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Abstract. Quantifying the effects of human activities on floods is challenging because of limited knowledge and 

observations. Many previous methods fail to isolate different effects and reduce the uncertainty caused by small samples. We 

use panel regressions to derive the sensitivity of annual maximum discharges (Q) to the changing values of three human 10 

factors: urban areas, cropland areas, and reservoir indexes for large and medium dams. We also test whether the effects 

increase or decrease with increasing initial values of human factors. This method is applied in 757 non-nested catchments in 

China. Results show that a 1% point increase of urban areas causes around a 3.9% increase of Q with a confidence interval 

CI=[1.9%, 5.7%]. Cropland areas have no significant effect on Q. Reservoir index has a decreasing effect: a 1 unit increase 

of reservoir index causes a decrease in Q from 21.4% (with CI=[11.4%, 29.9%]) to 6.2% (with CI=[3.2%%, 9.1%]) for 15 

catchments with initial reservoir indexes from 0 to 3. Among 61 catchments with significant increases in observed Q in 

1992-2017, increasing urban areas cause more than 10% increases in Q in only 5 (8.2% of 61) catchments. Among 234 

catchments with at least one dam and significant decreases in observed Q in 1960-2017, increasing reservoir indexes cause 

more than 10% decreases in Q in 138 (59.8% of 234) catchments. Among 1249 catchments with limited impacts from urban 

areas and reservoir indexes, 403 (32.3%) catchments have significant decreases in Q during 1960-2017, and 46.7% of the 20 

403 catchments are located in the middle and down streams of the Yellow River Basin and the upper streams of the Haihe 

River Basin. This study extends the panel regression method in hydrology and sheds light on the attribution of flood changes 

on a national scale. 

1 Introduction 

River flooding is one of the most severe disasters in the world. China experiences tremendous damages from floods in the 25 

past decades with expanding urban areas, a booming economy, and increasing populations (Du et al., 2019; Kundzewicz et 

al., 2019). Sharply changing flood characteristics make flood risk management more difficult. According to a national 

investigation of flood peak changes in China conducted by Yang et al. (2019), abrupt changes due to human activities are the 

predominant mode of flood changes. Understanding how floods change in a changing environment helps flood risk 
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management in the future. Therefore, a quantitative attribution of flood changes is urgent on a national scale for policy 30 

decisions. 

To detect flood changes and pinpoint the underlying reasons, scientists need to answer the following questions: 1. does a 

factor affect floods? 2. If the effect presents, how strong is the effect? The drivers of flood changes can be classified into 

three categories: atmospheric factors, catchment factors, and river factors (Merz et al., 2012; Blöschl et al., 2015). 

Atmospheric factors refer to the meteorological forcing of water fluxes such as natural climate variability and anthropogenic 35 

climate change; catchment factors refer to the alternating physiographic characteristics of catchments, such as land cover 

changes; river factors refer to hydraulic infrastructures that change river morphology and flood routing, such as dams and 

channelization (Merz et al., 2012; Blöschl et al., 2015). Catchment and river factors are mainly attributed to human activities, 

which attract increasing attention in hydrological systems in the era of “socio-hydrology” (Di Baldassarre et al., 2019; 

Müller and Levy, 2019). However, quantifying human impacts on floods is challenging for the following reasons. Firstly, 40 

due to the highly unpredictable human behaviors, we have limited knowledge to reproduce the process of how human 

activities affect floods (Pande and Sivapalan, 2017). For example, the expansion of cropland and urban areas not only casts 

deterministic effects on floods through changing soil physics and surface roughness but also brings uncertain effects through 

irrigations and water diversions. We consider these effects “uncertain” because they are related to unknown human decisions. 

Secondly, the observations of human activities are limited (Pande and Sivapalan, 2017). In the example above, many regions 45 

lack long-term and large-scale data of soil physics, roughness, irrigations, and water diversions, which are highly dependent 

on a high-cost network of in-site measurements.  

