Reply to the comments on hess-2020-617

Dear editor and reviewers,

Thank you very much for your evaluation of our manuscript and insightful comments,
which have been a great help in improving the quality of our manuscript. We have
carefully revised the manuscript according to these comments and suggestions. The
related parts of the manuscript have been rewritten and improved, and for your easy
reading and evaluation, the changed parts are marked using track changes text in the

revised version.

Reply to the comments from Referee #1,
Comment #1: Some comments in literature review could be more precisely.
« The LSTM and GRU, for example, were not only applied in few previous works

(refer to Line 55 in the manuscript)

Authors’ response: Thank you. We have modified Line 55 in the new manuscript.
Please see Lines 52-56, Page 2.

“LSTM and GRU networks have been successfully applied in many fields (Greff et
al., 2017, Zhang et al, 2018, Jung et al, 2020; Shahid et al., 2020; Ayzel and
Heistermann, 2021), and they are demonstrated to generate comparable performances.
But GRU has a more straightforward structure and a higher operation speed than
LSTM. Recently, many applications that assessed them together are also found in the

hydrological field (Gao et al., 2020, Muhammad et al., 2020).”
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Greft, K., Srivastava, R. K., Koutnik, J., et al. LSTM: A Search Space Odyssey. IEEE Transactions
on Neural Networks and Learning Systems, 28(10), 2222-2232,
https://doi.org/10.1109/TNNLS.2016.2582924, 2017.
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Korea. Journal of Cleaner Production, 250, 119476,
https://doi.org/10.1016/j.jclepro.2019.119476, 2020.
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Machine Learning and Intelligent Communications 2019. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, 294,
510-524, https://doi.org/10.1007/978-3-030-32388-2_44, 2019.

Shahid, F., Zameer, A., Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM,
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« The research works on impacts of forecast horizon on reservoir operation were not
rare (Lines 59 and 71).

Authors’ response: Thanks for your comments. We have made corresponding

revisions in the manuscript, such as:

(1) “While a considerable research effort has been made to evaluate and improve
the quality of streamflow forecasts (Gibbs et al., 2018, Nanda et al., 2019, Sharma et
al., 2019; Van Osnabrugge et al., 2019, Feng et al., 2020, Pechlivanidis et al., 2020),
how forecasts impact decision-making in the real-time reservoir operations has also
gradually gained researchers’ attention (Goddard et al., 2010; Shamir, 2017; Anghileri
et al., 2019; Alexander et al., 2020, Hadi et al., 2020), e.g., do high-quality forecasts
mean improved decision?” Please see Lines 57-61, Page 2.

(2) “There is often a mismatch between the information needed for reservoir
operations and the skillful lead time of the reservoir inflow forecast (Anghileri et al.,

2016). It is crucial to demonstrate the applicability and effectiveness of the forecast



horizon in a forecast-based reservoir operation system (Xu et al., 2014).” Please see

Lines 69-72, Page 3.
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Anghileri, D., Monhart, S., Zhou, C., et al. The Value of Subseasonal Hydrometeorological
Forecasts to Hydropower Operations: How Much Does Preprocessing Matter? Water
ResourcesResearch, 55(12), 10159-10178, https://doi.org/10.1029/2019WR025280, 2019.

Anghileri, D., Voisin, N., Castelletti, A., et al. Value of long-term streamflow forecasts to
reservoir operations for water supply in snow-dominated river catchments. Water
Resources Research, 52(6), 42094225, https://doi.org/10.1002/2015WR0 17864, 2016.

Feng, D., Fang, K., Shen, C. Enhancing streamflow forecast and extracting insights using long-
short term memory networks with data integration at continental scales. Water Resources
Research, 56(9), e2019WR026793, https://doi.org/10.1029/2019 WR026793, 2020.

Gibbs, M. S., Mclnerney, D., Humphrey, G., et al. State updating and calibration period
selection to improve dynamic monthly streamflow forecasts for an environmental flow
management application. Hydrology and Earth System Sciences, 22(1), 871-887,
https://doi.org/10.5194/hess-22-871-2018, 2018.

Goddard, L., Aitchellouche, Y., Bacthgen, W., et al. Providing Seasonal-to-Interannual Climate
Information for Risk Management and Decision-making. Procedia Environmental
Sciences, 1, 81-101, https://doi.org/10.1016/j.proenv.2010.09.007, 2010.

Hadi, S. J., Tombul, M., Salih, S. Q., et al. The capacity of the hybridizing wavelet
transformation approach with data-driven models for modeling monthly-scale streamflow.
IEEE Access, 8, 101993-102006, https://doi.org/10.1109/ACCESS.2020.2998437,2020.

Nanda, T., Sahoo, B., Chatterjee, C. Enhancing real-time streamflow forecasts with wavelet-
neural network based error-updating schemes and ECMWF meteorological predictions in
Variable Infiltration Capacity model. Journal of Hydrology, 575, 890-910,
https://doi.org/10.1016/j.jhydrol.2019.05.051, 2019.
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e2019WR026987, https://doi.org/10.1029/2019WR 026987, 2020.

