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Abstract. Soil moisture (SM) plays a critical role in the water and energy cycles of the earth system; consequently, a long-

term SM product with high quality is urgently needed. In this study, five SM products, including one microwave remote 

sensing product [European Space Agency’s Climate Change Initiative (ESA CCI)] and four reanalysis datasets [European 15 

Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERAI), National Centers for Environmental 

Prediction (NCEP), the Twentieth Century Reanalysis Project from National Oceanic and Atmospheric Administration 

(NOAA) and the European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5)], are systematically evaluated 

using in situ measurements during 1981-2013 in four climate regions at different timescales over mainland China. The results 

show that ESA CCI is closest to the observations in terms of both the spatial distributions and magnitude of the monthly SM. 20 

All reanalysis products tend to overestimate soil moisture in all regions but have higher correlations than the remote sensing 

product except in Northwest China. The largest inconsistency is found in southern Northeast China, with a relative RMSE 

value larger than 0.1. However, none of the products can well reproduce the trends of interannual anomalies. The largest 

relative bias of 44.6% is found for the ERAI SM product under severe drought conditions, and the lowest relative biases of 

4.7% and 9.5% are found for the ESA CCI SM product under severe drought conditions and the NCEP SM product under 25 

normal conditions, respectively. As decomposing mean square errors in all the products suggests that the bias terms are the 

dominant contribution, the ESA CCI SM product is a good option for long-term hydrometeorological applications in mainland 

China. ERA5 is also a promising product, which is attributed to the incorporation of more observations. This long-term 

intercomparison study provides clues for SM product enhancement and further hydrological applications. 
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1 Introduction 30 

Soil moisture (SM) is a key state variable in the climate system and controls the exchange of water, energy, and carbon fluxes 

between the land surface and the atmosphere (Western and Blöschl, 1999; Robock et al., 2000; Ochsner et al., 2013; McColl 

et al., 2017; Peng and Loew, 2017; Qiu et al., 2018). SM can influence runoff generation, drought development and many 

other processes of hydrology and agriculture (Markewitz et al., 2010; Das et al., 2011; Sevanto et al., 2014; Akbar et al., 2018). 

Thus, understanding SM characteristics is beneficial to flood prediction (Komma et al., 2008; Norbiato et al., 2008), drought 35 

monitoring (Dai et al., 2004; Anderson et al., 2007; AghaKouchak et al., 2015; Li et al., 2018) and water management, which 

are directly related to crop growth (Engman, 1991; Bastiaanssen et al., 2000; Dobriyal et al., 2012). SM also affects the climate 

system through the land-atmosphere feedback loop (Kim and Hong, 2007; Dirmeyer, 2011; Zuo and Zhang, 2016), while the 

SM-climate interaction actually amplifies climate variability in some transitional climate zones (Seneviratne et al., 2010). 

Despite the small total mass of SM compared to other water cycle components, it is essential for numerical weather prediction 40 

(An et al., 2016) and has been recognized as an essential climate variable (ECV) (GCOS, 2010). 

In situ measurements have been acknowledged as the most accurate method to determine SM values, but they cannot fulfill 

the demand of high spatial and temporal resolution for hydrometeorological use (Bárdossy and Lehmann, 1998). Furthermore, 

the temporal coverage of in situ measurements is usually not long enough. Therefore, satellite-based products, reanalysis 

products and numerical model products are often used (Peng et al., 2017). Although model outputs are spatially and temporarily 45 

continuous, large uncertainties still exist in model simulations because of the physical structure, parameters, and other reasons 

(Schellekens et al., 2017). Reanalysis products are generally more accurate, yet they still inherit some uncertainties of the 

models (Berg et al., 2003), and their spatial resolutions are not high enough for regional application (Crow and Wood, 1999). 

Despite the short temporal coverage and the limitation of only measuring the surface SM (Petropoulos et al., 2015), satellite-

based products are very promising (Chauhan et al., 2003; Bogena et al., 2007; de Jeu et al., 2008) because they are often based 50 

on observations with high spatial resolution (Busch et al., 2012). For this reason, satellite-based products are normally taken 

as reference datasets to evaluate model outputs and reanalysis products (Crow and Ryu, 2009; Lai et al., 2014). To choose the 

most appropriate SM product for long-term hydrological and meteorological studies, more evaluation work needs to be done. 

