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Reply to the comments on hess-2020-617 

 

Dear editor and reviewers, 

Thank you very much for your evaluation of our manuscript and insightful comments, 

which have been a great help in improving the quality of our manuscript. We have 

carefully revised the manuscript according to these comments and suggestions. The 

related parts of the manuscript have been rewritten and improved, and for your easy 

reading and evaluation, the changed parts are marked using track changes text in the 

revised version. 

 

Reply to the comments from Referee #1, 

Comment #1: Some comments in literature review could be more precisely.  

•  The LSTM and GRU, for example, were not only applied in few previous works 

(refer to Line 55 in the manuscript) 

Authors’ response: Thank you. We have modified Line 55 in the new manuscript. 

Please see Lines 52-56, Page 2.  

“LSTM and GRU networks have been successfully applied in many fields (Greff et 

al., 2017; Zhang et al., 2018; Jung et al., 2020; Shahid et al., 2020; Ayzel and 

Heistermann, 2021), and they are demonstrated to generate comparable performances. 

But GRU has a more straightforward structure and a higher operation speed than 

LSTM. Recently, many applications that assessed them together are also found in the 

hydrological field (Gao et al., 2020; Muhammad et al., 2020).”  
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• The research works on impacts of forecast horizon on reservoir operation were not 

rare (Lines 59 and 71). 

Authors’ response: Thanks for your comments. We have made corresponding 

revisions in the manuscript, such as: 

(1) “While a considerable research effort has been made to evaluate and improve 

the quality of streamflow forecasts (Gibbs et al., 2018; Nanda et al., 2019; Sharma et 

al., 2019; Van Osnabrugge et al., 2019; Feng et al., 2020; Pechlivanidis et al., 2020), 

how forecasts impact decision-making in the real-time reservoir operations has also 

gradually gained researchers’ attention (Goddard et al., 2010; Shamir, 2017; Anghileri 

et al., 2019; Alexander et al., 2020; Hadi et al., 2020), e.g., do high-quality forecasts 

mean improved decision?” Please see Lines 57-61, Page 2. 

(2) “There is often a mismatch between the information needed for reservoir 

operations and the skillful lead time of the reservoir inflow forecast (Anghileri et al., 

2016). It is crucial to demonstrate the applicability and effectiveness of the forecast 
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horizon in a forecast-based reservoir operation system (Xu et al., 2014).” Please see 

Lines 69-72, Page 3. 

 

References 

Alexander, S., Yang, G., Addisu, G., et al. Forecast-informed reservoir operations to guide 

hydropower and agriculture allocations in the Blue Nile basin, Ethiopia. International 

Journal of Water Resources Development, 1-26, 

https://doi.org/10.1080/07900627.2020.1745159, 2020. 

Anghileri, D., Monhart, S., Zhou, C., et al. The Value of Subseasonal Hydrometeorological 

Forecasts to Hydropower Operations: How Much Does Preprocessing Matter? Water 

Resources Research, 55(12), 10159-10178, https://doi.org/10.1029/2019WR025280, 2019. 

Anghileri, D., Voisin, N., Castelletti, A., et al. Value of long-term streamflow forecasts to 

reservoir operations for water supply in snow-dominated river catchments. Water 

Resources Research, 52(6), 4209-4225, https://doi.org/10.1002/2015WR017864, 2016. 

Feng, D., Fang, K., Shen, C. Enhancing streamflow forecast and extracting insights using long‐

short term memory networks with data integration at continental scales. Water Resources 

Research, 56(9), e2019WR026793, https://doi.org/10.1029/2019WR026793, 2020. 

Gibbs, M. S., McInerney, D., Humphrey, G., et al. State updating and calibration period 

selection to improve dynamic monthly streamflow forecasts for an environmental flow 

management application. Hydrology and Earth System Sciences, 22(1), 871-887, 

https://doi.org/10.5194/hess-22-871-2018, 2018. 

Goddard, L., Aitchellouche, Y., Baethgen, W., et al. Providing Seasonal-to-Interannual Climate 

Information for Risk Management and Decision-making. Procedia Environmental 

Sciences, 1, 81-101, https://doi.org/10.1016/j.proenv.2010.09.007, 2010. 

Hadi, S. J., Tombul, M., Salih, S. Q., et al. The capacity of the hybridizing wavelet 

transformation approach with data-driven models for modeling monthly-scale streamflow. 
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45, https://doi.org/10.1016/j.jaridenv.2016.10.011, 2017. 
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Resources Research, 50(12), 9267-9286, https://doi.org/10.1002/2013WR015181, 2014. 

 

Comment #2: It is unclear how the weight matrices involved in the forecasting models 

(Lines: 124 and 136) were estimated, and what / which criteria were used in calibration.  

Authors’ response: Thanks for your comment. We have modified it in the new version. 

Please see Lines 301-303, Page 14. 

