively stable. This implies that the use of uncertain forecasts in reservoir 

operation can be more efficient and reliable than that of deterministic forecasts. The reason is that in a stochastic optimization 

scheme, the value can be further enhanced because the optimization can account for the total uncertainty provided by the 

ensemble forecasts. Similar results were obtained by Roulston and Smith (2003), who reported that the hydroelectric power 545 

production derived from the ensemble forecasts was increased compared with the deterministic forecasts. Boucher et al. (2012) 

also found that stochastic forecasts outperformed deterministic ones with the lower turbinate flow, higher generation 

production, and less spillage during a flood period. Overall, in most cases, a  noticeable improvement can be achieved through 

the use of the stochastic decision-making assistance tool.  

We then assess the performance metrics of water supply reliability over different seasons. It is noted in Figure 14 that the 550 

deterministic forecasts are less skillful than the uncertain forecast when used in spring (JFM), summer (AMJ), autumn (JAS), 

and winter (OND) with the two forecast horizons. Although the operating performance using the deterministic forecast is lower 

due to its deterministic character, the main characteristics of the relationship between forecast quality and value remain 

unchanged. That is to say, the benefits of considering the forecasts are more significant when the forecast quality is higher. It 

indicates that the optimization is capable of exploiting efficient information to improve reservoir operations. In our multi-555 

objective optimization modelling, we would like to make the best use of water resources and maximize water supply. However, 

the operating performance in autumn shows a lower value with respect to that in other seasons. This is because the water 

demand in autumn is usually much higher. The shortage does not imply the non-effectiveness of our proposed forecast-based 

management framework but is due to the limitation of available water and pies capacity. 

Figure 14 is here 560 

(2) Performance evaluation with different forecast horizons 

The impact of different forecast horizons on the operation performance is further evaluated under different configurations, as 

shown in Figure 15. It is noted that the operating policy optimized from uncertain forecast inflows upon S5 outperforms that 
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from S3. In terms of deterministic conditions, S5 improves the operation on the metrics of water supply reliability of Daobei 

Plant, water supply reliability of the other plants, and net costs with a variation of 2.11~13.58%, 2.74~7.38%, and -19.94~-565 

10.30%, respectively, compared with S3. As for uncertain conditions, S5 improves by 0.24~1.90%, 0.06~1.32%, and -59.45~-

176.19%, respectively. Although the increments in water supply reliability are not insignificant, S5 can secure water demand 

with much less operating costs than S3, which decision makers value most. Furthermore, uncertain forecasts produce an 

improved ratio of 31.52~65.01%, 19.98~46.60%, -116.45~-56.95% than deterministic forecasts regarding to the three metrics, 

respectively. Our results again highlight that uncertain forecasts are more valuable than deterministic forecasts when designing 570 

the forecast-informed reservoir operations. 

4.3.2 Reservoir operation performance evaluation 

In general, forecasts are always useful for reservoir operations. The annual revenues, costs, and water supply reliability, were 

chosen as metrics to compare the performance of the operating policies derived from different configurations. Reliability is a 

measure of how well the water demand for users is met in a water transfer system. In this case, reliability is expressed as a 575 

percentage. The system performances are averaged over a set of solutions. The annual va lues during the period from 2007 

April 1st to 2008 March 31st at various configurations are provided in Table 6 with two decision horizons of 1 and 7 days. The 

multi-reservoir operation based on observation is designed as a benchmark. It can be seen from Table 6 that the performance 

indicators from the 1-day forecast horizon are better than those from 7-day using deterministic inflows (in the case of observed 

and forecasted inflows). Two scenarios (S3 and S5) with the 1-day forecast horizon show similar operating performance, which 580 

is consistent with the performance of the inflow forecast listed in Table 3. Recall again that S3 uses flow variables, antecedent 

precipitation, and evaporation as forecast inputs, while S5 uses flow variables as well as the antecedent and forecast climate 

forcing. In contrast to S3, the operating results of S5 with a 7-day forecast horizon are closest to that of the observation. This 

is due to the improved inflow forecast performance under S5. However, it is depicted in Table 6 that the indicator of water 

supply reliability and net costs under S5 are inferior to those under S3. As for the stochastic forecasts, S5 outperforms S3 with 585 

lower net costs and approximate water supply reliability. In this case, the improved performance may not lead to improved 

decisions in deterministic forecasts.  