Several evaluation studies have been conducted to find a qualified remote sensing SM product (Li et al., 2009; Zhang et al., 

2012; Lai et al., 2014; Peng et al., 2015; An et al., 2016; Ma et al., 2016; Zhu et al., 2018). The SM product from the European 55 

Space Agency (ESA) Climate Change Initiative (CCI) program has attracted attention in recent years (Dorigo et al., 2018) and 

has been proven to have good quality in some regions of the world (Dorigo et al., 2015, 2017; Chakravorty et al., 2016; Ikonen 

et al., 2018; González-Zamora et al., 2019). Peng et al. (2015) evaluated the ESA CCI product along with four other datasets 

in Southwest China and found that it has the potential to provide valuable information. Based on observational data and eight 

model products, An et al. (2016) further confirmed that the CCI SM can be applied over China. Ma et al. (2016) compared the 60 

ESA CCI and ERAI products with in situ measurements and found that both products show reliable time-series results. 
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However, no long-term SM products have been compared with the ESA CCI product using in situ measurements, and thus, 

more in-depth evaluation needs to be done. 

Many efforts have been made to assess the reanalysis products of soil variables based on limited observations (Decker et al., 

2012). Hagan et al. (2020) found that newer generation reanalysis products have better skill than older generations with higher 65 

correlations and lower RMSEs. Analysis of spring SM shows that ERAI can well reproduce the interannual variation in 

observed value and exhibits a better correlation with precipitation and evaporation than NCEP/NCAR R1, Modern-Era 

Retrospective analysis for Research and Applications (MERRA), Japan Meteorological Agency and the Central Research 

Institute of Electric Power Industry (JRA) SM products (Liu et al., 2014). Using in situ observations from 25 networks 

worldwide from 1979 to 2017, ERA5 SM performs better than other reanalysis products, and NCEP products show higher 70 

skill in terms of long-term trends (Li et al., 2020). During weak monsoon conditions, ERAI overestimates SM over India, and 

SM correlates well with observed rainfall (Shrivastava et al., 2017). Using 670 SM stations worldwide, Deng et al. (2020) 

found that NCEP performed poorly in December-February and June-August and in arid or temperate and dry climates. 

Nevertheless, to our knowledge, few studies on the estimation of long time series of SM over mainland China have been 

conducted. 75 

The objective of this study is to comprehensively evaluate long-term SM products over mainland China and identify the most 

accurate products for further meteorological and hydrological research. For this purpose, in situ measurements during 1981-

2013 are utilized to evaluate five SM products. In addition to the comparison based on different statistical metrics, the source 

of errors is also discussed. 

2 Data and Methodology 80 

2.1 Remotely Sensed and Reanalysis Products 

2.1.1 ESA CCI SM 

Generated by the ESA Program - Climate Change Initiative CCI project (ESA CCI), ESA CCI SM includes active, passive 

and combined products (Liu et al., 2012; Gruber et al., 2017). The latest version provides these products based on retrievals of 

8 passive and 3 active microwave sensors (Dorigo et al., 2017). The ESA CCI SM v04.4 combined product is employed in this 85 

study, which provides SM data starting from November 1978 until now with a spatial resolution of 0.25° plus 0.25°. This 

version is better at detecting underlying SM changes (Balenzano et al., 2011) than previous versions, as it merges all active 

and passive Level 2 products directly to generate the combined product (previously, the active and passive products were 

created separately and then merged) (ESA, 2018). Here, we evaluate all the products over the period from 1981 to 2013 (the 

same as below), during which in situ measurements are also available. 90 
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2.1.2 ERAI SM 

ERAI is a famous reanalysis product produced by the European Centre for Medium-Range Weather Forecasts (ECMWF, 

2009). The data assimilation system is based on the IFS (Cy31r2), which includes a four-dimensional analysis with a 12-hour 

analysis window. The ERAI data used in this study are on a fixed grid of 80 km and have a temporal resolution of four times 

daily and monthly. ERAI starts in 1979 and is continuously updated in real time (Paul et al., 2011). ECMWF simulates SM at 95 

4 depths: 0-7 cm, 7-28 cm, 28-100 cm, and 100-255 cm. As suggested by An et al. (2016), the data at depths of 7-28 cm are 

linearly interpolated to a depth of 10 cm for evaluation. 

2.1.3 NCEP SM 

NCEP is the 2nd reanalysis product provided by the National Centers for Environmental Prediction and Department of Energy 

(NCEP-DOE, (Kanamitsu et al., 2002)). The product is available since Jan 1979 with a spatial resolution of approximately 200 100 

km. The temporal resolution includes 4 times daily and monthly data. NCEP has two layers of SM between 0-10 cm and 10-

200 cm, in which the first layer was chosen for evaluation. 

2.1.4 NOAA SM 

The Twentieth Century Reanalysis Project (20CR) led by the Earth System Research Laboratory Physical Sciences Division 

from the National Oceanic and Atmospheric Administration (NOAA) and the University of Colorado Cooperative Institute for 105 

Research in Environmental Sciences (CIRES) also produces a long-term SM product. The version of V2c is used here, 

spanning the entire twentieth century from 1851 to 2014 (Compo et al., 2011). The NOAA SM product is generated with a 

spatial resolution of 2 degrees at six hours (also monthly) and with 4 subsurface levels (0, 10, 40, 100 cm), among which the 

data at 10 cm depth are used. 