“Both LSTM and GRU are trained based on truncated Back Propagation Through 

Time (BPTT) which uses a back propagation network to update the parameters in 

iterations (Cheng et.al., 2020). The NSE function is used as the loss function to 

calibrate the LSTM and GRU models.” 

 

References 
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Comment #3:. It is left unexplained:  

• How the parameters used to define the operational policy are estimated？ 

Authors’ response: Thanks for your comments. The parameters in the operation policy 

are the decision variables in our multi-objective problem, and can be estimated by 

NSGA-II.  

• What specific hydrological variables are included in the “policy inputs”？  

Authors’ response: The hydrological variables in the policy inputs include fore-bay 



5 

water level, observed or predicted inflows, and precipitation. 

• How these “policy inputs” are related to the decision horizon？ 

Authors’ response: Thank you. As show in Eq (32), in each operation horizon, t  is 

the tth policy inputs including exogenous information (e.g., fore-bay water level 

observed or predicted inflows and precipitation)  

, ,

1

( )
N

k

t i k i k t

i

u  
=

=  , 
 

(32) 

• How the policy could be implemented with all constraints enforced in a day-by-day 

practice？ 

Authors’ response: Thank you. When using the parameterized MORDM approach to 

solve the multi-objective reservoir operation under uncertainty, it is indeed hard to 

obtain the policy that is subject to with all constraints. To avoid this potential problem, 

we have applied a post-processing procedure in the practice. For example, assume that 

,2

, ,

r

t i jQ  denotes the flow pumped by the jth pump station from the ith reservoir at tth time 

step (m3/s); 
,

p

t jQ   denotes flow through the jth pump station at tth time step (m3/s), 

,2

, , ,=
jN

p r

t j t i j

i

Q Q , Nj is the number of reservoirs pumped by the jth pump station; 
,max

p

jQ  

denotes the upper flow boundary of the jth pump station (m3/s). The post-processing 

procedure have been described in Part “3.2 Problem formulation. Please see Lines 281-

282, Page 13.  

“In some cases, 
,

p

t jQ  can be greater than 
,max

p

jQ , and we will do the following step 

,2

, ,,2 '

, , ,max

,2

, ,

1

=
j

r

t n jr p

t n j jN

r

t n j

n

Q
Q Q

Q
=





 to update ,2

, ,

r

t n jQ .” 

• Why it is called “multi-objective” since involving only an objective (26)? 

Authors’ response: Thanks for your constructive comment. In this study, we focus on 

the multi-objective problem, and three objectives are considered in our case study. 

Accordingly, it should be multi-objective in this equation, and we have modified it.  

( )1 2=arg min ,  , , . . M pp
p J J J s t


   ,  (31) 

where 1 2,  , , MJ J J  are the objective functions, and M is the number of objectives.  
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Moreover, to answer these above questions, we have re-organized the introduction of 

the Parameterized multi-objective robust decision making (MORDM). Please see Lines 

194-225, Pages 9-10. 

“2.4 Parameterized multi-objective robust decision making (MORDM) 

This study proposes a parameterized multi-objective robust decision-making approach 

to design operating policies for the multi-objective reservoir operations by combing 

direct policy search (DPS) and multi-objective robust decision making (MORDM). In 

the parameterized MORDM, instead of using the volumes of water to be allocated as 

the decision variables, we prescribe decisions approximated as non-linear functions 

conditioned on system state variables (e.g., fore-bay water level observed or predicted 

inflows, and precipitation) (Giuliani et al., 2016; Quinn et al., 2017b; Salazar et al., 

2017). The non-linear functions can be realized by the DPS approach. DPS is based on 

the parameterization of the operating policy p  and the exploration of the parameter 

space Θ to find a parameterized policy that optimizes the expected function, i.e., 

( )1 2=arg min ,  , , . . M pp
p J J J s t


   ,  (31) 

where 
1 2,  , , MJ J J  are the multi-objective functions, M is the number of objectives, 

and p

  is the corresponding optimal policy with parameters    . Different DPS 

approaches have been proposed, where two nonlinear approximating networks, namely 

artificial neural networks (ANNs) and radial basis functions (RBFs) have become 

widely adopted as universal approximators in many applications (Deisenroth et al., 

2013; Giuliani et al., 2016). In particular, we parameterize the operating policy as 

RBFs, because they have been demonstrated to be effective in solving multi-objective 

water resources management problems (Giuliani et al., 2014; 2015) and the kth decision 

variable in the vector ut (with  1,  ,k K=  ) is defined as: 

, ,

1

( )
N

k

t i k i k t

i

u  
=

=  ,  (32) 

where N is the number of RBFs ( )   , t   is the policy inputs including exogenous 

information (e.g., fore-bay water level observed or predicted inflows and precipitation) 
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and ,i k  is the weight of the ith RBF, , ,

1

1 0
N

i k i k

i

 
=

=  . The single RBF is defined as 

follows: 

,

2

,

, 2
1

( )
( )= exp

j i

M
t j j i

i k t

j

c

b


=

   −   −
 
 

 , 
 

(33) 

where M denotes the number of policy inputs t  and ci, bi are the M-dimensional 

center and radius vectors of the ith RBF, respectively. The centers of the RBF must lie 

within the bounded input space (Yang et al., 2017). The parameter vector θ is defined 

as , , , , , ,= , ,i j k i j k i j kc b      with the number of    is ( )= 2 1n N K M    +  . In general, 

when DPS problems involve multiple objectives, they can be coupled with truly 

multiobjective optimization methods, such as MOEAs which allow estimating an 

approximation of the Pareto front in a single run of the algorithm (Giuliani et al., 2016).  