Shamir, E. The value and skill of seasonal forecasts for water resources management in the
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Upper Santa Cruz River basin, southern Arizona. Journal of Arid Environments, 137, 35-
45, https://doi.org/10.1016/j.jaridenv.2016.10.011,2017.

Sharma, S., Siddique, R., Reed, S., et al. Hydrological Model Diversity Enhances Streamflow
Forecast Skill at Short-to Medium-Range Timescales. Water Resources Research, 55(2),
1510-1530, https://doi.org/10.1029/2018 WR023197, 2019.

Van Osnabrugge, B., Uijlenhoet, R., Weerts, A. Contribution of potential evaporation forecasts
to 10-day streamflow forecast skill for the Rhine River. Hydrology and Earth System
Sciences, 23(3), 1453-1467, https://doi.org/10.5194/hess-23-1453-2019, 2019.

Xu, W., Zhang, C., Peng, Y., et al. A two stage Bayesian stochastic optimization model for
cascaded hydropower systems considering varying uncertainty of flow forecasts. Water

Resources Research, 50(12), 9267-9286, https://doi.org/10.1002/2013WR015181,2014.

Comment #2: It is unclear how the weight matrices involved in the forecasting models
(Lines: 124 and 136) were estimated, and what / which criteria were used in calibration.
Authors’response: Thanks for your comment. We have modified it in the new version.
Please see Lines 301-303, Page 14.

“Both LSTM and GRU are trained based on truncated Back Propagation Through
Time (BPTT) which uses a back propagation network to update the parameters in
iterations (Cheng et.al., 2020). The NSE function is used as the loss function to

calibrate the LSTM and GRU models.”

References

Cheng, M., Fang, F., Kinouchi, T., etal., 2020. Long lead-time daily and monthly streamflow
forecasting using machine learning methods. Journal of Hydrology, 590, 125376.

Comment #3:. It is left unexplained:

« How the parameters used to define the operational policy are estimated ?
Authors’ response: Thanks for your comments. The parameters in the operation policy

are the decision variables in our multi-objective problem, and can be estimated by
NSGA-IL

« What specific hydrological variables are included in the “policy inputs”?

Authors’ response: The hydrological variables in the policy inputs include fore-bay
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water level, observed or predicted inflows, and precipitation.

«How these “policy inputs” are related to the decision horizon?

Authors’ response: Thank you. As show in Eq (32), in each operation horizon, I', is

the " policy inputs including exogenous information (e.g., fore-bay water level

observed or predicted inflows and precipitation)

N
U = @,0,[), (32)
i=1

«How the policy could be implemented with all constraints enforced in a day-by-day
practice?

Authors’ response: Thank you. When using the parameterized MORDM approach to
solve the multi-objective reservoir operation under uncertainty, it is indeed hard to
obtain the policy that is subject to with all constraints. To avoid this potential problem,

we have applied a post-processing procedure in the practice. For example, assume that

Q'Z denotes the flow pumped by the / pump station from the i" reservoir at t™ time
step (M3fs); qp, denotes flow through the j™ pump station at t time step (m%fs),

QU.:ZJ:Q[,'Z N;j is the number of reservoirs pumped by the j pump station; qQr

ij? j,max
denotes the upper flow boundary of the j pump station (m3/s). The post-processing
procedure have been described in Part “3.2 Problem formulation. Please see Lines 281-

282, Page 13.

“In some cases, @, can be greater than Q.. , and we will do the following step

j,max ?

r,2

2= tn,j r,
Qi =w——*Qm toupdate Q7).

2
ZQtr.n,j
n=1

« Why it is called “multi-objective” since involving only an objective (26)?

2

Authors’ response: Thanks for your constructive comment. In this study, we focus on
the multi-objective problem, and three objectives are considered in our case study.
Accordingly, it should be multi-objective in this equation, and we have modified it.

p;:argn;in(\]l, \]2,...,\]M)p67 s.t. 96@) (31)

where J,, J,,...,J,, are the objective functions, and M is the number of objectives.
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Moreover, to answer these above questions, we have re-organized the introduction of
the Parameterized multi-objective robust decision making (MORDM). Please see Lines
194-225, Pages 9-10.
“2.4 Parameterized multi-objective robust decision making (MORDM)