2.1.5 ERA5 SM 110 

ERA5 is the latest reanalysis product produced by ECMWF, covering the period from 1979 to present. The product uses a new 

version of the ECMWF assimilation system IFS - IFS Cycle 41R2, which yields hourly analysis fields (C3S, 2017). The spatial 

(31 km) and temporal (hourly) resolutions of ERA5 are rather high compared to other existing reanalysis datasets. ERA5 will 

eventually cover the period from 1950 to the present, and one of its key improvements is better SM (Komma et al., 2008). It 

has more reliable results than ERAI at three sites in Australia. Land surface models driven by ERA5 also show consistent 115 

improvements, especially in surface SM, compared to those driven by ERAI (Albergel et al., 2018). Similar to ERAI, ERA5 

also has 4 levels of SM data, in which the SM is interpolated to 10 cm for evaluation. 

2.2 In Situ SM and Preprocessing of Datasets 

The in situ SM observations were generated by three SM datasets as follows: 
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(1) The International Soil Moisture Network (ISMN) 120 

The updated Chinese soil moisture was presented as volumetric soil moisture (𝜃𝜃𝑣𝑣, unit=m3 m-3) for 1981 to 1999 from the 

International Soil Moisture Network website (https://ismn.geo.tuwien.ac.at/en/) (Dorigo et al., 2011). 

(2) Soil water content from agricultural-meteorological stations 

The in situ SM measurements are obtained from the National Meteorological Information Center of China (NMIC, 2006). The 

data were collected at 778 agricultural-meteorological stations with a temporal resolution of 10 days since May 1991. As there 125 

are too many missing observations after 2013, the evaluations of the different datasets are performed until December 2013. 

There are 7 layers for the in situ observations, and the data at 10 cm depth are utilized. In addition, the observed SM is expressed 

as the relative water content (𝜃𝜃′, unit=%), while the SM in all other products is in the unit of volumetric water content (𝜃𝜃𝑣𝑣, 

unit=m3 m-3). Therefore, the observed SM is calculated by: 

𝜃𝜃𝑣𝑣 = 𝜃𝜃′ × 𝜃𝜃𝑓𝑓 × 𝜌𝜌𝑏𝑏/𝜌𝜌𝑤𝑤           (1) 130 

where 𝜃𝜃𝑓𝑓 is the field capacity, 𝜌𝜌𝑏𝑏 is the dry bulk density, and 𝜌𝜌𝑤𝑤 is the water density with a value of 1.0 (unit=g cm-3). 

(3) Mass percent of measured SM 

Another dataset including SM, field capacity and dry bulk density in China was recorded from 1981 to 1998, in which SM was 

presented as a mass percentage three times each month (Robock et al., 2000) to avoid auxiliary calibration. The volumetric 

soil moisture is calculated by: 135 

𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑚𝑚 × 𝜌𝜌𝑏𝑏/𝜌𝜌𝑤𝑤           (2) 

in which 𝜃𝜃𝑚𝑚 is the mass percent of measured soil moisture. Within a certain period, the two parameters of 𝜃𝜃𝑓𝑓 and 𝜌𝜌𝑏𝑏 can be 

treated as constant. Considering that the field capacity and the dry bulk density are not measured at all stations, data from 119 

stations are selected from 1981 to 2013. 

The selection of appropriate SM values is based on several criteria. First, if there were multiple data points in the same time 140 

period, the ISMN SM value was selected if available, or the average of the remaining two datasets was calculated. Second, 

SM values greater than 3 times the standard deviation were deleted. All the in situ observations, remote sensing data, and 

reanalysis data were averaged to monthly data at a depth of 10 cm. The distributions of the available stations are presented in 

Fig. 1, and detailed information on all the above SM products is listed in Table 1. 

2.3 Land Surface Air Temperature, Precipitation, and Radiation 145 

The land surface air temperature and precipitation data are obtained from the National Meteorological Information Center 

(NMIC) at a spatial resolution of 0.25° spanning from 1961 to the latest (http://data.cma.cn/site/index.html). By interpolating 

from Chinese ground high density stations (over 2400 observation stations), the CN05.1 dataset includes daily mean 

temperature, maximum/minimum temperature and precipitation (Wu and Gao, 2013). 

The radiation data were downloaded from the China Meteorological Forcing Dataset by merging China Meteorological 150 

Administration (CMA) station radiation data estimated from the observed sunshine duration, the World Climate Research 
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Programme’s (WCRP) Global Energy and Water Exchanges (GEWEX-SRB) downward shortwave radiation, Princeton 

forcing data and so on (Yang et al., 2010). The spatial resolution is 1 degree with a 3-hourly temporal resolution. 