In our study, the parameterized MORDM approach will be coupled with a rolling 

horizon scheme over one year period to solve the multi-objective reservoir operation 

problem. Given the lead time of 7 days (forecast horizon is equal to operation horizon) 

as an example, it is operated following two steps: the optimization model is first 

operated daily over a 7-day horizon using the parameterized MORDM; after 

implementing current water allocation decisions, the status, inflow, and other 

information of reservoirs update as time evolves, and then the remainder is 

subsequently operated. The two steps are repeated until the process (one year period) 

is completed. In each operating horizon, the main steps of the parameterized MORDM 

are: (1) problem formulation, including the possible actions (i.e., RBF inputs and 

policies), performance measures, and constraints; (2) generate alternative RBF 

policies subjecting to all the constraints and the objectives are evaluated over 

stochastic inflows (i.e., BMA ensemble forecasts); (3) identify solutions with a robust 

rule (e.g., the principle of insufficient reason, minimax, and minimax regret) using 

multi-objective evolutionary algorithms (MOEAs) (Giuliani and Castelletti, 2016; Guo 

et al., 2020b).” 
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Comment #4: I think this work has formulated an incomplete reservoir operation 

problem.  

• The water balance, for instance, does not reflect the hydraulic connections shown in 

Figure 4. The relationships between water supply, pumping flow, inflow and 

discharge are not incorporated in the model.  
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Authors’ response: Thanks for your constructive comments. All plants are supplied by 

the reservoirs, and we can find in Fig.4 that some reservoirs supply water without pump 

stations (e.g., Longtan, Changchunling, Chahe, and Nanao), while the others will be 

pumped by pump stations. Assume that 
,

r

t iQ  denotes flow from the ith reservoir at tth 

time step (m3/s), in which ,1

,

r

t iQ  denotes the flow without pump station from the ith 

reservoir at tth time step (m3/s), ,2

, ,

r

t i jQ  denotes the flow pumped by the jth pump station 

from the ith reservoir at tth time step (m3/s). s

tW  denotes the amount of water supply for 

plants at tth time step (m3), ,

1 1

=
I T

s r

t t i

i t

W Q t
= =

 , I is the total number of reservoirs; 
,

p

t jQ  

denotes water through the jth pump station at tth time step (m3/s), 2

, , ,

1

=
jN

p r

t j t i j

i

Q Q
=

 ， , Nj is the 

number of reservoirs pumped by the jth pump station. The relationship between water 

supply and discharge, and that between water supply and pumping flow, are present in 

the description of Eqs. (38)-(39). The water balance limitation ( )1, , , ,

r

t i t i t i t iV V I Q t+ = + −   

is mainly for reservoirs. Accordingly, we have modified the problem formulation. 

Please see Lines 251-282, Pages 11-13. 

“These objective functions are given as follows:  

( ) , , ,

1

1 1 1

Min    100%
T T T

n db s db n db

t t t

t t t

f x W W W
= = =

 
= −  
 
   ,  (34) 

( )
3 3 3

, , ,

2 , , ,

1 1 1 1 1 1

Min    100%
T T T

n th s th n th

t k t k t k

k t k t i t

f x W W W
= = = = = =

 
= −  
 
   ,  (35) 

( ) ( )3Min    island mainland

c c rf x M M M= + − ,  (36) 

where f1 and f2 are the water deficiency ratio of Daobei Plant and the sum of the 

remaining three plants, respectively (%); f3 is the net operating costs (RMB); ,s db

tW  

and ,n db

tW  are the amount of water supply and demand for Daobei Plant at tth time step, 

respectively (m3); ,

,

s th

t kW  and ,

,

n th

t kW  are the amounts of water supply and demand for 

the kth plant (one of the remaining three plants) at tth time step, respectively (m3); 

island

cM  and mainland

cM  are the costs for water supply from the islands and the mainland, 
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respectively (RMB); Mr is the revenue (RMB). The revenue can be obtained according 

to:  

1) Operating costs for water supply from islands ( island

cM , RMB): 

1 ,2 ,3

island island island island

c c c cM M M M= + +， , 
 (37) 

, ,

,1 1 1 ,

1 1 1

T I T
island island s island island r island

c t t i

t i t

M c W c Q t
= = =

=  =    ,  (38) 

, ,

,2 2 2 ,

1 1 1

T I T
island island s island island r island

c t t i

t i t

M c W c Q t
= = =

=  =   
, 

 
(39) 