This study proposes a parameterized multi-objective robust decision-making approach
to design operating policies for the multi-objective reservoir operations by combing
direct policy search (DPS) and multi-objective robust decision making (MORDM). In
the parameterized MORDM, instead of using the volumes of water to be allocated as
the decision variables, we prescribe decisions approximated as non-linear functions
conditioned on system state variables (e.g., fore-bay water level observed or predicted
inflows, and precipitation) (Giuliani et al., 2016, Quinn et al., 2017b; Salazar et al.,
2017). The non-linear functions can be realized by the DPS approach. DPS is based on

the parameterization of the operating policy P, and the exploration of the parameter

space O to find a parameterized policy that optimizes the expected function, i.e.,

pgzargrrgzn(.ll, ‘JZ"""]M)% S.t.9€®, (31)
where J,, J,,...,d,, are the multi-objective functions, M is the number of objectives,

and P, is the corresponding optimal policy with parameters " . Different DPS

approaches have been proposed, where two nonlinear approximating networks, namely
artificial neural networks (ANNs) and radial basis functions (RBFs) have become
widely adopted as universal approximators in many applications (Deisenroth et al.,
2013; Giuliani et al., 2016). In particular, we parameterize the operating policy as
RBFs, because they have been demonstrated to be effective in solving multi-objective
water resources management problems (Giuliani et al., 2014; 2015) and the k™ decision

variable in the vector u; (with K= 1 ...,K) is defined as:

U =2 o (1), (32)

where N is the number of RBFs o(-), L'\ is the policy inputs including exogenous

information (e.g., fore-bay water level observed or predicted inflows and precipitation)
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N
and @, is the weight of the i RBF, Y w,, =1 ,, >0. The single RBF is defined as
i=1

follows:

M T —Cy5 :
Pix (Ft)=exp{—z[()b—zcl , (33)

where M denotes the number of policy inputs ', and ci, bi are the M-dimensional

center and radius vectors of the i RBF, respectively. The centers of the RBF must lie

within the bounded input space (Yang et al., 2017). The parameter vector 0 is defined
as az[ci,j,k’bi,j,kla)i,j,k] with the number of 0 s n9=N><K><(2><M +l). In general,

when DPS problems involve multiple objectives, they can be coupled with truly
multiobjective optimization methods, such as MOEAs which allow estimating an
approximation of the Pareto front in a single run of the algorithm (Giuliani et al., 2016).
In our study, the parameterized MORDM approach will be coupled with a rolling
horizon scheme over one year period to solve the multi-objective reservoir operation
problem. Given the lead time of 7 days (forecast horizon is equal to operation horizon)
as an example, it is operated following two steps: the optimization model is first
operated daily over a 7-day horizon using the parameterized MORDM, after
implementing current water allocation decisions, the status, inflow, and other
information of reservoirs update as time evolves, and then the remainder is
subsequently operated. The two steps are repeated until the process (one year period)
is completed. In each operating horizon, the main steps of the parameterized MORDM
are: (1) problem formulation, including the possible actions (i.e., RBF inputs and
policies), performance measures, and constraints;, (2) generate alternative RBF
policies subjecting to all the constraints and the objectives are evaluated over
stochastic inflows (i.e., BMA ensemble forecasts),; (3) identify solutions with a robust
rule (e.g., the principle of insufficient reason, minimax, and minimax regret) using
multi-objective evolutionary algorithms (MOEAs) (Giuliani and Castelletti, 2016; Guo
etal, 2020b).”
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Comment #4: 1 think this work has formulated an incomplete reservoir operation

problem.

. The water balance, for instance, does not reflect the hydraulic connections shown in
Figure 4. The relationships between water supply, pumping flow, inflow and

discharge are not incorporated in the model.



Authors’ response: Thanks for your constructive comments. All plants are supplied by
the reservoirs, and we can find in Fig.4 that some reservoirs supply water without pump

stations (e.g., Longtan, Changchunling, Chahe, and Nanao), while the others will be

pumped by pump stations. Assume that ¢, denotes flow from the i reservoir at t"
time step (m3/s), in which Q7 denotes the flow without pump station from the it"
reservoir at t" time step (m%/s), @7, denotes the flow pumped by the ;' pump station

from the i reservoir at t time step (m3/s). w; denotes the amount of water supply for

| T
plants at th time step (M%), W'=> > Q\At, | is the total number of reservoirs; Q"

i=1 t=1

denotes water through the j" pump station at t time step (m3/s), QF, :iqﬁfj , Njis the
number of reservoirs pumped by the j pump station. The relationship between water
supply and discharge, and that between water supply and pumping flow, are present in
the description of Egs. (38)-(39). The water balance limitation V,,; =V, +(It,i —Qtfi)At

is mainly for reservoirs. Accordingly, we have modified the problem formulation.
Please see Lines 251-282, Pages 11-13.