The self-calibrating Palmer drought severity index (SC-PDSI) was utilized to determine the performance of all products under 

different drought/well conditions (Wells et al., 2004). By adjusting the climatic characteristics and calculating the duration 155 

factors based on the characteristics of the climate at a given location, the SC-PDSI has been widely used in recent decades. 

The SC-PDSI fit Palmer’s 11 categories to allow for comparisons across time and space. A negative value indicates drought 

conditions, and a positive value indicates a wet spell. The source code to the SC-PDSI can be downloaded via the National 

Agricultural Decision Support System (NADSS; online at http://nadss.unl.edu/). 

2.4 Study Area and Evaluation Strategies 160 

China is located on the eastern coast of Asia, immediately to the west of the Pacific Ocean. It extends roughly from 3.5°N to 

53.75°N latitude and from 73.25°E to 135.25°E longitude. Considering climate conditions and the distribution of available SM 

data, all estimations are conducted in four research regions as suggested by (Ma et al., 2016), which are shown in Fig. 1. 

Detailed information on the four research regions is specified in Table 2. Figure 1 also shows annual mean precipitation data 

obtained from 160 Chinese meteorological stations during 1971-2000 from the National Climate Center of China (NCCA). 165 

The 30-year averaged annual mean precipitation is treated as the climate mean precipitation to define the division of the climate 

zone. 

To better explain the disagreement between all the SM products and in situ observations, the mean square errors (MSEs) of 

each product in individual regions are decomposed to quantify the contributions of the correlation term, standard deviation 

term and bias term. 170 

MSE = 2𝜎𝜎𝑝𝑝𝜎𝜎𝑜𝑜𝑏𝑏𝑜𝑜(1 − 𝑅𝑅) + (𝜎𝜎𝑝𝑝 − 𝜎𝜎𝑜𝑜𝑏𝑏𝑜𝑜)2 + (𝜇𝜇𝑝𝑝 − 𝜇𝜇𝑜𝑜𝑏𝑏𝑜𝑜)2       (2) 

in which R is the correlation coefficient; 𝜎𝜎𝑝𝑝  and  𝜎𝜎𝑜𝑜𝑏𝑏𝑜𝑜  are the standard deviations of the products and the observations, 

respectively; and 𝜇𝜇𝑝𝑝 and 𝜇𝜇𝑜𝑜𝑏𝑏𝑜𝑜 are the means of the product and the observations, respectively. On the right-hand side of the 

equation, the first term (correlation term) shows the correspondence between the SM product and the in situ observations. The 

second term (standard deviation term) explains the degree of similarity of variations, and the third term (bias term) shows the 175 

accuracy of the product. With a better understanding of the error structure of the datasets, we can well explain the discrepancy 

between the SM products and the in situ observations (Dorigo et al., 2010). 

3 Results and Discussions 

3.1 Spatial Pattern of SM 

Figure 2 shows the spatial patterns of the 33-year averaged SM for the in situ observations and five products. Considering the 180 

frozen and vegetation cover, only the JJA SM values are used for evaluation. Generally, most SM products are able to capture 
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the spatial distribution of the SM value, although the NOAA SM is always highly overestimated. According to the in situ 

observations, SM is the lowest in the northwest and increases to the northeast and southeast. Except for NCEP, all the other 

datasets show two obvious wet centers in China, which are South China and Northwest China. ESA CCI has the highest spatial 

resolution, followed by ERAI and ERA5, and the spatial resolutions of NCEP and NOAA products are relatively coarse. ESA 185 

CCI underestimates SM in northern Northeast China and in Northwest and Southwest China. SM is overestimated by ESA 

CCI in southern Northeast China and central China, which represents the transitional zone from semihumid regions to semiarid 

regions. SM is always overestimated for all the analysis datasets, except in Northwest China, where SM is underestimated. For 

the northwest, ESA CCI always underestimates SM, while other reanalysis datasets always overestimate SM over the whole 

region. The largest biases reaching 0.15 m3/m3 are found in southern Northeast China, and the largest inconsistency is found 190 

in the northwest. 

The distribution of the relative root mean square error (rRMSE, which is defined as averaged SM observations divided by the 

RMSE of all SM products) for all stations is shown in Fig. 3 to represent the relative error of the SM dynamical range. Generally, 

compared to all the reanalysis products, ESA CCI has the lowest rRMSEs, indicating better performance of this remote sensing 

dataset. Large rRMSEs are found in the Yangtze-Huai region and in the south of Northeast China, which may be attributed to 195 

the high SM values. A possible explanation for the poor performance might be that these two regions are strongly influenced 

by monsoon precipitation. 