,

,

,3 3 ,
1 1 max

p island islandJ T
t j jisland island

c p island
j t j

Q P
M c

Q= =


= 

， , 

 
(40) 

where 
1

island

cM ，
, 

,2

island

cM , and 
,3

island

cM  represent the water resource fees paid to the 

government, water fees paid to reservoir managers, and the electricity fees in Zhoushan 

City, respectively (RMB); 
1

islandc , 
2

islandc , and 
3

islandc  denote the constant vectors, 

representing the unit price of water resources, water, and electricity in Zhoushan City, 

respectively (RMB/m3); t  is the time step; i is the number of a reservoir, j is the 

number of a pump station, I denotes the number of reservoirs, and J denotes the number 

of pump stations in Zhoushan City; ,s island

tW  denotes the amount of water supply for 

plants at tth time step (m3); ,

,

r island

t iQ  denotes flow from the ith reservoir at tth time step in 

Zhoushan City (m3/s), in which ,1,

,

r island

t iQ  denotes the flow without pump station from 

the ith reservoir at tth time step (m3/s), ,2,

, ,

r island

t i jQ  denotes the flow pumped by the jth pump 

station from the ith reservoir at tth time step (m3/s); island

jP  denotes the supporting motor 

power of the ith pump station (Kw); ,

,

p island

t jQ  denotes the flow through the jth pump station 

at tth time step (m3/s), where , ,2,

, ,

1

=
jN

p island r island

t j t n

n

Q Q
=

 , Nj is the number of reservoirs pumped 

by the jth pump station; ,

max

p island

jQ ，
 denotes the upper flow boundary of the jth pump station 

in Zhoushan City (m3/s). 

2) Operating costs for water supply from the mainland (
mainland

cM , RMB) 
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1 ,2 ,3

mianland mainland mainland mainland

c c c cM M M M= + +，
,  (41) 

, ,

1 1 1

1 1

T T
mainland mainland s mainland mainland p mainland

c t t

t t

M c W c Q t
= =

=  =   ， ,  (42) 

, ,

2 2 2

1 1

T T
mainland mainland s mainland mainland p mainland

c t t

t t

M c W c Q t
= =

=  =   ，

, 

 
(43) 

,

,

,3 3 ,
1 1 ,max

p mainlandJ T
j t jmainland mainland

c p mainland
j t j

L Q
M c

Q= =

+
= 

, 

 
(44) 

where
,1

mainland

cM , 
,2

mainland

cM , and 
,3

mainland

cM  represent the water resources fees paid to the 

government, water fees paid to the river managers, and electricity fees in Ningbo City, 

respectively (RMB);
1

mainlandc , 
2

mainlandc , and 
3

mainlandc  denote the constant vectors, 

representing the unit price of water resources, water, and electricity in Ningbo City, 

respectively (RMB/m3); ,s mainland

tW  denotes the amount of water transferred from Ningbo 

City at tth time step (m3); ,p mainland

tQ  denotes the flow pumped from Ningbo City at tth 

time step (m3/s), ,

,

p mainland

t jQ  denotes the flow through the jth pump station at tth time step, 

J is the number of pump stations transferring water from Ningbo, J=2, 

, , ,

1 ,2= =p mainland p mainland p mainland

t t tQ Q Q， . Lj denotes the length of the continental diversion pipeline 

using the jth pump station (m) and ,

max

p mainland

jQ ，  denotes the upper flow boundary of the jth 

pump station for water transfer (m3/s).  

3) Revenues (Mr, RMB) 

where b denotes the unit price of water supply revenue (RMB/m3). 

The optimization model is subject to the following constraints: 

(1) Reservoir water balance: ( )1, , , ,

r

t i t i t i t iV V I Q t+ = + −  , (46) 

(2) Reservoir storage limits: , ,min , , ,maxt i t i t iV V V  , (47) 

(3) Reservoir release limits (for the reservoir 

that supply water without pump station): 
, , ,max

r r

t i t iQ Q , (48) 

, ,

1

= +
T

s db s th

r t t

t

M b W W
=

 
 
 
 ,  (45) 
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(4) Pumping station limits: , max,

p p

t j jQ Q , (49) 

where 
,t iI  is the inflow of the ith reservoir at tth time step (m3/s); 

,t iV  is the storage of 

ith reservoir at tth time step (m3); Vmin and Vmax are the lower and upper storage 

boundaries, respectively (m3); 
, ,max

r

t iQ is the maximum release of the ith reservoir at tth 

time step (m3/s). In some cases, 
,

p

t jQ  obtained by the RBF policies can be greater than 

,max

p

jQ , and we will do the following step 
,2

, ,,2 '

, , ,max

,2

, ,

1

=
j

r

t n jr p

t n j jN

r

t n j

n

Q
Q Q

Q
=





 to update ,2

, ,

r

t n jQ . 

• Also, how the MORDM is related to this operational problem?  