Table 6 is here 

The results obtained in Table 6 show that system performance derived from the observed inflows is inferior to that from other 

configurations. This finding cannot confirm the effectiveness of inflow forecasts. The reason for that is the forecast inflows 590 

may overestimate the actual inflows. For example, the mean value (0.14 m 3/s) of the observed inflow of Hongqiao Reservoir 

is lower than that of the forecasted inflow (0.17 m3/s). In this case, the good performance presented in Table 6 is 'fake'. That 

is to say, although decision-makers can follow the strategies determined by the forecasted inflows, the system performance 

should be assessed using the actual inflows (i.e., observed inflows). We further re-evaluated the operating strategies optimized 

from different configurations mentioned above using the observed inflows. The performance metrics were listed in Table 7. It 595 

is expected that the results can reveal the maximum efficiency and reliability that could be achieved based on accurate 
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information. In general, the indicator values under deterministic forecasts in Table 7 are reduced compared with those in Table 

6. The reason is that reservoir operating decisions in Table 6 are optimized based on a higher inflow series.  

Table 7 is here 

In terms of both deterministic and uncertain forecasts, net operating costs of S5 are improved significantly compared with that 600 

of S3, while water supply reliability is increased slightly. This result may suggest that improved forecasts are more skillful in 

making decisions when using forecast climate variables as inputs. We highlight that this result we obtained is specific for the 

Zhoushan Islands. Indeed, many studies show that higher forecast performance did not lead to better operation decisions 

(Chiew et al., 2003; Goddard et al., 2010; Turner et al., 2017). However, some researchers draw the same conclusions as us. 

For instance, Anghileri et al. (2016) declared that inflow forecasts with accurate weather components would produce much 605 

smaller water supply deficits. Moreover, Anghileri et al.  (2019) found that preprocessed forecasts (higher performance) were 

more valuable than the raw forecasts (less performance) regarding two operation performance metrics, i.e., mean annual 

revenues and spilled water volume.  

There is also an interesting finding from that the operating performance upon deterministic forecasts deteriorates, while the 

performance upon uncertain forecasts can keep relatively stable. This implies that the use of uncertain forecasts in reservoir 610 

operation can be more efficient and reliable than that of deterministic forecasts. The reason is that in a stochastic optimization 

scheme, the value could be further enhanced because the optimization could account for the total uncertainty provided by the 

ensemble forecasts. Similar results were obtained by Roulston and Smith (2003), who reported that the hydroelectric power 

production derived from the ensemble forecasts was increased compared with the deterministic forecasts. Boucher et al. (2012) 

also found that stochastic forecasts outperformed deterministic ones with the lower turbinate flow, higher generation 615 

production, and less spillage during a flood period. Overall, in most cases, a noticeable improvement can be achieved through 

the use of the stochastic decision-making assistance tool.  

We then assessed the performance metrics of water supply reliability over different seasons. It is noted in Figure 14 that the 

deterministic forecasts are less skillful than the uncertain forecast when used in spring (JFM), summer (AMJ), autumn (JAS), 

and winter (OND) with the two forecast horizons. Although the operating performance using the deterministic forecast is lower 620 

due to its deterministic character, the main characteristics of the relationship between forecast quality and value remain 

unchanged. That is to say, the benefits of considering the forecasts are more significant when the forecast quality is higher. It 

indicates that the optimization is capable of exploiting efficient information to improve reservoir operations. In our multi-

objective optimization modelling, we would like to make the best use of water resources and maximize water supply. However, 

the operating performance in autumn shows a lower value with respect to that in other seasons. This is because the water 625 

demand in autumn is usually much higher. The shortage does not imply the non-effectiveness of our proposed forecast-based 

management framework but is due to the limitation of available water and pies capacity. 

Figure 14 is here 
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4.3.3 Reservoir operation performance with different forecast horizons 

The impact of different forecast horizons on the operation performance was further evaluated under dif ferent configurations, 630 

as shown in Figure 15. It is noted that the operating policy optimized from uncertain forecast inflows upon S5 outperforms 

that from S3. In terms of deterministic conditions, S5 improves the operation on the metrics of water supply reliability of 

Daobei Plant, water supply reliability of the other plants, and net costs with a variation of 2.11~13.58%, 2.74~7.38%, and -

19.94~-10.30%, respectively, compared with S3. As for uncertain conditions, S5 improves by 0.24~1.90%, 0.06~1.32%, and 

-59.45~-176.19%, respectively. Although the increments in water supply reliability are not insignificant, S5 can secure water 635 

demand with much less operating costs than S3, which decision makers value most. Furthermore, uncertain forecasts produce 

an improved ratio of 31.52~65.01%, 19.98~46.60%, -116.45~-56.95% than deterministic forecasts regarding the three metrics, 

respectively. Our results again highlight that uncertain forecasts are more valuable than deterministic forecasts when designing 

the forecast-informed reservoir operations. 