“These objective functions are given as follows:

Min f,(x)= (ivvt“"’b —iwls’db J/ivvt”"“’ x100%, (34)
t=1 t=1 t=1
3 T 3 T 3 T

vin 1, 00=( 33wt -3 3w | /3 S oo 53)
k=1 t=1 k=1 t=1 i=1 t=1

Min fS(X)Z(MCiSIand +Mcmainland)_Mr’ (36)

where fi and f, are the water deficiency ratio of Daobei Plant and the sum of the

remaining three plants, respectively (%); fs is the net operating costs (RMB); w>®
and w,® are the amount of water supply and demand for Daobei Plant at ti time step,

respectively (m®); wz" and w, are the amounts of water supply and demand for

the ki plant (one of the remaining three plants) at t™ time step, respectively (m3);

M and MM gre the costs for water supply from the islands and the mainland,



respectively (RMB); My is the revenue (RMB). The revenue can be obtained according

to:

1) Operating costs for water supply from islands (m s> RMB):

M(i:sland _ M:iand + M(ijlzand + M(i:sylsand , (37)
T | T

Mcls’iand — Cllsland >(Zwts,lsland — CllSIand XZZQtr,iISIand At , (38)
t=1 i=1 t=1
T | T

island island Jisland land land

Mcls’zan =C|25an szvtsman |san ><ZZersan At (39)

t=1 i=1l t=1

10T p.island island
M island |sland % ZZ Q P
c3

p, |sIand
j=1 t=1 QJ max

(40)

where M5, Mm@ and M represent the water resource fees paid to the

government, water fees paid to reservoir managers, and the electricity fees in Zhoushan

City, respectively (RMB); ci= | ¢ = and ¢ denote the constant vectors,

representing the unit price of water resources, water, and electricity in Zhoushan City,
respectively (RMB/m3); At is the time step; i is the number of a reservoir, j is the

number of a pump station, | denotes the number of reservoirs, and J denotes the number

of pump stations in Zhoushan City; ws*= denotes the amount of water supply for
plants at t time step (m?); Q7= denotes flow from the i reservoir at t time step in
Zhoushan City (m3/s), in which Q> denotes the flow without pump station from
the i reservoir att" time step (m%/s), Q% denotes the flow pumped by the /' pump
station from the it" reservoir at t" time step (m3/s); pP*=* denotes the supporting motor
power of the i pump station (Kw); @ denotes the flow through the j"" pump station
at t" time step (m3/s), where QP ZQ{Z'S'”“ N;j is the number of reservoirs pumped

by the j'" pump station; Qr#=« denotes the upper flow boundary of the j*" pump station

in Zhoushan City (m3/s).
2) Operating costs for water supply from the mainland (M ™™™ RMB)
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M;nlanland — M::]flnland + M:’ngmland + M:;\lnland , (41)

T T
mainland __ .mainland s,mainland __ . mainland p,mainland
M = e XY W, = X Y QP AL, (42)
t=1 =1
inland inland c inland inland c inland
mainland __ ~mainlan s,mainland __ ~mainlan p,mainlan
M5 = e Y W, =" X3 Q At (43)
t=1 t=1 ,
) ) I T L+ Q plmainland
mainland __ . mainland i L
Mg =Gy XD D (44)
j=1 t=1 Qj,max

>

where mreriea | prened - and  mrmened represent the water resources fees paid to the

government, water fees paid to the river managers, and electricity fees in Ningbo City,
respectively (RMB); ¢ | cramad = and ¢ denote the constant vectors,
representing the unit price of water resources, water, and electricity in Ningbo City,

respectively (RMB/m?3); w2 denotes the amount of water transferred from Ningbo
City at t time step (m3); Q™™ denotes the flow pumped from Ningbo City at t"

time step (m3/s), Q7™ denotes the flow through the j™ pump station at t' time step,

J is the number of pump stations transferring water from Ningbo, J=2,

QP mamand QR mamiand —gpmaniand | ; denotes the length of the continental diversion pipeline

using the jt" pump station (m) and QP™"=¢ denotes the upper flow boundary of the ji

Jj>max

pump station for water transfer (m3/s).

3) Revenues (Mr, RMB)

:
M, =b x(ZWf"“’ +Wf‘“j, (43)

t=1
where b denotes the unit price of water supply revenue (RMB/m?3).

The optimization model is subject to the following constraints:

(1) Reservoir water balance: Vous =V +(1, —Q1 ) At, (46)

(2) Reservoir storage limits: Veimin SVei SVii max » (47)

(3) Reservoir release limits (for the reservoir
Qtr,i =< Qtr,i,max ’ (48)
that supply water without pump station):
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(4) Pumping station limits: Q¥ < Qe (49)
where 1, is the inflow of the i" reservoir at i time step (m3/s); v,, is the storage of

i™" reservoir at t" time step (M3); Vmin and Vmax are the lower and upper storage

boundaries, respectively (m%); Q.. is the maximum release of the i" reservoir at t"

time step (m3/s). In some cases, Qf, obtained by the RBF policies can be greater than

r2

Q. » @nd we will do the following step Q7 =+—"1-xQ?,, to update Q7

j,max ! N; j,max tnj "

2
2.Qin;
n=1

« Also, how the MORDM is related to this operational problem?

Authors’ response: Thanks for your comments, we have re-organized the introduction
of the parameterized MORDM approach and described the detailed steps in the new
version. Please see Lines 216-225, Page 10.