Authors’ response: Thanks for your comments, we have re-organized the introduction 

of the parameterized MORDM approach and described the detailed steps in the new 

version. Please see Lines 216-225, Page 10. 

“In our study, the parameterized MORDM approach will be coupled with a rolling 

horizon scheme over one year period to solve the multi-objective reservoir operation 

problem. Given the lead time of 7 days (forecast horizon is equal to operation horizon) 

as an example, it is operated following two steps: the optimization model is first 

operated daily over a 7-day horizon using the parameterized MORDM; after 

implementing current water allocation decisions, the status, inflow, and other 

information of reservoirs update as time evolves, and then the remainder is 

subsequently operated. The two steps are repeated until the process (one year period) 

is completed. In each operating horizon, the main steps of the parameterized MORDM 

are: (1) problem formulation, including the possible actions (i.e., RBF parameters) and 

performance measures; (2) generate alternative RBF policies subjecting to all the 

constraints and the objectives are evaluated over stochastic inflows; (3) identify 

solutions with a robust rule (e.g., the principle of insufficient reason, minimax, and 

minimax regret) using multi-objective evolutionary algorithms (MOEAs) (Giuliani and 

Castelletti, 2016; Guo et al., 2020b).” 

 

References 
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https://doi.org/10.1007/s10584-015-1586-9, 2016. 
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• The model looks like a linear programming problem that can be easily solved. 

Authors’ response: Thanks for your comments. There are 25 reservoirs and 16 pump 

stations in our multi-objective reservoir operation optimization problem. Although the 

objectives and constraints seem to be linear, there are some non-linear functions 

considered in our modelling process. For example, the relationship between the fore-

bay water level and volume of reservoirs is non-linear, and normally expressed by a 

quadratic function; the RBF functions we used are also non-linear. Besides, it is difficult 

and time consuming to assure all constraints enforced in the day-by-day practice, 

especially when it is operated under stochastic inflow.  

 

Comment #5: The manuscript will benefit from more logically organizing its contents. 

The “Results and Discussion” are usually a part of the case studies.  

Authors’ response: Thank you. We have re-organized the manuscript and put the “3.4 

Results and discussion” as a part of case study and add a part of “3.3 Model 

development”. 

Theory, models, procedures and definitions are generally presented before case studies, 

and some of them need more detailed introduction, including:   

• How the weights in the BMA are determined (Line 320)?  

Authors’ response: Thank you. We have modified it. Please see Lines 165-172, Pages 

7-8. 

“In this study, a log-like hood function is maximized to estimate the parameters 

(weight kw  and variance 
2

k ) as shown in Eq (21).  
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( ) ( )( )2

1

log ,
K

t

k k k

k

l w g Q f 
=

 
=  

 
 , 

 
(21) 

where   is the vector of parameters  2, , 1,2,...,k kw k K = . 

The Expectation-Maximization (EM) algorithm is used to find out the maximum 

likehood with a termination criterion (early stopping or a maximal iteration). As the 

EM proceeds, the parameters of weight kw  and variance 2

k  are updated as follows. 

( ) ( )

1

1 Iter
NT

Iter t

k k

t

w z
NT =

 
=  

 
 , 

 
(22) 

( )
( )

2

2 1

1

Iter

Iter

Iter

NT
t t t

k k

t
k NT

t

k

t

z Y f

z

 =

=

 −

=



, 

 

(23) 

( )

( )

( )
( )

( )

1

1

2

2

1

,

,

Iter

Iter

Iter

t

k k
t

k K
t

k k

k

g Q f
z

g Q f





−

−

=

=


, 

 

(24) 

( )
( ) ( ) ( )

( )( )2

1 1

log ,
Iter

NT K
Iter Iter t

k k k

t k

l w g Q f 
= =

 
=  

 
  , 

 
(25) 

where Iter is the number of iterations. NT is the length of calibration periods. tY  and 

t

kf  are the observed and forecast streamflow at tth time step, respectively (m3/s), 
( )Iter

t

kz  

is the latent variable for the kth model at tth time in the Iter iteration.  

• How the Monte Carlo simulation method is used to generate BMA ensemble forecasts 

(Line 359)?  

Authors’ response: Thank you. We have modified it as bellows. Please see Lines 172-

179, Page8.  

“Then we use the Monte Carlo simulation method to generate BMA ensemble 

forecasts. Assume M is the number of Monte Carlo simulation and we set M as 1000 in 

this study. The procedure will be described as bellows. 

a) Set the initial cumulative weight 
*

0 0w =   and calculate cumulative weight 

* *

1i i iw w w−= +   for i=1,2,…,K. Create a random variable u between 0 and 1. If 
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* *

1 1i iw u w− −  , it indicates that the ith model forecast would be selected and used in the 

next step. 

b) Generate a realization of the observation yt using the PDF ( )2,t

k ktg fy  . 

c) Repeat steps (a) & (b) for M times. Furthermore, 90% confidence intervals between 

the 5% and 95% quantities were employed to reveal the uncertainty of BMA ensemble 

forecasts. 