Figure 15 is here 640 

With an increase in forecast horizon from 1 to 7 days, the performance in water supply reliability and net operating costs upon 

deterministic conditions are generally reduced. This suggests that considering a longer forecast horizon (up to 7 days) does not 

necessarily improve reservoir operation without future forecast climate variables as inputs (low forecast quality). The reduced 

performance in water supply reliability might be due to the fact that the optimization explores strategies to secure the whole 

water demand in a longer-horizon, which results in reliability sacrifice on some particular days. This result is similar to the 645 

finding proposed in Xu et al. (2014) who argued that the use of longer-horizon (an efficient forecast horizon longer than one 

day) inflows cannot improve hydropower performance when they set the forecast horizon as one to five days. Nevertheless, 

the increasing forecast horizon may not generate improved or decreased water supply reliability in uncertain conditions. 

Approximate water supply volume can lead to similar revenues or fees paid to the government and managers (water fees and 

water resources fees). Accordingly, the growing trend in net costs is caused by the increased operating costs, mainly dominated 650 

by electricity prices, when the multi-reservoir is operated to supply the demand in a longer-horizon. In this case, the operation 

performance varies at different conditions. This demonstrates that the relationship between forecast horizon and reservoir 

operation is rather complex and depends not only on the configurations (i.e., inflow forecast quality and uncertainty) used to 

determine operating rules but also on the performance metrics used to assess operation.  

4 Limitations and future work 655 

Our work suffers from some limitations, which could be overcome in future studies. One of the limitations is that the single 

indictor iswas used to calibrate the forecast models while multiple indictors arewere used in assessing the performance of the 

models. It should be a more fairfairer practice by using multi-criteria to do both the calibration and assessment and can be 

interesting asfjor a future work. One of the Another limitations is that we used the average observed price to calculate the 
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revenues and operating costs. In an operational and deregulated market setting, the prices may fluctuate significantly (Anghileri 660 

et al., 2019). For instance, forecasting electricity prices is likely to improve significantly short-term operation efficiency. The 

combined effects of price and streamflow forecasts on water resource allocation are worth investigating in future studies. Our 

study also suffers Another limitation isfrom the drawback that instead of the short-term weather forecasts from the Global 

Forecast System (GFS) or European Centre for Medium‐Range Weather Forecasts (ECMWF) model (Choong and El-Shafie, 

2015; Schwanenberg et al., 2015; Peng et al., 2018; Ahmad and Hossain, 2019; Liu et al., 2019), we used the observed weather 665 

conditions as alternatives, which may result in an overestimation in forecast quality. However, forecast uncertainty and error 

that generally grow up with lead time. The usefulness of the forecast information can be reduced with the increase of the 

forecast horizon, and thus the operating performance. This may influence the finding we highlight above that the relationship 

between forecast horizon and reservoir operation is not constant and specific. It would be interesting to analyze the reservoir 

operations performance when accounting for an ensemble numerical weather prediction. 670 

55. Conclusions  

In this study, we proposed an AI-based management methodology to assess forecast quality and forecast-informed reservoir 

operation performance together. The approach was tested on a water resources allocation system in the Zhoushan Islands, 

China. Specifically, the findings obtained are summarized below. 

A data-driven reservoir inflow forecasting system using ML methods (LSTM, GRU, and GWO-LSSVM) was first developed 675 

with a comprehensive calibration-validation-testing framework. The validity of the deterministic forecast was demonstrated 

by applying it over 25 reservoirs with varying climate and hydrological characteristics. Results showed that the more variation 

the streamflow has (a high COV value), the harder it was for the ML methods to learn the flow pattern when there existed not 

enough input information. The forecast skill deteriorated with increasing lead times under such scenarios. However, short-

term forecast climate forcing was efficient and scalable in forecasting the multi-reservoir inflow over the forecast horizon (1-680 

7 days). LSTM and GRU models generated comparable performance under different configurations. Given that GRU has 

simpler structures and fewer parameters and required less time for modeling, it might be the preferred method for streamflow 

forecasts than LSTM.  

Then we used BMA to generate stochastic inflow scenarios for quantifying uncertainty based on LSTM, GRU, and GWO-

LSSVM deterministic forecasts. The results demonstrated that it was difficult to conclude which individual model provided 685 

the best prediction, but the BMA did display better forecast skill in comparison to the individual ones. Including one scenario 

with antecedent conditions and one scenario with both antecedent and forecast  information, two input combination scenarios 

were compared on the uncertain forecast performance in detail. The comparison indicated that forecast climate variables would 

help reduce the predictive uncertainty of short-term streamflow forecasting.  

The forecasting scheme was further coupled with a multi-objective reservoir operation model to optimize water resources 690 

allocation. Using a MORDM approach, we identified strategies that tradeoff between water supply reliability and operating 
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costs in the Zhoushan Islands. A rolling horizon scheme was employed to obtain optimal operating policy over the horizon of 

1-7 days. The long-term assessment over a year based on deterministic and stochastic forecasts showed quite different 

performances in terms of water supply reliability and net operating costs. Our averaged annual results showed that uncertain 

forecasts were more valuable than deterministic forecasts. The operating benefits of considering the forecasts were more 695 

significant when the forecast quality was higher. Similar results could be obtained at a seasonal scale. While showing the 

unquestionable benefit of implementing forecast-based reservoir operations, our results also demonstrated that the relationship 

between forecast horizon and reservoir operation was complex and depended on the operating configurations (forecast quality 

and uncertainty) and performance measures for the Zhoushan Islands system.  