3.2 Temporal Variability of SM 

According to Table 2, all temporal variabilities of SM are averaged over the Northeast China, North China, Yangtze-Huai, and 

Northwest China regions, which are abbreviated as NE, NC, YH, and NW, respectively, below. 200 

3.2.1 Temporal Evolution 

The temporal evolutions of in situ observations and grid point SM values from the five datasets are averaged over each research 

region during JJA, as displayed in Fig. 4. Generally, all the reanalysis products overestimate the SM, while remote sensing 

underestimates the SM except for the NE region. All products perform well in the NC region, and the worst performance is 

found in the NW region. ERAI extremely overestimates SM in all the research regions, while NOAA and NCEP SM has the 205 

lowest bias among the reanalysis datasets in the NE and NC regions. Reanalysis can better reproduce the variation 

characteristics than remote sensing; for example, all reanalyses can reproduce the peak of JJA SM in 1998 in the YH region 

except for remote sensing. 

Table 3 shows biases, RMSEs and correlation coefficients for the comparison between all products and in situ observations 

during 1981 to 2013. ESA CCI presents the lowest biases and RMSEs for all regions except for the NW region, indicating that 210 

ESA CCI is the closest to the observed SM values. The correlation coefficient with observations for ESA CCI is relatively low. 

Good correlation is obtained for ERA5 SM except in the NW region, indicating that ERA5 can capture the variability well. 

https://doi.org/10.5194/hess-2020-611
Preprint. Discussion started: 4 January 2021
c© Author(s) 2021. CC BY 4.0 License.



8 
 

ERAI SM has the largest positive bias for all regions. All products show a poor performance in correlation in the NW region, 

implying that the mechanism in this region is not captured by models. 

The Taylor diagrams presenting the statistics of the comparison between ESA CCI, NCEP, ERAI, NOAA, ERA5 and in situ 215 

observations over four regions are shown in Fig. 5. Most correlation coefficient values are between 0.5 and 0.6 for ERA5, 

implying a good variability performance. Lower correlations are found for ESA CCI and ERAI SM, demonstrating that both 

products correlate poorly with the observations. All products exhibit poor correlations in the NW region. Generally, the NOAA 

SM is always highly overestimated in all regions, and ESA CCI SM is always underestimated. 

3.2.2 Seasonality 220 

Figure 6 shows the temporal evolution of SM seasonality averaged spatially over different regions. There exists a negative and 

a positive bias between remote sensing and reanalysis with respect to SM observations, respectively. The difference in ESA 

CCI is smaller than all reanalysis products, especially in warm seasons, partly due to different land surface types on satellite 

measurements, as well as various soil parameters used in the retrieval algorithms (Chakravorty et al., 2016). All reanalysis SM 

series have a larger dynamic range than in situ observations and remote sensing SM values. ERA5 SM showed a similar 225 

variation tendency as the observations, while its bias was larger than that of ERAI, NCEP, and NOAA. 

The seasonal cycle of SM in the NE region is obvious, partly due to the land surface vegetation types. The observed SM in all 

regions decreases from January, reaches its minimum from April to June, and then increases to its maximum from July to 

September, which can be reproduced by ERAI, NOAA and ERA5. ESA CCI and NCEP are closer to the observations in all 

regions, while the smallest biases occur in warm seasons and cold seasons for ESA CCI and NCEP, respectively. Additionally, 230 

ERAI and ERA5 can both reproduce the trend of SM, but the bias is smaller for ERA5. ESA CCI yields the worst seasonal 

cycle results considering the changing tendency, especially in cold seasons, which may be because of snow or frozen soil 

during these periods. 

Figure 7 displays the autocorrelation coefficients lagging one month in different seasons to investigate the persistence of the 

soil moisture anomaly for in situ observations and four analysis datasets. The ESA CCI correlation is not taken into account 235 

because of missing values. It is shown from observations that the autocorrelation in spring and autumn is more noticeable than 

that in summer and winter, partly due to the influences of liquid and solid precipitation and frozen soil. The lowest 

autocorrelation coefficient is found in the NW region, possibly because of the particular soil type and soil texture there. The 

regions with good persistence of soil anomalies are located in the northwest and eastern northeast regions of China, which are 

dominated by relatively simple land cover, for example, bare soil and forests, respectively. The NOAA SM shows larger 240 

autocorrelations for all seasons than other reanalysis products, implying that NOAA models should take into account the 

influence of some other variables on soil moisture in the future, for example, temperature and precipitation. All reanalysis SM 

data show greater autocorrelation in winter except for the NCEP SM data, indicating better performance of NCEP during cold 

seasons. ERA5 shows better performance than ERAI, especially with a close autocorrelation coefficient in the NE region. 
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3.2.3 Interannual Anomalies 245 

SM shows evident interannual anomalies in all the research regions, as shown in Fig. 8. Most peaks and troughs can be well 

represented by all products in the NE region, while the variation characteristics cannot be reproduced in the other regions, 

especially in the YH region. Furthermore, all products have a smaller amplitude of variation than observations in extreme wet 

or drought years in the NC and NW regions. 