Previous studies have used three methods to quantify human impacts on floods. The first method is a physical model 

simulation. This method regards the impacts of human activities as either the difference between actual observations and the 

model simulations of floods (Viglione et al., 2016; Lu et al., 2018) or flood changes with time-varying model parameters 50 

(Peña et al., 2016; Umer et al., 2019). However, this method suffers from limited model accuracy. The second method is a 

paired-catchment experiment. This method either compares the floods before and after human impacts in one catchment or 

compares floods in two groups of catchments with and without human impacts (Prosdocimi et al., 2015; Hodgkins et al., 

2019). However, the comparisons above cannot rigorously isolate multiple impacts on floods since we cannot actually 

control everything except one targeted human factor (Runge et al., 2019). The third method is empirical variable dependence, 55 

i.e., using regressions or non-stationary probability distributions to link human factors to flood characteristics (FitzHugh et 

al., 2011; Prosdocimi et al., 2015; Bertola et al., 2019; De Niel and Willems, 2019). The third method is cost-efficient for 

large-scale studies, but it has two problems. Firstly, to derive the causal effects of human factors, all confounders —— 

which correlates with human factors and floods at the same time —— should be explicitly accounted for in the empirical 

relationships. However, defining numerous variables to represent confounders may be an endless task. For example, climatic 60 

confounders are ambiguous because floods are caused by different climatic factors (e.g., long rainfall, short rainfall, 

snowmelt, and rain on snow) in different regions (Stein et al., 2020; Yang et al., 2020a; Merz et al., 2020). Therefore, in a 
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large-sample study, we do not have a unified regression form to control all possible variables for all catchments. Secondly, 

empirical methods require sufficient data for robust statistical inference, while flood samples are rare for each catchment.  

Panel regression (Steinschneider et al., 2013; Wooldridge, 2016) solves the problems of the empirical method in two ways. 65 

Firstly, panel regression adds virtual variables to the regression to represent a fixed individual or regional effect 

(Steinschneider et al., 2013). In such a way, the regression can account for the effects of ambiguous confounders that are 

constant in time or region. Secondly, panel regression pools all samples into one model and trades space for time 

(Steinschneider et al., 2013). Therefore, the regression result is more reliable even with short flood records for each 

catchment. Although panel regression is a tool in economics, it has been introduced in hydrology to estimate the effects of 70 

forests on floods (Ferreira and Ghimire, 2012), urbanization on runoff coefficients (Steinschneider et al., 2013), dams on 

streamflow (McManamay et al., 2014), rainfall on streamflow (Bassiouni et al., 2016), deforestation on streamflow (Levy et 

al., 2018), urbanization on floods (Blum et al., 2020), and rain/snow fraction on floods (Davenport et al., 2020). However, 

these studies only focused on one factor at one time. Considering more human factors can provide a more comprehensive 

picture of the human impacts on floods. In addition, only Blum et al. (2020) and Davenport et al. (2020) tested the nonlinear 75 

effects of factors. Previous studies rarely examined whether the effects increase or decrease with increasing initial values of 

human factors.  

In this study, supported by a large dataset of Chinese floods from 757 streamflow gauge stations, we quantify the national 

average sensitivities of annual flood peaks to changing urban areas, cropland areas, and reservoir indexes for large and 

medium dams using panel regression. We also test whether effects increase or decrease for catchments with increasing initial 80 

values of the targeted factor. The causal effects of factors distinguish the flood changes explained and unexplained by the 

three human factors in recent decades. This study is organized as follows. Section 2 introduces methods. Section 3 describes 

the data. Section 4 presents the results. Section 5 discusses the methods and the insights gained by this study. Section 6 gives 

conclusions. 

2 Methods 85 

2.1 Causal map of flooding 

Causal maps depict the dependency relationship between variables, and they help discover confounders and focus on the 

causal effects of different factors when fitting a regression model (Pearl and Mackenzie, 2020). A confounder is a variable 

that influences both human factors and floods. A causal effect is defined as the sensitivity of floods to a factor when all 

possible confounding variables are controlled. Similar to Blum et al. (2020), we draw a causal map of flooding in Fig. 1. 90 

This study estimates the causal effects of the changes in dams, urban areas, and cropland areas on floods, as the three dashed 

lines show in the figure. Variables lying above the dashed lines are unknown or unobserved mediators. Urban areas and 

cropland areas are interrelated because they may change into each other during the process of land cover change. We 

consider two major confounders. The first confounder is the time-varying confounder, which can be unique for a catchment 
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or spatially constant in a region. For example, increasing event precipitation during floods, which varies by individual 95 

catchments, may promote dam constructions; decreasing annual precipitation, which happens at a regional scale, exacerbates 

water shortage and may therefore promote the reservoir constructions or the implementation of the Grain for Green Project. 