Overall, the developed AI-based management framework has demonstrated a clear advantage in quantifying the uncertainties 700 

of inflow forecasts to improve the overall system performance of water allocation systems. Such a framework can be further 

applied to other study sites with similar problems. However, the results we obtained in this study are only specific for the 

Zhoushan Islands and should be exported with care to other study sites. 
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Figure 1: Framework of the AI-based management methodology.  
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Figure 2: Structure of an (a) LSTM and (b) GRU cell. 955 
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Figure 3: Location of the Zhoushan Islands. 
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Figure 4: Schematic diagram of the Zhoushan Islands. 
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Figure 5: NSE values at lead times of 1 to 7 days plotted against the coefficient of variation (COV) for all the 24 

reservoirs during the period of (a) calibration, (b) validation, and (c) test under S3. 
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Figure 6: NSE values at lead times of 1 to 7 days plotted against the coefficient of variation (COV) for all the 24 

reservoirs during the period of (a) calibration, (b) validation, and (c) test under S5. 
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Figure 7: Weights of three individual forecast models for the BMA model for all reservoirs under (a) S3 and (b) S5. 970 
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Figure 8: Improvement rates in terms of averaged (a) NSE, (b) RMSE, and (c) MAE of the BMA model for forecasts 

as compared with the three individual models.  
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Figure 9: Forecast results of (a) Hongqiao, (b) Goushan, and (c) Nanao reservoirs under S3. 975 
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Figure 10: Forecast results of (a) Hongqiao, (b) Goushan, and (c) Nanao reservoirs under S5. 
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Figure 11: 90% streamflow interval of the BMA method under S3. 
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 980 

Figure 12: 90% streamflow interval of the BMA method under S5. 
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Figure 13: A set of Pareto solutions at different periods over a 7-day horizon under (a) deterministic and (b) uncertain 

forecasts. 

  985 
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Figure 14: Seasonal system performance of water supply reliability. 
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Figure 15: Annual system performance with different forecast horizons. 990 
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Table 1: Reservoir characteristics in the Zhoushan Islands. 

District 
Reservoir 

name 

Reservoir 

storage  

(104m3) 

Dead 

storage 

(104m3) 

Normal 

storage 

(104m3) 

Drainage 

area 

(km2) 

Mean 

flow 

(m3/s) 

Standard 

deviation 

of flow (m3/s) 

COV 

Hongqiao Hongqiao 1307 12 1015 13.4 0.15 0.77 5.08 

Chahe 254 35.08 185 8 0.11 0.49 4.34 

Hongwei 85 36 76.1 1.94 0.10 0.21 2.06 

Chengbei 123 45 111.1 4.98 0.10 0.33 3.34 

Mahuangshan 354 17.15 286.4 4.87 0.10 0.32 3.28 

Xiamen 281 42 240 4 0.10 0.29 2.92 

Cenggang 733 14.2 627 6.6 0.10 0.41 3.91 

Longtan 160 9 133.6 2.27 0.10 0.22 2.18 

Daobei Dongaonong 185 3.4 159.84 2.6 0.10 0.23 2.28 

Changmenli 205 49.49 179.5 2.3 0.10 0.22 2.17 

Tuanjie 122 30.4 106.6 2.05 0.10 0.21 2.09 

Changchunling 410 34.3 368.3 5.41 0.10 0.35 3.53 

Yaojiawan 124 31.09 105 1.46 0.10 0.22 2.23 

Jinlin 154 40.48 125.9 2.42 0.10 0.20 1.96 

BaiquanLing 204 12.56 177.4 3 0.10 0.24 2.44 

Chenao 236 59 195.2 4.13 0.10 0.29 2.99 

Dongbu Dashiao 293 49.1 254 2.8 0.10 0.23 2.37 

Pingdi 317 1 317.2 0.6 0.10 0.19 1.87 

Dongao 457.8 47.5 384 6.4 0.10 0.40 3.87 

Goushan 194 4.59 170 2.73 0.10 0.23 2.34 

Nanao 73 15.8 66.7 1.21 0.10 0.20 1.94 

Ludong 142 54 118.5 3.7 0.10 0.27 2.75 

Yingjiawan 124 31.09 105 1.46 0.10 0.31 3.17 

Shatianao 127 20.8 116.5 4.54 0.10 0.19 1.89 
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Table 2: Five input combination scenarios. 