Specifically, the variation range of the observed SM is larger than those of NOAA and ESA CCI, and the range in ERAI is the 250 

smallest. Taking the years of drought from 2001 to 2002 and the wet year of 2003 as examples, this characteristic was missed 

by ESA CCI. The variation range of NCEP SM is significantly smaller than the actual measurement, and the simulation of 

NCEP is obviously inferior to the other three products. 

In the NC region, all products fail to capture the SM variation tendency, especially during extreme drought and wet periods. 

NOAA and ERA5 can capture the basic trend, but the variation range does not match the measured value. The variation 255 

amplitudes of NCEP and ERAI are obviously smaller than the observations. 

In the YH region, ERAI and ERA5 can roughly reproduce the trend of change, but the magnitude of the change is large. There 

are three SM peaks occurring in 1993, 1998 and 2003 in the YH region, in accordance with the 1993 East China Flood, the 

1998 Massive Flood and the 2003 Huai River Flood, respectively. These peaks can be reproduced by the ERAI and ERA5 

datasets. 260 

In the NW region, none of these products are able to reproduce the variation characteristics, especially with worse performance 

in drought periods than in wet periods. According to the correlation (in Table 3), ERA5 has the best performance, but it shows 

a fictitious increase from 1981 to 1993. 

Generally, ERA5 is of the best quality, with the simulation in NE and NC regions passing the 0.05 significance test. Available 

data in the NC, YH and NW regions before 1995 are missing for ESA CCI, which might be a possible reason for the poor 265 

performance. NCEP has a smaller overall change in SM than observations, and all the datasets exhibit certain weaknesses in 

representing the interannual variation in SM. 

3.3 Decomposition of the Mean Square Error (MSE) 

The comprehensive performance of the five products over the four regions from 1981 to 2013 is evaluated. The contribution 

to MSE is decomposed into a correlation term, standard deviation term and bias term according to Eq. (2). As shown in Fig. 270 

9, the contribution of the bias term is much larger than the correlation term for the ERAI and NCEP SM data in all regions, 

indicating that reducing biases for both products is the direction we need to follow to further improve the quality of SM 

products. 

The MSE of ESA CCI SM is the smallest for all regions and that of ERA5 is the second smallest in the NC and NW regions. 

The large correlation term of ESA CCI and NOAA is found in all regions, pointing to the need for improving the capacity of 275 

changing variations. Additionally, all products present poor performance in the NW region with a high correlation term. By 
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decomposing the MSE, we can see that in addition to the NW region, ESA CCI has a larger correlation term than the bias term, 

implying that the main error of ESA CCI comes from the poor performance of the variation tendency. The ERA5 SM dataset 

performs inconsistently in that its main difference comes from the correlation term in the NC and NW regions, while the bias 

terms are dominant in the NE and YH regions. Furthermore, the standard deviation term has little effect on MSE for all datasets 280 

except for the NCEP product in the NC region. Time series and seasonal cycles of SM of ESA CCI and ERA5 have the highest 

correlation with the in situ measurements and the lowest MSE in the NC and NW regions. The NOAA SM product also shows 

a small MSE except in the NW regions, which is similar to former evaluations in some other regions (Peng et al., 2015; An et 

al., 2016; Zhu et al., 2018). 

3.4 SM Performance Under Various Climate Background 285 

Figure 10 shows the averaged relative bias under different humid/arid conditions. The SC‐PDSI is utilized (Wells et al., 2004). 

The relative bias was calculated as the bias of SM products and the in situ observations to be divided by the in situ observations 

under different conditions. The ESA CCI SM data showed a positive relative bias under severe drought conditions but a 

negative relative bias under severe wet and normal conditions. The NCEP and NOAA SM data have smaller relative biases 

under severe wet conditions, while ERAI and ERA5 SM data perform better under normal conditions. The largest difference 290 

is found for the ERAI products under severe drought conditions, with an average relative bias of 44.6%. The best performance 

is found for ESA CCI SM under severe drought conditions and NCEP SM under severe wet conditions, with averaged relative 

biases of 4.7% and 9.5%, respectively. For the performance in different regions (Fig. 11), the relative bias of all SM products 

in the NE region is noticeably high, partly due to the various land cover types in this region. The averaged relative bias for 

ESA CCI under drought conditions is smaller than that under better conditions. Although ERAI and ERA5 always highly 295 

overestimate the SM value, they show better performance in the NW region, especially under dry conditions. The smallest 

relative biases are found for the ESA CCI and NCEP SM products during all conditions. 

Figure 12 shows scatter plots of (a) precipitation, (b) temperature, and (c) radiation anomalies versus observed SM anomalies 

over different regions. Obvious positive/negative correlations are found between precipitation/temperature and SM in the NE 

and NC regions, respectively. The correlation between net radiation and SM (Fig. 12c) is low, which is partly due to the 300 

combined influence of longwave and shortwave radiation. The correlation coefficient is low for all meteorological variables 

in the NW region, which may be attributed to the special soil type there. 