We delineate regions by climate since the climate is the first-order driver of catchment similarity (Jehn et al., 2020). In this 

way, we can control the effect of many omitted variables that have spatial homogeneity. The second confounder is the 

individual time-invariant confounder. This confounder is mainly represented by the characteristics of catchment landscapes, 100 

e.g., topography, soil types, geology. For example, urban areas are likely built on flat and plain catchments. 

 

 

Figure 1. Causal map illustrating the relationships between human factors and floods. 

 105 

2.2 Design of panel regression 

Panel regression is a statistical technique for panel data (Steinschneider et al., 2013; Wooldridge, 2016). Panel data are 

observations on several subjects in different periods. Panel regression controls the constant effects of each subject or each 

period to mitigate regression bias due to omitted variables. Panel regressions in this study are extended from the equation in 

Blum et al. (2020) and are presented in Eq. (1) as follows. 110 

log 𝑄 , 𝛼 𝑔  𝑈𝑟𝑏𝑎𝑛 , 𝑔 𝐶𝑟𝑜𝑝 , 𝑔 𝑅𝐼 , 𝜋 , 𝐷 𝐷 𝐷 𝜑 𝑃 , 𝜆 𝑃 , 𝜀 ,   (1) 
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𝑄 ,  is the annual flood peak of catchment 𝑖 in year 𝑡 (m ∙ s ). 𝑈𝑟𝑏𝑎𝑛 ,  is the urban percentage of catchment 𝑖 in year 𝑡 

(%). 𝐶𝑟𝑜𝑝 ,  is the cropland percentage of catchment 𝑖  in year 𝑡  (%). 𝑅𝐼 , ∑ ∙ , is the reservoir index of 

catchment 𝑖 in year 𝑡; 𝐷𝑂𝑅  is the degree of regulation of reservoir 𝑗 in catchment 𝑖, which is the ratio between the storage 

capacity and total annual flow of the reservoir; 𝐴  is the upstream area of reservoir 𝑗; 𝐴  is the area of catchment 𝑖. 𝐷  is a 115 

region dummy which equals 1 or 0. 𝐷  is a year dummy which equals 1 or 0. 𝑃 ,  is the 3-day total precipitation before the 

flood peak in year 𝑡 of catchment 𝑖, which accounts for the rainfall that causes the flood; 𝑃 ,  is the 30-day total 

precipitation before the flood peak in year 𝑡 of catchment 𝑖, which accounts for the soil moisture and snowmelt that cause the 

flood. The coefficients of 𝑃 ,  and 𝑃 , , namely 𝜑  and 𝜆 , are assumed to be constant within a climatic region r. 𝛼  is the 

time-invariant constant effects of catchment 𝑖. 𝜋 ,  is the constant effects of region 𝑟 in year 𝑡. 𝜀 ,  is the model residuals. The 120 

response functions 𝑔 ∙ , 𝑔 ∙ , and 𝑔 ∙  represent various response types of 𝑄 to different factors.  