ID Scenario Input combination 

1 S1 Qa 

2 S2 Pa, Ea 

3 S3 Qa, Pa, Ea 

4 S4 Pa, Pf, Ea, Ef 

5 S5 Qa, Pa, Pf, Ea, Ef 

1005 
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Table 3: NSE ranges ([min, max]) for all reservoirs with the different configurations during the calibration, validation, 

and test periods.  

Period 
Forecast 

horizon (d) 

LSTM GRU GWO-LSSVM 

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

Calibr-

ation 

1 [0.11, 

0.87] 

[0.57, 

0.94] 

[0.61, 

0.97] 

[0.8, 

0.96] 

[0.93, 

0.99] 

[0.18, 

0.87] 

[0.57, 

0.87] 

[0.53, 

0.98] 

[0.66, 

0.96] 

[0.89, 

0.99] 

[0.17, 

0.91] 

[0.54, 

0.86] 

[0.58, 

0.97] 

[0.87, 

0.97] 

[0.96, 

0.99] 

2 [0.05, 

0.58] 

[0.27, 

0.72] 

[0.34, 

0.93] 

[0.82, 

0.95] 

[0.91, 

0.99] 

[0.07, 

0.58] 

[0.29, 

0.66] 

[0.36, 

0.87] 

[0.78, 

0.96] 

[0.87, 

0.99] 

[0.08, 

0.58] 

[0.27, 

0.72] 

[0.31, 

0.83] 

[0.87, 

0.97] 

[0.94, 

0.97] 

3 [0.03, 

0.48] 

[0.11, 

0.55] 

[0.13, 

0.63] 

[0.75, 

0.94] 

[0.91, 

0.98] 

[0.05, 

0.51] 

[0.10, 

0.52] 

[0.14, 

0.62] 

[0.79, 

0.95] 

[0.92, 

0.98] 

[0.05, 

0.51] 

[0.13, 

0.55] 

[0.11, 

0.59] 

[0.86, 

0.94] 

[0.93, 

0.96] 

4 [0.03, 

0.44] 

[0.08, 

0.49] 

[0.10, 

0.56] 

[0.84, 

0.95] 

[0.94, 

0.98] 

[0.04, 

0.45] 

[0.08, 

0.45] 

[0.12, 

0.56] 

[0.80, 

0.95] 

[0.90, 

0.98] 

[0.05, 

0.45] 

[0.1, 

0.8] 

[0.09, 

0.54] 

[0.87, 

0.92] 

[0.92, 

0.95] 

5 [0.01, 

0.17] 

[0.02, 

0.16] 

[0.03, 

0.22] 

[0.74, 

0.95] 

[0.94, 

0.98] 

[0.02, 

0.17] 

[0.02, 

0.17] 

[0.05, 

0.22] 

[0.86, 

0.95] 

[0.89, 

0.98] 

[0.03, 

0.16] 

[0.05, 

0.46] 

[0.03, 

0.23] 

[0.87, 

0.93] 

[0.93, 

0.95] 

6 [0.01, 

0.39] 

[0.06, 

0.39] 

[0.07, 

0.44] 

[0.83, 

0.95] 

[0.93, 

0.98] 

[0.02, 

0.4] 

[0.05, 

0.38] 

[0.09, 

0.46] 

[0.8, 

0.95] 

[0.91, 

0.98] 

[0.03, 

0.41] 

[0.07, 

0.87] 

[0.05, 

0.45] 

[0.87, 

0.90] 

[0.89, 

0.94] 

7 [0.01, 

0.18] 

[0.04, 

0.19] 

[0.04, 

0.24] 

[0.84, 

0.96] 

[0.94, 

0.97] 

[0.02, 

0.19] 

[0.04, 

0.19] 

[0.07, 

0.26] 

[0.86, 

0.95] 

[0.93, 

0.97] 

[0.02, 

0.19] 

[0.06, 

0.81] 

[0.06, 

0.25] 

[0.84, 

0.88] 

[0.85, 

0.94] 

Valida

-tion 

1 [0.09, 

0.90] 

[0.45, 

0.93] 

[0.50, 

0.92] 

[0.79, 

0.96] 

[0.82, 

0.97] 

[0.11, 

0.87] 

[0.47, 

0.87] 

[0.51, 

0.98] 

[0.34, 

0.96] 

[0.81, 

0.99] 

[0.04, 

0.79] 

[0.5, 

0.95] 

[0.58, 

0.88] 

[0.70, 

0.93] 

[0.76, 

0.90] 

2 [0.08, 

0.85] 

[0.01, 

0.87] 

[0.01, 

0.90] 

[0.42, 

0.95] 

[0.64, 

0.95] 

[0.09, 

0.58] 

[0.09, 

0.66] 

[0.07, 

0.87] 

[0.54, 

0.96] 

[0.76, 

0.99] 

[0.00, 

0.74] 