“In our study, the parameterized MORDM approach will be coupled with a rolling
horizon scheme over one year period to solve the multi-objective reservoir operation
problem. Given the lead time of 7 days (forecast horizon is equal to operation horizon)
as an example, it is operated following two steps: the optimization model is first
operated daily over a 7-day horizon using the parameterized MORDM; after
implementing current water allocation decisions, the status, inflow, and other
information of reservoirs update as time evolves, and then the remainder is
subsequently operated. The two steps are repeated until the process (one year period)
is completed. In each operating horizon, the main steps of the parameterized MORDM
are: (1) problem formulation, including the possible actions (i.e., RBF parameters) and
performance measures; (2) generate alternative RBF policies subjecting to all the
constraints and the objectives are evaluated over stochastic inflows; (3) identify
solutions with a robust rule (e.g., the principle of insufficient reason, minimax, and
minimax regret) using multi-objective evolutionary algorithms (MOEAs) (Giuliani and

Castelletti, 2016, Guo et al., 2020b).”

References
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impact decision-making under climate change. Climatic Change, 135(3-4), 409-424,
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Guo, Y., Fang, G., Xu, Y.-P., etal. Responses of hydropower generation and sustainability to
changes in reservoir policy, climate and land use under uncertainty: A case study of
Xinanjiang Reservoir in China. Journal of Cleaner Production, 1246009,

https://doi.org/10.1016/j.jclepro.2020.124609,2020b.

« The model looks like a linear programming problem that can be easily solved.

Authors’ response: Thanks for your comments. There are 25 reservoirs and 16 pump
stations in our multi-objective reservoir operation optimization problem. Although the
objectives and constraints seem to be linear, there are some non-linear functions
considered in our modelling process. For example, the relationship between the fore-
bay water level and volume of reservoirs is non-linear, and normally expressed by a
quadratic function; the RBF functions we used are also non-linear. Besides, it is difficult
and time consuming to assure all constraints enforced in the day-by-day practice,

especially when it is operated under stochastic inflow.

Comment #5: The manuscript will benefit from more logically organizing its contents.
The “Results and Discussion” are usually a part of the case studies.

Authors’ response: Thank you. We have re-organized the manuscript and put the “3.4
Results and discussion” as a part of case study and add a part of “3.3 Model
development”.

Theory, models, procedures and definitions are generally presented before case studies,
and some of them need more detailed introduction, including:

«How the weights in the BMA are determined (Line 320)?

Authors’ response: Thank you. We have modified it. Please see Lines 165-172, Pages
7-8.

“In this study, a log-like hood function is maximized to estimate the parameters

(weight W, and variance o) as shown in Eq (21).
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- o sl ).

k=1
where @ is the vector of parameters {Wk,of,kzl,Z,...,K},

The Expectation-Maximization (EM) algorithm is used to find out the maximum

likehood with a termination criterion (early stopping or a maximal iteration). As the

EM proceeds, the parameters of weight W, and variance o} are updated as follows.

W(Iter) _i v Zt("er)
k NT ~ k ' (22)
th:ter .(Yt . f )
2(Iter) 't
Oy = NT ’ (23)
Ztlter
k

Zt(lm) g(Q|ft, ollter 1))
i_mf )

o S S ).

k=1

where Iter is the number of iterations. NT is the length of calibration periods. Y' and

t(Iter)

f. arethe observed and forecast streamflow at t" time step, respectively (m’/s), z,
is the latent variable for the k™ model at t" time in the Iter iteration.
« How the Monte Carlo simulation method is used to generate BMA ensemble forecasts
(Line 359)?
Authors’ response: Thank you. We have modified it as bellows. Please see Lines 172-
179, Pages8.

“Then we use the Monte Carlo simulation method to generate BMA ensemble
forecasts. Assume M is the number of Monte Carlo simulation and we set M as 1000 in
this study. The procedure will be described as bellows.

a) Set the initial cumulative weight W; =0 and calculate cumulative weight

V\/i*=V\li*_1+V\/i for i=1,2,....K. Create a random variable u between 0 and 1. If
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W, SU<SW ,, it indicates that the i™ model forecast would be selected and used in the

i1 = i-1
next step.

b) Generate a realization of the observation y: using the PDF g (yt| fl o} )

¢) Repeat steps (a) & (b) for M times. Furthermore, 90% confidence intervals between
the 5% and 95% quantities were employed to reveal the uncertainty of BMA ensemble
forecasts.

« What “the previous water levels” is supposed to mean (Line 381)?

Authors’ response: Thanks for your comments. The previous water levels is termed as
the initial fore-bay water level of reservoirs. We have modified it in the new version.
Please see Lines 317-318, Page 14.

“The best operation is obtained by conditioning the operating policies upon the
following two input variables, e.g., the initial fore-bay water level and current inflow
of reservoir.”

«Why the NSGA-II are still needed since we already have the operation policy
determined (Line 383)?

Authors’ response: Thanks for your comments. The parameters in the operation policy
are the decision variables in our multi-objective problem and can be estimated by
NSGA-II. We have modified it to avoid confusion. Please see Lines 213-215, Page 10
and Lines 319-320, Page 14.