A region consists of a group of spatially coherent catchments with a similar climate. Unlike Blum et al. (2020) who used 

predefined physiographic regions, we delineated regions by using the partitioning around medoids (PAM) algorithm 

(Reynolds et al., 2006) based on the distance matrix of all catchments defined as follow: 

𝑑𝑖𝑠𝑡 𝑖, 𝑗 𝑑𝑖𝑠𝑡 𝑖, 𝑗 𝑑𝑖𝑠𝑡 𝑖, 𝑗           (2) 125 

𝑑𝑖𝑠𝑡 𝑖, 𝑗 |𝑘 𝑘 |           (3) 

𝑑𝑖𝑠𝑡 𝑖, 𝑗
. ,

. , |∀ ,
⁄           (4) 

where 𝑑𝑖𝑠𝑡 𝑖, 𝑗  is the distance of Köppen–Geiger class (Beck et al., 2018) ratios between catchment 𝑖 and 𝑗; 𝑘  is the 

area percentage of Köppen–Geiger class 𝑙 in catchment 𝑖; 𝑑𝑖𝑠𝑡 𝑖, 𝑗  is the standardized distance between the geometric 

centers of catchment 𝑖  and 𝑗 ; 𝑒𝑎𝑟𝑡ℎ.𝑑𝑖𝑠𝑡 𝑖, 𝑗  is the spherical distance on the earth between the geometric centers of 130 

catchment 𝑖 and 𝑗.  

The effect of a factor 𝑋 on 𝑄, i.e., the percentage change in 𝑄 given a fixed change in 𝑋, is expressed as:  

𝛥𝑄 % 𝛥𝑄 𝑄⁄ exp 𝑔 𝑋 ∆𝑋 𝑔 𝑋 1         (5) 

We considered three types of response functions 𝑔 ∙ . 𝑔 𝑋 , 𝛽𝑋 ,  indicated a stable effect where the percentage change 

in 𝑄 only depended on ∆𝑋; 𝑔 𝑋 , 𝛾𝑋 ,  indicated an increasing effect where the percentage change in 𝑄 increased with 135 

increasing 𝑋 , ; 𝑔 𝑋 , 𝜃𝑋 ,
/  indicated a decreasing effect where the percentage change in 𝑄 decreased with increasing 

𝑋 , . To determine the specific effect type, we fitted regressions with 27 possible combinations of [𝑔 ∙ , 𝑔 ∙ , 𝑔 ∙ ] types 

and selected the one with the lowest AIC value. We used bootstrapping to test the significance and derive the confidence 
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intervals of coefficients 𝛽 , 𝛾 , and 𝜃  so that the model residuals were allowed to be non-Gaussian and the sampling 

uncertainty could be accounted for. 140 

The mathematical assumptions of the panel regressions in this study are as follows: 1. There are no other important time-

varying sub-regional variables that significantly affectcorrelate with both human factors and floods; 2. There are no 

interactions between human factors and regional or individual characteristics that produce significant spatially heterogeneous 

effects. The regressions and statistical tests were performed in R (R Core Team, 2019) using packages lfe (Gaure, 2019). 

2.3 Flood change quantification 145 

To examine whether the changes in observed floods can be explained by the changes in human factors, we first detected 

catchments with significant changes in 𝑄 using Mann-Kendall test (Mann, 1945) and Pettitt’s test (Pettitt, 1979), and then 

derived the accumulated flood changes attributed to the change in factor 𝑋 for catchment 𝑖 from year 𝑡  to 𝑡 : 

𝛥𝑄 % exp 𝑔 𝑋 , 𝑔 𝑋 , 1          (6) 

To examine how floods changed in catchments that were free from the impacts of urban areas, cropland areas, and dams, we 150 

selected catchments with less than 10% changes in flood peaks due to those factors respectively. Specifically, for a factor 𝑋, 

we selected catchments with exp 𝑔 𝑋 , 0 1 10% where 𝑡  was the most recent year of the data. Then, we 

applied the Mann-Kendall test (Mann, 1945) and Pettitt’s test (Pettitt, 1979) in those catchments to detect the ones with 

significant changes in 𝑄. 