[0.01, 

0.83] 

[0.03, 

0.86] 

[0.70, 

0.93] 

[0.67, 

0.95] 

3 [0.08, 

0.83] 

[0.02, 

0.83] 

[-0.01, 

0.87] 

[0.79, 

0.96] 

[0.68, 

0.96] 

[0.09, 

0.51] 

[0.09, 

0.52] 

[0.08, 

0.62] 

[0.52, 

0.95] 

[0.77, 

0.98] 

[0.00, 

0.74] 

[0.02, 

0.8] 

[0.03, 

0.83] 

[0.74, 

0.94] 

[0.76, 

0.95] 

4 [0.08, 

0.83] 

[0.01, 

0.84] 

[0.02, 

0.89] 

[0.80, 

0.96] 

[0.68, 

0.95] 

[0.09, 

0.45] 

[0.08, 

0.45] 

[0.07, 

0.56] 

[0.52, 

0.95] 

[0.78, 

0.98] 

[0.00, 

0.74] 

[0.01, 

0.81] 

[0.04, 

0.84] 

[0.73, 

0.94] 

[0.77, 

0.95] 

5 [0.08, 

0.81] 

[0.01, 

0.82] 

[0.01, 

0.85] 

[0.75, 

0.96] 

[0.67, 

0.96] 

[0.08, 

0.17] 

[0.07, 

0.17] 

[0.06, 

0.22] 

[0.52, 

0.95] 

[0.74, 

0.98] 

[0.00, 

0.72] 

[-0.01, 

0.78] 

[0.02, 

0.81] 

[0.70, 

0.94] 

[0.76, 

0.94] 

6 [0.08, 

0.80] 

[0.00, 

0.80] 

[0.00, 

0.84] 

[0.80, 

0.95] 

[0.67, 

0.94] 

[0.09, 

0.4] 

[0.07, 

0.38] 

[0.05, 

0.46] 

[0.51, 

0.95] 

[0.80, 

0.98] 

[0.01, 

0.71] 

[0.00, 

0.77] 

[0.02, 

0.79] 

[0.73, 

0.94] 

[0.76, 

0.94] 

7 [0.07, 

0.78] 

[0.01, 

0.79] 

[0.00, 

0.82] 

[0.76, 

0.96] 

[0.69, 

0.95] 

[0.08, 

0.19] 

[0.07, 

0.19] 

[0.06, 

0.26] 

[0.53, 

0.95] 

[0.76, 

0.97] 

[0.00, 

0.70] 

[0.00, 

0.76] 

[0.02, 

0.79] 

[0.77, 

0.95] 

[0.77, 

0.95] 

Test 1 [-0.04, 

0.69] 

[0.50, 

0.73] 

[0.56, 

0.89] 

[0.58, 

0.77] 

[0.54, 

0.87] 

[-0.09, 

0.71] 

[0.48, 

0.74] 

[0.54, 

0.87] 

[0.54, 

0.76] 

[0.65, 

0.89] 

[0.04, 

0.72] 

[0.53, 

0.71] 

[0.58, 

0.88] 

[0.69, 

0.79] 

[0.76, 

0.90] 

2 [-0.13, 

0.69] 

[0.04, 

0.62] 

[0.03, 

0.75] 

[0.41, 

0.78] 

[0.63, 

0.85] 

[-0.16, 

0.66] 

[0.04, 

0.59] 

[0.03, 

0.7] 

[0.58, 

0.77] 

[0.61, 

0.86] 

[-0.01, 

0.71] 

[0.03, 

0.63] 

[0.03, 

0.78] 

[0.69, 

0.79] 

[0.75, 

0.86] 

3 [0.01, 

0.20] 

[0.48, 

0.65] 

[0.50, 

0.72] 

[0.58, 

0.73] 

[0.56, 

0.83] 

[0.03, 

0.2] 

[0.51, 

0.65] 

[0.48, 

0.71] 

[0.61, 

0.78] 

[0.69, 

0.82] 

[0.03, 

0.2] 

[0.50, 

0.63] 

[0.58, 

0.70] 

[0.67, 

0.74] 

[0.73, 

0.81] 

4 [-0.01, 

0.15] 

[0.02, 

0.13] 

[0.01, 

0.17] 

[0.41, 

0.77] 

[0.63, 

0.83] 

[-0.02, 

0.13] 

[0.02, 

0.13] 

[0.01, 

0.15] 

[0.57, 

0.77] 

[0.60, 

0.83] 

[-0.01, 

0.13] 

[0.01, 

0.12] 

[0.02, 

0.18] 

[0.68, 

0.81] 

[0.74, 

0.83] 

5 [-0.01, 

0.14] 

[0.01, 

0.14] 

[-0.01, 

0.17] 

[0.63, 

0.78] 

[0.63, 

0.81] 