• What “the previous water levels” is supposed to mean (Line 381)?  

Authors’ response: Thanks for your comments. The previous water levels is termed as 

the initial fore-bay water level of reservoirs. We have modified it in the new version. 

Please see Lines 317-318, Page 14. 

“The best operation is obtained by conditioning the operating policies upon the 

following two input variables, e.g., the initial fore-bay water level and current inflow 

of reservoir.” 

• Why the NSGA-II are still needed since we already have the operation policy 

determined (Line 383)?  

Authors’ response: Thanks for your comments. The parameters in the operation policy 

are the decision variables in our multi-objective problem and can be estimated by 

NSGA-II. We have modified it to avoid confusion. Please see Lines 213-215, Page 10 

and Lines 319-320, Page 14. 

“In general, when DPS problems involve multiple objectives, they can be coupled 

with truly multiobjective optimization methods, such as multiobjective evolutionary 

algorithms (MOEAs), which allow an approximation of the Pareto front in a single run 

of the algorithm (Giuliani et.al., 2016).”  

“The optimization is solved at each time step (a particular forecast horizon, e.g., 

1-7 days) by applying NSGA-II to search the space of decision variables and identify 

the islands' water allocation trajectories.” 

 

References 

Giuliani, M., Castelletti, A., Pianosi, F., et al. Curses, tradeoffs, and scalable management: 



16 

Advancing evolutionary multiobjective direct policy search to improve water reservoir 

operations. Journal of Water Resources Planning and Management, 142(2), 04015050, 

https://doi.org/10.5334/jors.293, 2016.  

 

• How the deterministic, uncertain and observed streamflow are used in the operation 

(399)?  

Authors’ response: Thank you. We have modified it in Part “3.3 Model development”. 

Please see Lines 309-315, Page 14. 

“In this study, we use the parametrized MORDM approach to design operating 

policies for the multi-objective reservoir operations under uncertainty. The optimized 

operations are both regulated based on deterministic and uncertain forecast inflow. To 

keep fair, we perform a simulation to generate deterministic and observed ensemble 

forecasts that each deterministic and observed data are repeated 900 times, respectively. 

Using the uncertain streamflow forecasts (BMA, deterministic or observed ensemble 

forecasts) as policy inputs in the parametrized MORDM method, we can generate 

alternative RBF policies subjecting to all the constraints and the objectives are 

evaluated over stochastic inflows.” 

• How the Pareto solutions are identified (Line 387)?  

Authors’ response: Thanks for your comments. We do not identify the Pareto solutions. 

In this study, we focus on assessing the overall operating performance of the multi-

reservoir system under different streamflow forecast configurations (i.e., deterministic 

or stochastic). Accordingly, instead of evaluating the performance of each operation 

solution, the system operating performances are averaged over the Pareto solutions. We 

have pointed it in the new version. Please see Line 437, Page 18. 

“The system performances are averaged over a set of solutions.” 

• Whether or not the annual revenues, costs, and water supply reliability (Line 409) are 

used as multiple objectives when determining the operating policy?  

Authors’ response: Thanks for your comments. We do not use the annual revenues, 

costs, and water supply reliability as the objectives. We deal with a real-time 

optimization problem in our study, and assume that the operating policy is determined 
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by the stochastic short-term reservoir inflow forecasts. Accordingly, the indictors of 

revenues and water supply reliability over the corresponding short-term operating 

period are termed as the objectives. The annual revenues, costs, and water supply 

reliability, are just chosen as metrics to compare and assess the performance of the 

operating policies derived from different configurations. 

• “Fake” results do not have any meaningful value, so why they are included in Table 6 

in the first place (Line 428)? 

Authors’ response: Thank you. To the best of our knowledge, there are few inform-

driven studies have clearly point out that whether or not the system operating 

performance is post-evaluated by the true streamflow information. The differences 

between Table 6 and Table 7 may provide references for beginners.  

 

Comment #6: To the best of my understanding, the NSE was used to calibrate the 

forecasting models while the RMSE and MAE are also used in assessing the 

performance of the models. I think it should be a fairer practice by using multi-criteria 

to do both the calibration and assessment. 

Authors’ response: Thank you. Indeed, it is fairer by using multi-criteria to do both 

the calibration and assessment. However, in our study, we aim to identify the 

relationship between forecast skill and forecast-driven reservoir operation. To answer 

this question, five input combination scenarios are investigated and two of them are 

then applied to drive the multi-objective reservoir operation optimization. Accordingly, 

we prefer to distinguish the forecast skill of different configurations using the indictors 

of NSE, RMSE, and MAE, rather than improving the forecast skill. But it may be 

interesting to obtain forecasts when accounting for multi-criteria over both calibration 

and assessment period. We will add some discussion in the Part “Limitation and future 

work”. Please see 516-519, Page 21. 

“Our work suffers from some limitations, which could be overcome in future 

studies. One of the limitations is that the single indictor is used to calibrate the forecast 

models while multiple indictors are used in assessing the performance of the models. It 

should be a fairer practice by using multi-criteria to do both the calibration and 
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assessment and can be interesting as a future work.”  