“In general, when DPS problems involve multiple objectives, they can be coupled
with truly multiobjective optimization methods, such as multiobjective evolutionary
algorithms (MOEAs), which allow an approximation of the Pareto front in a single run
of the algorithm (Giuliani et.al., 2016).”

“The optimization is solved at each time step (a particular forecast horizon, e.g.,
1-7 days) by applying NSGA-II to search the space of decision variables and identify

the islands' water allocation trajectories.”

References

Giuliani, M., Castelletti, A., Pianosi, F., et al. Curses, tradeoffs, and scalable management:

15



Advancing evolutionary multiobjective direct policy search to improve water reservoir
operations. Journal of Water Resources Planning and Management, 142(2), 04015050,
https://doi.org/10.5334/jors.293, 2016.

«How the deterministic, uncertain and observed streamflow are used in the operation
(399)?

Authors’ response: Thank you. We have modified it in Part “3.3 Model development”.
Please see Lines 309-315, Page 14.

“In this study, we use the parametrized MORDM approach to design operating
policies for the multi-objective reservoir operations under uncertainty. The optimized
operations are both regulated based on deterministic and uncertain forecast inflow. To
keep fair, we perform a simulation to generate deterministic and observed ensemble
forecasts that each deterministic and observed data are repeated 900 times, respectively.
Using the uncertain streamflow forecasts (BMA, deterministic or observed ensemble
forecasts) as policy inputs in the parametrized MORDM method, we can generate
alternative RBF policies subjecting to all the constraints and the objectives are
evaluated over stochastic inflows.”

«How the Pareto solutions are identified (Line 387)?

Authors’ response: Thanks for your comments. We do not identify the Pareto solutions.
In this study, we focus on assessing the overall operating performance of the multi-
reservoir system under different streamflow forecast configurations (i.e., deterministic
or stochastic). Accordingly, instead of evaluating the performance of each operation
solution, the system operating performances are averaged over the Pareto solutions. We
have pointed it in the new version. Please see Line 437, Page 18.

“The system performances are averaged over a set of solutions.”

« Whether or not the annual revenues, costs, and water supply reliability (Line 409) are
used as multiple objectives when determining the operating policy?

Authors’ response: Thanks for your comments. We do not use the annual revenues,
costs, and water supply reliability as the objectives. We deal with a real-time

optimization problem in our study, and assume that the operating policy is determined
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by the stochastic short-term reservoir inflow forecasts. Accordingly, the indictors of
revenues and water supply reliability over the corresponding short-term operating
period are termed as the objectives. The annual revenues, costs, and water supply
reliability, are just chosen as metrics to compare and assess the performance of the
operating policies derived from different configurations.

«“Fake” results do not have any meaningful value, so why they are included in Table 6
in the first place (Line 428)?

Authors’ response: Thank you. To the best of our knowledge, there are few inform-
driven studies have clearly point out that whether or not the system operating
performance is post-evaluated by the true streamflow information. The differences

between Table 6 and Table 7 may provide references for beginners.

Comment #6: To the best of my understanding, the NSE was used to calibrate the
forecasting models while the RMSE and MAE are also used in assessing the
performance of the models. I think it should be a fairer practice by using multi-criteria
to do both the calibration and assessment.
Authors’ response: Thank you. Indeed, it is fairer by using multi-criteria to do both
the calibration and assessment. However, in our study, we aim to identify the
relationship between forecast skill and forecast-driven reservoir operation. To answer
this question, five input combination scenarios are investigated and two of them are
then applied to drive the multi-objective reservoir operation optimization. Accordingly,
we prefer to distinguish the forecast skill of different configurations using the indictors
of NSE, RMSE, and MAE, rather than improving the forecast skill. But it may be
interesting to obtain forecasts when accounting for multi-criteria over both calibration
and assessment period. We will add some discussion in the Part “Limitation and future
work”. Please see 516-519, Page 21.

“Our work suffers from some limitations, which could be overcome in future
studies. One of the limitations is that the single indictor is used to calibrate the forecast
models while multiple indictors are used in assessing the performance of the models. It

should be a fairer practice by using multi-criteria to do both the calibration and
17



assessment and can be interesting as a future work.”

Comment #7: Please justify why the Radial Basis Functions are used to parameterize
the policy (Line 199)?

Authors’ response: Thank you for your suggestion. We have modified it in the new
version. Please see Lines 203-206, Page 9.

“Different DPS approaches have been proposed, where two nonlinear
approximating networks, namely artificial neural networks (ANNs) and radial basis
functions (RBFs) have become widely adopted as universal approximators in many
applications (Deisenroth et al., 2013, Giuliani et al., 2016). In particular, we
parameterize the operating policy as RBFs, because they have been demonstrated to be

effective in solving multi-objective water resources management problems (Giuliani et

al, 2014; 2015).”

References

Deisenroth, M., Neumann, G., Peters, J. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, 2(1-2), 1-142, 10.1561/2300000021,2013.