[-0.02, 

0.14] 

[-0.01, 

0.15] 

[0.00, 

0.18] 

[0.53, 

0.75] 

[0.62, 

0.80] 

[0.00, 

0.12] 

[0.01, 

0.15] 

[0.01, 

0.21] 

[0.65, 

0.77] 

[0.69, 

0.80] 

6 [-0.01, 

0.05] 

[0.01, 

0.08] 

[0.00, 

0.10] 

[0.62, 

0.76] 

[0.62, 

0.80] 

[-0.01, 

0.05] 

[0.01, 

0.08] 

[0.00, 

0.08] 

[0.56, 

0.82] 

[0.58, 

0.82] 

[-0.01, 

0.04] 

[0.02, 

0.07] 

[0.01, 

0.08] 

[0.59, 

0.75] 

[0.62, 

0.77] 
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7 [-0.02, 

0.04] 

[0.23, 

0.40] 

[0.19, 

0.45] 

[0.57, 

0.74] 

[0.55, 

0.82] 

[-0.02, 

0.03] 

[0.22, 

0.47] 

[0.20, 

0.47] 

[0.59, 

0.81] 

[0.65, 

0.79] 

[-0.01, 

0.03] 

[0.24, 

0.34] 

[0.27, 

0.40] 

[0.69, 

0.82] 

[0.75, 

0.81] 
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Table 4: Performance metric ranges ([min, max]) for all 24 reservoirs of BMA methods under S3 and S5. 

Period 
Forecast 

horizon (d) 

NSE RMSE(m3/s) MAE(m3/s) 

S3 S5 S3 S5 S3 S5 

Calibration 1 [0.60, 0.98] [0.97, 0.99] [0.02, 0.36] [0.01, 0.09] [0.01, 0.09] [0.01, 0.03] 

2 [0.36, 0.92] [0.96, 0.99] [0.04, 0.46] [0.02, 0.10] [0.02, 0.13] [0.01, 0.04] 

3 [0.14, 0.63] [0.95, 0.98] [0.09, 0.53] [0.02, 0.11] [0.03, 0.15] [0.01, 0.04] 

4 [0.12, 0.57] [0.94, 0.98] [0.10, 0.54] [0.02, 0.12] [0.04, 0.17] [0.01, 0.04] 

5 [0.04, 0.23] [0.95, 0.98] [0.14, 0.56] [0.02, 0.12] [0.04, 0.17] [0.01, 0.04] 

6 [0.07, 0.46] [0.94, 0.98] [0.11, 0.55] [0.02, 0.10] [0.04, 0.17] [0.01, 0.04] 

7 [0.06, 0.25] [0.94, 0.97] [0.13, 0.52] [0.03, 0.11] [0.05, 0.15] [0.01, 0.04] 

Validation 1 [0.60, 0.92] [0.84, 0.96] [0.08, 0.66] [0.06, 0.39] [0.02, 0.13] [0.02, 0.10] 

2 [0.07, 0.93] [0.80, 0.96] [0.07, 1.09] [0.06, 0.33] [0.03, 0.19] [0.02, 0.09] 

3 [0.06, 0.90] [0.82, 0.95] [0.09, 1.09] [0.06, 0.30] [0.04, 0.21] [0.02, 0.09] 

4 [0.08, 0.91] [0.85, 0.96] [0.08, 1.07] [0.06, 0.34] [0.04, 0.19] [0.02, 0.09] 

5 [0.09, 0.85] [0.85, 0.96] [0.11, 1.08] [0.05, 0.29] [0.05, 0.22] [0.02, 0.09] 

6 [0.06, 0.83] [0.86, 0.95] [0.11, 1.08] [0.06, 0.34] [0.05, 0.21] [0.03, 0.09] 

7 [0.04, 0.82] [0.87, 0.96] [0.12, 1.10] [0.06, 0.35] [0.05, 0.22] [0.02, 0.10] 

Test 1 [0.60, 0.89] [0.76, 0.89] [0.08, 0.68] [0.08, 0.47] [0.03, 0.20] [0.03, 0.16] 

2 [0.05, 0.76] [0.68, 0.87] [0.12, 1.05] [0.09, 0.50] [0.05, 0.27] [0.04, 0.16] 

3 [0.59, 0.73] [0.68, 0.83] [0.13, 0.69] [0.10, 0.53] [0.05, 0.23] [0.04, 0.16] 

4 [0.03, 0.18] [0.69, 0.83] [0.22, 1.06] [0.10, 0.54] [0.08, 0.29] [0.04, 0.16] 

5 [0.01, 0.21] [0.68, 0.81] [0.21, 1.08] [0.11, 0.51] [0.08, 0.30] [0.04, 0.16] 

6 [0.02, 0.09] [0.64, 0.81] [0.23, 1.07] [0.11, 0.63] [0.09, 0.30] [0.04, 0.18] 

7 [0.25, 0.43] [0.67, 0.80] [0.19, 0.84] [0.12, 0.55] [0.09, 0.28] [0.05, 0.16] 
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Table 5: Ranges of interval performance metrics ([min, max]) for all the 24 reservoirs under S3 and S5. 