 

Comment #7: Please justify why the Radial Basis Functions are used to parameterize 

the policy (Line 199)? 

Authors’ response: Thank you for your suggestion. We have modified it in the new 

version. Please see Lines 203-206, Page 9. 

“Different DPS approaches have been proposed, where two nonlinear 

approximating networks, namely artificial neural networks (ANNs) and radial basis 

functions (RBFs) have become widely adopted as universal approximators in many 

applications (Deisenroth et al., 2013; Giuliani et al., 2016). In particular, we 

parameterize the operating policy as RBFs, because they have been demonstrated to be 

effective in solving multi-objective water resources management problems (Giuliani et 

al., 2014; 2015).” 
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Comment #8: Including the test period when minimizing the NSE (Line 285) will make 

it lose efficacy in assessing the model performance in future. 

Authors’ response: Sorry for the confusion. This should be "As for LSSVM, we avoid 

overfitting by minimizing the NSE during the calibration and validation periods, while 
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the test period is also used to assess the forecast performance." Please see Lines 303-

304, Page 14.  

 

Technical Corrections: 

Comment #1:. Please rewrite the term (∑ 𝑤𝑘𝑓𝑘
𝐾
𝑖=1 ) in equation (19), which just does 

not make sense to me, with the fk being a model. 

Authors’ response: Thanks for your comments. We have revised "model fk" as "model 

forecast fk.".  

 

Comment #2: Please double check all the mathematical expressions.  

• In equations (19) and (20), the sum should be operated over subscript "k" rather than 

"i". 

Authors’ response: Thank you. We have changed "i" to "k".  

( )
1 1

= ,
K K

k k k k k

i i

E Q D w E p Q f D w f
= =

    =    
, 

 

(19) 

2

2

1 1 1

= +
K K K

k k k k k k

i i i

V Q D w f w f w 
= = =

 
   −  

 
  

, 

 

(20) 

• It might not be right that the subscript “k” on the left side does not appear on the right 

side of the equation (28) 

Authors’ response: Thank you. We have revised it in the new manuscript as bellows. 

, ,

2

, ,

, 2
1

( )
( )= exp

j i k

M
t j j i k

i k t

j

c

b


=

   −   −
 
 

 , 

 

(33) 

• It sounds not right to me in equation (34), where a variable without subscript “j” is 

summed over “j”. 

• It is questionable that the equation (35) does not have a subscript for the first sum 

operator to operate over. 

• Expressing a variable subscript “n” in “Qmax_n” (Line 247) is something strange. 

• Please check on all similar unprofessional expressions in (39), (42) and (43). 

Authors’ response: Thank you. We have modified these equations. Please see Lines 
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251-282, Page 11-13. 

“ 

( ) , , ,

1

1 1 1

Min    100%
T T T

n db s db n db

t t t

t t t

f x W W W
= = =

 
= −  
 
   ,  (34) 

( )
3 3 3

, , ,

2 , , ,

1 1 1 1 1 1

Min    100%
T T T

n th s th n th

t k t k t k

k t k t i t

f x W W W
= = = = = =

 
= −  
 
   ,  (35) 

( ) ( )3Min    island mainland

c c rf x M M M= + − ,  (36) 

where f1 and f2 are the water deficiency ratio of Daobei Plant and the sum of the 

remaining three plants, respectively (%); f3 is the net operating costs (RMB); ,s db

tW  and 

,n db

tW  are the amount of water supply and demand for Daobei Plant at tth time step, 

respectively (m3); ,

,

s th

t kW  and ,

,

n th

t kW  are the amounts of water supply and demand for the 

kth plant (one of the remaining three plants) at tth time step, respectively (m3); island

cM  

and mainland

cM  are the costs for water supply from the islands and the mainland, 

respectively (RMB); Mr is the revenue (RMB). The revenue can be obtained according 

to:  

1) Operating costs for water supply from islands ( island

cM , RMB): 

1 ,2 ,3

island island island island

c c c cM M M M= + +， , 
 (37) 

, ,

,1 1 1 ,

1 1 1

T I T
island island s island island r island

c t t i

t i t

M c W c Q t
= = =

=  =    ,  (38) 

, ,

,2 2 2 ,

1 1 1

T I T
island island s island island r island

c t t i

t i t

M c W c Q t
= = =

=  =   
, 

 
(39) 

,

,

,3 3 ,
1 1 max

p island islandJ T
t j jisland island

c p island
j t j

Q P
M c

Q= =


= 

， , 

 
(40) 

where 1

island

cM ， , ,2

island

cM , and ,3

island

cM  represent the water resource fees paid to the 

government, water fees paid to reservoir managers, and the electricity fees in Zhoushan 