In the winter, SM decreases in all regions mainly because of decreased precipitation. Lower evaporation caused by sudden 

cooling may explain why SM increases in early winter. SM reaches a local minimum in the spring in most of the regions except 

the NE region, as a temperature rise leads to higher evaporation, while precipitation does not increase much in this season. In 305 

the NE region, ice and snow melting partially compensates for soil water loss and helps maintain a relatively stable SM. 

Increased precipitation in the summer gives rise to an evident increase in SM. In the autumn, SM continues to increase in the 

YH and NC regions, which might be attributed to lower evaporation caused by lower temperatures. 
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ERA5 (~0.28125°) has a higher spatial resolution than ERAI (~0.75°), which can be directly reflected in their spatial patterns 

of SM distribution. ERA5 can well reproduce the spatial distribution and time series of SM over mainland China with high 310 

correlations with observations. Looking at the monthly variation in the SM and interannual variation in the SM anomaly, ERA5 

has better performance than ERAI. It is proposed that ERA5 will eventually replace ERAI, and we do see improvements in 

the ERA5 product. However, ERA5 overcorrects the problem of small variation in ERAI, which leads to unrealistically large 

standard deviations in ERA5 that affect its accuracy. Therefore, more improvements are still needed to improve the quality of 

the ERA5 SM product. 315 

4 Conclusions 

To evaluate the performance of long-term SM products over mainland China, one satellite-based product and four reanalysis 

datasets from 1981 to 2013 are selected for comparison with in situ measurements at different time scales. 

Overall, ESA CCI has the best performance with the highest spatial resolution and accuracy, making it a good option for long-

term hydrometeorological applications in China. The 0.25°*0.25° resolution of the ESA CCI product produces the finest spatial 320 

pattern of SM, making it more beneficial for regional application than other SM products. However, ESA CCI is not useful 

because of its poor correlation and missing values, especially in Northeast China. 

ERAI and ERA5 can well reproduce the tendency of the time series and perform best at stations, but they overestimate the 

seasonal variation in SM. ERA5 is also a promising product with better performance in several aspects than ERAI, highlighting 

the importance of incorporating more observations at finer spatial resolution. 325 

NCEP cannot reproduce the spatial pattern of SM in China, the time series of NCEP SM data is poorly correlated with 

observations, and the variation amplitude of its seasonal cycle is much larger than that of the observations. NOAA is able to 

reproduce the basic spatial pattern, but it systematically overestimates SM in China and shows little seasonal variation. All the 

SM products used in the present study cannot adequately simulate the interannual variation in the SM anomaly. 

The mismatch between SM layers in analysis products and observations, as well as their spatial mismatch, should be 330 

investigated in the future (Choi and Hur, 2012; Crow et al., 2012). Furthermore, subdaily SM model products considering the 

advantages of individual models under different weather regimes and climate scenarios would be merged in future work (Chen 

and Yuan, 2020). 
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Figure Captions 

Figure 1: Spatial distribution of 119 agricultural-meteorological observation stations and four research regions over China for the 
period 1981 to 2013. The colors denote the distribution of annual precipitation (unit: mm/year) from 1971-2000. 

Figure 2: Annual averages of (a) observations and (b~e) five satellite/reanalysis SM products (units: m3·m-3) during June to August 540 
for the period of 1981 to 2013 in China. 

Figure 3: The rRMSEs of (a) observations and (b~e) four satellite/reanalysis SM products (units: m3·m-3) during April to September 
for the period of 1981 to 2013 in China. 

Figure 4: Time series of SM in four research regions (a~d) from 1981 to 2013. 

Figure 5: Taylor diagrams of the comparison between multisource SM products and in situ observations. Ref. is the SM from in situ 545 
observations. 

Figure 6: Seasonality of SM distributions based on in situ observations and five products averaged over the (a) NE, (b) NC, (c) YH, 
and (d) NW regions from 1981 to 2013. 

Figure 7: Distribution of autocorrelation coefficient of SM in seasons: (1st row) FMA and MAM; (2nd row) MJJ and JJA; (3rd row) 
ASO and SON; (4th row) NDJ and DJF. 550 

Figure 8: Temporal evolution of the JJA SM anomaly time series from observations and the five satellite/reanalysis products in four 
research regions from 1981 to 2013. 

Figure 9: Contributions of three terms to the mean square errors (MSEs) for the four satellite/reanalysis products from 1981 to 2013. 

Figure 10: Evaluation of remote sensing and reanalysis SM against in situ observations under dry or wet conditions. 

Figure 11: Evaluation of remote sensing and reanalysis SM against in situ observations under dry or wet conditions in different 555 
regions. 