Period 
Forecast horizon 

(d) 

Cr(%) D(m3/s) 

S3 S5 S3 S5 

Calibration 1 [94.36, 99.86] [96.29, 99.86] [0.01, 0.06] [0.01, 0.03] 

2 [93.67, 99.17] [94.91, 99.66] [0.01, 0.05] [0.01, 0.03] 

3 [94.36, 98.21] [95.05, 99.59] [0.01, 0.04] [0.01, 0.03] 

4 [92.98, 96.97] [95.67, 99.72] [0.02, 0.04] [0.01, 0.04] 

5 [93.26, 96.22] [94.57, 99.79] [0.01, 0.04] [0.01, 0.04] 

6 [93.26, 96.70] [95.74, 99.66] [0.02, 0.05] [0.01, 0.04] 

7 [92.64, 96.15] [95.53, 99.72] [0.02, 0.05] [0.01, 0.03] 

Validation 1 [92.88, 99.73] [96.44, 100.00] [0.01, 0.05] [0.01, 0.03] 

2 [94.25, 99.45] [93.97, 100.00] [0.01, 0.05] [0.01, 0.03] 

3 [92.33, 97.26] [94.52, 100.00] [0.01, 0.02] [0.01, 0.04] 

4 [92.60, 96.16] [93.42, 99.73] [0.01, 0.06] [0.01, 0.04] 

5 [91.78, 94.79] [95.07, 100.00] [0.01, 0.04] [0.01, 0.04] 

6 [91.78, 94.79] [95.07, 100.00] [0.01, 0.04] [0.01, 0.04] 

7 [90.68, 93.42] [93.70, 99.73] [0.00, 0.03] [0.01, 0.03] 

Test 1 [90.83, 99.32] [93.84, 99.73] [0.03, 0.22] [0.03, 0.15] 

2 [92.75, 97.95] [94.25, 99.73] [0.04, 0.26] [0.03, 0.16] 

3 [92.48, 97.40] [94.39, 99.73] [0.05, 0.26] [0.03, 0.15] 

4 [91.66, 95.35] [94.39, 99.59] [0.07, 0.28] [0.04, 0.16] 

5 [90.70, 94.12] [94.66, 99.45] [0.07, 0.29] [0.04, 0.15] 

6 [90.83, 93.98] [93.43, 99.45] [0.08, 0.29] [0.05, 0.18] 

7 [89.88, 92.48] [93.57, 99.45] [0.08, 0.28] [0.04, 0.16] 
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Table 6: Annual system performance using forecast inflow information. 

Inflow 

Configuration 

Forecast 

horizon (d) 

Revenues 

(104RMB) 

Costs 

(104RMB) 

Net costs 

(104RMB) 

Reliability (%) 

Daobei Others 

Observation 1 3228.38 3336.52 108.15 79.22 86.10 

7 2651.01 2822.95 171.94 71.31 75.94 

Deterministic S3 1 3541.27 3633.50 92.23 79.68 96.90 

S5 1 3596.23 3690.32 94.09 79.59 96.31 

S3 7 3262.51 3401.53 139.02 80.93 91.84 

S5 7 2945.42 3118.95 173.53 76.10 85.27 

Uncertain S3 1 3931.58 3837.88 -93.70 93.49 99.80 

S5 1 3988.70 3791.54 -197.16 92.63 99.58 

S3 7 3946.61 3902.59 -44.02 94.03 100.00 

S5 7 3911.55 3846.44 -65.11 92.83 99.38 
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Table 7: Annual system performance using observed inflow information.  1015 

Inflow 

Configurations 

Forecast 

horizon (d) 

Revenues 

(104RMB) 

Costs 

(104RMB) 

Net costs 

(104RMB) 

Reliability (%) 

Daobei Others 

Observation 1 3228.38 3336.52 108.15  79.22 86.10 

7 2651.01 2822.95 171.94  71.31 75.94 

Deterministic S3 1 2597.17 2783.31 186.14  67.42 79.10 

S5 1 2735.64 2884.66 149.02  71.79 82.00 

S3 7 2159.05 2454.79 295.75  57.08 67.04 

S5 7 2371.45 2631.57 260.11  64.15 71.80 

Uncertain S3 1 3788.08 3820.27 32.18  94.18 98.45 

S5 1 3805.98 3781.46 -24.52  94.42 98.38 

S3 7 3762.07 3884.75 122.68  93.64 98.28 

S5 7 3785.55 3835.29 49.75  94.99 98.46 

 