City, respectively (RMB); 1

islandc , 2

islandc , and 3

islandc  denote the constant vectors, 

representing the unit price of water resources, water, and electricity in Zhoushan City, 
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respectively (RMB/m3); t  is the time step; i is the number of a reservoir, j is the 

number of a pump station, I denotes the number of reservoirs, and J denotes the number 

of pump stations in Zhoushan City; ,s island

tW  denotes the amount of water supply for 

plants at tth time step (m3); ,

,

r island

t iQ  denotes flow from the ith reservoir at tth time step in 

Zhoushan City (m3/s), in which ,1,

,

r island

t iQ  denotes the flow without pump station from 

the ith reservoir at tth time step (m3/s), ,2,

, ,

r island

t i jQ  denotes the flow pumped by the jth pump 

station from the ith reservoir at tth time step (m3/s); island

jP  denotes the supporting motor 

power of the ith pump station (Kw); ,

,

p island

t jQ  denotes the flow through the jth pump 

station at tth time step (m3/s), where , ,2,

, ,

1

=
jN

p island r island

t j t n

n

Q Q
=

 , Nj is the number of reservoirs 

pumped by the jth pump station; ,

max

p island

jQ ，  denotes the upper flow boundary of the jth pump 

station in Zhoushan City (m3/s). 

2) Operating costs for water supply from the mainland ( mainland

cM , RMB) 

1 ,2 ,3

mianland mainland mainland mainland

c c c cM M M M= + +， ,  (41) 

, ,

1 1 1

1 1

T T
mainland mainland s mainland mainland p mainland

c t t

t t

M c W c Q t
= =

=  =   ， ,  (42) 

, ,

2 2 2

1 1

T T
mainland mainland s mainland mainland p mainland

c t t

t t

M c W c Q t
= =

=  =   ，

, 
 (43) 

,

,

,3 3 ,
1 1 ,max

p mainlandJ T
j t jmainland mainland

c p mainland
j t j

L Q
M c

Q= =

+
= 

, 

 
(44) 

where ,1

mainland

cM , ,2

mainland

cM , and ,3

mainland

cM  represent the water resources fees paid to the 

government, water fees paid to the river managers, and electricity fees in Ningbo City, 

respectively (RMB);
1

mainlandc , 
2

mainlandc , and 
3

mainlandc  denote the constant vectors, 

representing the unit price of water resources, water, and electricity in Ningbo City, 

respectively (RMB/m3); ,s mainland

tW  denotes the amount of water transferred from Ningbo 

City at tth time step (m3); ,p mainland

tQ  denotes the flow pumped from Ningbo City at tth 
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time step (m3/s), ,

,

p mainland

t jQ  denotes the flow through the jth pump station at tth time step, 

J is the number of pump stations transferring water from Ningbo, J=2, 

, , ,

1 ,2= =p mainland p mainland p mainland

t t tQ Q Q， . Lj denotes the length of the continental diversion pipeline 

using jth pump station (m) and ,

max

p mainland

jQ ，  denotes the upper flow boundary of the jth 

pump station for water transfer (m3/s).  

3) Revenues (Mr, RMB) 

where b denotes the unit price of water supply revenue (RMB/m3). 

The optimization model is subject to the following constraints: 

(1) Reservoir water balance: ( )1, , , ,

r

t i t i t i t iV V I Q t+ = + −  , (46) 

(2) Reservoir storage limits: , ,min , , ,maxt i t i t iV V V  , (47) 

(3) Reservoir release limits (for the reservoir 

that supply water without pump station): 
, , ,max

r r

t i t iQ Q , (48) 

(4) Pumping station limits: , max,

p p

t j jQ Q , (49) 

where ,t iI  is the inflow of the ith reservoir at tth time step (m3/s); ,t iV  is the storage of 

ith reservoir at tth time step (m3); Vmin and Vmax are the lower and upper storage 

boundaries, respectively (m3); , ,max

r

t iQ is the maximum release of the ith reservoir at tth 

time step (m3/s). In some cases, ,

p

t jQ  obtained by the RBF policies can be greater than 

,max

p

jQ , and we will do the following step 
,2

, ,,2 '

, , ,max

,2

, ,

1

=
j

r

t n jr p

t n j jN

r

t n j

n

Q
Q Q

Q
=





 to update ,2

, ,

r

t n jQ .” 

 

Comment #3: Please do not omit subscripts in mathematical symbols. And for all the 

definitions of math symbols, all the subscripts in any symbol should appear in its 

definition. 

Authors’ response: Thank you. We have double checked all the subscripts in 

mathematical symbols.   

, ,

1

= +
T

s db s th

r t t

t

M b W W
=

 
 
 
 ,  (45) 
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Reply to the comments from Referee #2,  

Comment #1: deterministic S5 performance indicators overlap each other, I would 

suggest to modify color or width to improve the readability. 

Authors’ response: Thanks for your constructive comments. We have revised this 

figure in the new version. 

 

Figure 6: NSE values at lead times of 1 to 7 days plotted against the coefficient of variation (COV) 

for all the 24 reservoirs during the period of (a) calibration, (b) validation, and (c) test under S5. 