Giuliani, M., Castelletti, A., Pianosi, F., et al. Curses, tradeoffs, and scalable management:
Advancing evolutionary multiobjective direct policy search to improve water reservoir
operations. Journal of Water Resources Planning and Management, 142(2), 04015050,
https://doi.org/10.5334/jors.293, 2016.

Giuliani, M., Herman, J., Castelletti, A., Reed, P. Many-objective reservoir policy identification
and refinement to reduce policy inertia and myopiain water management. Water Resources
Research. 50,3355-3377, http://.doi.org/10.1002/2013WR014700,2014.

Giuliani, M., Pianosi, F., Castelletti, A. Making the most of data: an information selection and
assessment framework to improve water systemsoperations. Water Resources Research,

51(11), 9073-9093, http://doi.org/10.1002/2015WR017044, 2015.

Comment #8: Including the test period when minimizing the NSE (Line 285) will make
it lose efficacy in assessing the model performance in future.
Authors’ response: Sorry for the confusion. This should be "As for LSSVM, we avoid

overfitting by minimizing the NSE during the calibration and validation periods, while
18



the test period is also used to assess the forecast performance." Please see Lines 303-

304, Page 14.

Technical Corrections:

Comment #1:. Please rewrite the term (XX_, w, f;) in equation (19), which just does
not make sense to me, with the f; being a model.

Authors’ response: Thanks for your comments. We have revised "model f" as "model

forecast fi.".

Comment #2: Please double check all the mathematical expressions.
e In equations (19) and (20), the sum should be operated over subscript "k" rather than

1

Authors’ response: Thank you. We have changed "i" to "k".

E[Q|D]:iwk E[p, (Q|fk,D)J=iwk f, (19)

v[QPp)=3w [ -3, } > wo (20)

e It might not be right that the subscript “k’ on the left side does not appear on the right
side of the equation (28)

Authors’ response: Thank you. We have revised it in the new manuscript as bellows.

M rt i Viik ’
@,k<rt>:exp{—z[”bz—°]], (33)

e It sounds not right to me in equation (34), where a variable without subscript “;” is
summed over ;.

e It is questionable that the equation (35) does not have a subscript for the first sum
operator to operate over.

e 9

e Expressing a variable subscript “n” in “Qumax »”” (Line 247) is something strange.
e Please check on all similar unprofessional expressions in (39), (42) and (43).

Authors’ response: Thank you. We have modified these equations. Please see Lines
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251-282, Page 11-13.

“«

T T T

Min f,(x)= (Zwt”vdb —ZWj’dbj D> W, ® x100%, (34)
t=1 t=1 t=1
3 T 3 T 3 T

Min f, ( (ZZW” a ZZWJ;‘“) DYWL x100%, (35)
k=1 t=1 k=1 t=1 i=1 t=1

Min f3(x):(MCisland +M£nainland)_Mr’ (36)

where fi and f, are the water deficiency ratio of Daobei Plant and the sum of the

remaining three plants, respectively (%); fsis the net operating costs (RMB); ws® and
w"® are the amount of water supply and demand for Daobei Plant at t time step,
respectively (m3); w;" and w,}" are the amounts of water supply and demand for the
ki plant (one of the remaining three plants) at t time step, respectively (m3); m e

and mm™  are the costs for water supply from the islands and the mainland,

respectively (RMB); My is the revenue (RMB). The revenue can be obtained according

to:

1) Operating costs for water supply from islands (M, RMB):

island island island island
M = M+ M+ M (37)
H
T | T
M(i:slland — Clisland ><Z:WIs,island =c |s|and x ZZQIriislandAt ’ (38)
t=1 i=1 t=1
T I T
M(i:slzand — Cizsland ><zwts,island =c |s|and ™ ZQ{riiSIandAt (39)
t=1 i=1 t=1 ,
10T Qp island Plsland
island __ |s|and
M c3 X z z Q p,island (40)
j=1 t= jrmax

where ™M™, M5, and MZ™ represent the water resource fees paid to the

government, water fees paid to reservoir managers, and the electricity fees in Zhoushan

City, respectively (RMB); cf , ¢ , and c denote the constant vectors,

representing the unit price of water resources, water, and electricity in Zhoushan City,
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respectively (RMB/m?); At is the time step; i is the number of a reservoir, j is the

number of a pump station, | denotes the number of reservoirs, and J denotes the number

of pump stations in Zhoushan City; w;*= denotes the amount of water supply for
plants at t" time step (m®); Q'™ denotes flow from the i reservoir at t" time step in
Zhoushan City (m3/s), in which Q7™ denotes the flow without pump station from
the i reservoir at t" time step (m®/s), Q%™ denotes the flow pumped by the /' pump
station from the it reservoir at t" time step (m3/s); P denotes the supporting motor

power of the i" pump station (Kw); QP*™ denotes the flow through the j™" pump

N; ) . .
station at t" time step (m?%/s), where Q7**=>"Q/>* , Njis the number of reservoirs

il
n=1

pumped by the j" pumpstation; QPFs™ denotes the upper flow boundary of the jt" pump

j>max

station in Zhoushan City (m3/s).