Figure 12: Scatterplots of monthly anomalies of (a) precipitation, (b) temperature, and (c) net radiation vs observed soil moisture in 
the top 10 cm depth during 1981-2013. R is the correlation coefficient in over four research regions. 
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Tables 560 

Table 1: Details of the SM products used in the study. 

Name Soil Depths (cm) Spatial Resolution 
Temporal 

Resolution 

Temporal 

Coverage 

In situ 

OBS 
10, 20, 50, 70, 

100 

778 stations 

(119 used) 
3x monthly 1981.01-2013.12 

Satellite 

ESA CCI ~ 2-5 0.25°*0.25° Daily, monthly 1978.11-present 

Reanalysis 

ERAI 
0-7, 7-28, 28-100, 

100-255 
0.75°*0.75° 4x daily, monthly 1979.01-present 

NCEP 0-10, 10-200 T62 (~2°*2°) 4x daily, monthly 1979.01-present 

NOAA 0, 10, 40, 100 2°*2° 8x daily, monthly 1851.01-2014.12 

ERA5 
0-7, 7-28, 28-100, 

100-255 
0.28125°*0.28125° 2x daily, monthly 1979.01-present 
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Table 2: Names and spatial coverage of the selected research regions. 

  Regions Zonal Coverage (°E) Meridional Coverage (°N) 

I NE Northeast 118~130 39.5~50.5 

II NC North China 110~117.5 34.5~42 

III YH YH 110~120 29.5~34.5 

I

V 
NW Northwest 99.5~110 32.5~41 
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Table 3: Correlation coefficients, biases and RMSEs of the five datasets for JJA SM from 1981 to 2013. The coefficients in brackets 565 
are those that cannot pass the significance test (α=0.01) with n=33. 

Regions Products Bias RMSE Correlation 

Northeast 

ESA CCI 0.001 0.009 -0.119 
NCEP 0.079 0.009 0.307 

ERAI 0.073 0.027 0.419 
NOAA/CIRES 20CR 0.145 0.016 0.460 

ERA5 0.121 0.021 0.481 

North China 

ESA CCI -0.004 0.021 0.023 
NCEP 0.062 0.007 0.140 
ERAI 0.058 0.024 0.485 
NOAA/CIRES 20CR 0.101 0.018 0.221 
ERA5 0.054 0.023 0.616 

Yangtze-Huai 

ESA CCI -0.019 0.020 0.114 
NCEP 0.071 0.009 0.453 
ERAI 0.067 0.024 0.466 
NOAA/CIRES 20CR 0.134 0.024 0.427 
ERA5 0.097 0.028 0.504 

Northwest 

ESA CCI -0.028 0.012 0.169 
NCEP 0.055 0.008 (-0.080) 
ERAI 0.039 0.019 (0.000) 
NOAA/CIRES 20CR 0.058 0.011 (-0.035) 
ERA5 0.030 0.020 0.158 
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Figures 

 
Figure 1. Spatial distribution of 119 agricultural-meteorological observation stations and four research regions over China for the 570 
period 1981 to 2013. The colors denote the distribution of annual precipitation (unit: mm/year) from 1971-2000. 
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Figure 2. Annual averages of (a) observations and (b~e) five satellite/reanalysis SM products (units: m3·m-3) during June to August 
for the period of 1981 to 2013 in China. 575 
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Figure 3. Same as Figure 2 but for rRMSE. 
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 580 
Figure 4. Time series of SM in four research regions (a~d) from 1981 to 2013. 
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Figure 5. Taylor diagrams of the comparison between multisource SM products and in situ observations. Ref. is the SM from in situ 
observations. 585 
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Figure 6. Seasonality of SM distributions based on in situ observations and five products averaged over the (a) NE, (b) NC, (c) YH, 
and (d) NW regions from 1981 to 2013. 
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Figure 7. Distribution of autocorrelation coefficient of SM in seasons: (1st row) FMA and MAM; (2nd row) MJJ and JJA; (3rd row) 
ASO and SON; (4th row) NDJ and DJF. 
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 595 
Figure 8. Temporal evolution of the JJA SM anomaly time series from observations and the five satellite/reanalysis products in four 
research regions from 1981 to 2013.  
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Figure 9. Contributions of three terms to the mean square errors (MSEs) for the four satellite/reanalysis products from 1981 to 2013. 
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Figure 10. Evaluation of remote sensing and reanalysis SM against in situ observations under dry or wet conditions. 
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Figure 11. Evaluation of remote sensing and reanalysis SM against in situ observations under dry or wet conditions in different 605 
regions. 
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Figure 12. Scatterplots of monthly anomalies of (a) precipitation, (b) temperature, and (c) net radiation vs observed soil moisture in 
the top 10 cm depth during 1981-2013. R is the correlation coefficient in over four research regions. 610 
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