2) Operating costs for water supply from the mainland (M ™" | RMB)

mianland __ mainland mainland mainland
Mc - Mc.l +Mc,2 + Mc,3 1 (41)
inland inland . inland inland c inland
mainland __ ~mainlan s,mainland __ ~mainlan p,mainlan
M = e Y W, =" XY Q) At, (42)
t=1 t=1
inland land c inland inland C inland
mainlan mainlan s,mainland __ ~mainlan p,mainlan
Mz =6 x> W, =G x2.Q At (43)
t=1 t=1 ,
J T L+ Q p,mainland
mainland __ malnland ] t]
MC,3 x ZZ p,mainland (44)
j=1 t=1 QJ max

’

where M5 MMM and M5 represent the water resources fees paid to the

government, water fees paid to the river managers, and electricity fees in Ningbo City,

respectively (RMB); ¢ | cramed - and  ¢f*"™ denote the constant vectors,

representing the unit price of water resources, water, and electricity in Ningbo City,

respectively (RMB/m?3); w == denotes the amount of water transferred from Ningbo

City at t" time step (m3); Q™= denotes the flow pumped from Ningbo City at ti
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time step (m3/s), Q™" denotes the flow through the j™ pump station at t' time step,

J is the number of pump stations transferring water from Ningbo, J=2,

QP mamand QR mamand —gpmamiand | ; denotes the length of the continental diversion pipeline

using j™ pump station (m) and QP™r=¢ denotes the upper flow boundary of the ji

j»max
pump station for water transfer (m3/s).

3) Revenues (Mr, RMB)

T
Mr:bx(zvvﬁ”" vvj (43)

t=1

where b denotes the unit price of water supply revenue (RMB/m?3).

The optimization model is subject to the following constraints:

(1) Reservoir water balance: Veas =Vo +(1,-Q7 At (46)

(2) Reservoir storage limits: Veimin <Vei SVeimax - (47)
(3) Reservoir release limits (for the reservoir

Qtr,i S Qtr,i,max ) (48)
that supply water without pump station):
(4) Pumping station limits: Q' < Qaxi» (49)

where 1., is the inflow of the it" reservoir at t" time step (m3/s); v,, is the storage of

i reservoir at t time step (M3); Vmin and Vmax are the lower and upper storage

boundaries, respectively (m3); Q';...is the maximum release of the i"" reservoir at t"

time step (m3/s). In some cases, Q, obtained by the RBF policies can be greater than

r2
Q... and we will do the following step Q=221 xQF,,, to update Q[7;."

J,max 1
z Y
g[y Nl
n=1

Comment #3: Please do not omit subscripts in mathematical symbols. And for all the
definitions of math symbols, all the subscripts in any symbol should appear in its
definition.

Authors’ response: Thank you. We have double checked all the subscripts in

mathematical symbols.
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Reply to the comments from Referee #2,

Comment #1: deterministic S5 performance indicators overlap each other, I would
suggest to modify color or width to improve the readability.

Authors’ response: Thanks for your constructive comments. We have revised this

figure in the new version.

Forecast horizon(d) | o 1.0 2 0 3 8 4 5.8.6 8 7 |
1.00 P
o * ¢
a.ﬁt!‘ : -52‘, e L
0.95 |- (1] :. : [ : : ° g r ‘ﬂ fe
m ok it §%e; s Py g e o
% o o * bl | ;
0.90 | L * g - e .
(al) LSTM (b1) GRU i (c) Gwo-Lgsx.fM
(Calibration) (Calibration) (Calibration)
0A85 | 1 1 1 I | 1 1 a |
1 2 3 4 5 6 1 2 6 1 2 3 4 5 6
coVv Ccov
1.0
LS : ' s i ' }
09 1@ e - 8+
] :g ® : ® ® .

0) ® e ]

() ° ‘ [
208t 2 - ¥ - oS o2y . ]
z. ® % o" v

L L L )
0.7 (a2) LSgM (b2) GRU (c2) GWO-LSSVM g ®
(Validation) (Validation) (Validation)
06 | 1 | 1 1 I 1 | 1 1 |
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
CoV COV COoVv
1.0
4 [ ]
08 - L r ® _ e
.| Bk, ek, o Rt s
7o) [ ] .l hit . ° ‘ [ ] [
Z. o 8 o8 @ ’ :.. ™ o.ae ©
0.6 v * 8 L °0°% o L .
¢ (@3)LST™ (b3) GRU (c3) GWO-LSSVM
(Test) (Test) (Test)
0-4 L 1 L 1 1 1 1 L 1 1 1 Il
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
cov cov cOv

Figure 6: NSE values at lead times of 1 to 7 days plotted against the coefficient of variation (COV)

for all the 24 reservoirs during the period of (a) calibration, (b) validation, and (c) test under S5.
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