3 Data 155 

3.1 Streamflow and precipitation data 

Annual maximum instantaneous discharge data in 2739 streamflow gauge stations were obtained from the Ministry of Water 

Resources in China (http://www.mwr.gov.cn/english/). Figure 2 shows the outlet locations of all stations. The catchment 

areas are from 1 km  to 1,705,383 km  with a median of 1,660km . Catchment boundaries were extracted using MERIT-

Hydro hydrography data (Yamazaki et al., 2019). Differences between extracted catchment areas and reported areas were 160 

less than 20% for all catchments. We only used data from 1960 to 2019 because less than 1,000 stations had available data 

before 1960. Notice that a few stations in the northeast lie outside mainland China. They were not excluded from this study 

because all other data were globally available. The 1-km resolution data of Köppen-Geiger climate classes were obtained 

from Beck et al. (2018). A 3-hourly and 0.1° precipitation dataset in 1979-2017, the Multi-Source Weighted-Ensemble 

Precipitation Version 2.2 (MSWEP V2.2; Beck et al., 2019), was used. 165 
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Figure 2. National 2739 streamflow stations and the number of stations with available annual maximum discharges each year. The 
Köppen-Geiger climate classes are obtained from Beck et al. (2018). The boundary lines delineate nine major river basins of China: 
1. the Pearl River Basin, 2. the Southeast Basin, 3. the Yangtze River Basin, 4. the Southwest Basin, 5. the Huaihe River Basin, 6. 170 
the Yellow River Basin, 7. the Haihe River Basin, 8. the Songliao River Basin, and 9. the Continental Basin. 

 

3.2 Land cover and dams data 

Land cover maps were obtained from the CCI-LC product produced by the European Space Agency (ESA) Climate Change 

Initiative (CCI). This product provides global yearly 300m-resolution land cover data in 1992-2015 in version 2.0.7 and 175 

2016-2018 in version 2.1.1 (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). Urban areas of catchments can be 

extracted from the maps directly. Cropland areas consist of rain-fed cropland, irrigated or post-flooding cropland, and 

mosaic cropland.  

Dam data were available in the Global Reservoir and Dam (GRanD) v1.3 database (Lehner et al., 2011). GRanD collected 

information about 7,320 global dams in 1948-2017 and recorded 923 dams with storage capacities larger than 10 million m  180 

in China. These 923 dams were categorized as large and medium dams, according to the Bulletin of the first National Water 

Conservancy Survey (http://www.chinawater.com.cn/ztgz/xwzt/2013slpczt/1/). The total storage capacity of all 4,694 large 

and medium dams is 861,961 million m  in China, according to the bulletin. The total storage capacity of all the 923 GRanD 
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dams in China is 670,158 million m , approximately 78% of that recorded in the bulletin. It suggests that the GRanD 

database is reliable for quantifying the effects of large and medium dams on floods while it is unsuitable for considering 185 

small dams. For simplicity, we use “dams” to represent large and medium dams in the rest of the paper. We obtained the 

locations, upstream areas, storage capacities, and total annual flows of each dam from the database. The reservoir index can 

be calculated with the information above. 

3.3 Catchment selection for regression setup 

We selected catchments with at least 20 years of annual maximum discharges (𝑄) to fit Eq. (1) in the common period of 190 

CCI-LC and GRanD data, i.e., 1992-2017. To avoid inaccurate statistical inference on the regression coefficients due to the 

correlated model residuals caused by nested catchments, we selected the most upstream catchments with large or medium 

dams (if possible) among overlapping catchments. We got 757 independent (non-nested) catchments, among which 207 

catchments had as least one dam. The statistics of catchment characteristics in those 757 catchments are presented in Table 1 

and the spatial distribution of catchments is presented in Fig. 3. Catchments with changes in 𝑈𝑟𝑏𝑎𝑛, 𝐶𝑟𝑜𝑝, and 𝑅𝐼 have 195 

large impacts on estimating regression coefficients. The numbers of catchments with ∆𝑈𝑟𝑏𝑎𝑛 0, ∆𝐶𝑟𝑜𝑝 0, and ∆𝑅𝐼 0 

are 656, 351, and 64, respectively. The number of catchment groups 𝑘 in Section 2.2 had no optimal value. In light of the 

number of selected catchments in the regression models, we set 𝑘 to be 10, 20, 30, 40, 50, 60, 70, and 80 to test the 

robustness of the models. 

 200 

Table 1. Summary of catchment characteristics for 757 independent catchments. For each catchment, among its all years with 
available flood data in 1992-2017, we choose the last year to calculate Urban, Crop, and RI, and choose the first and last year to 
calculate ∆Urban, ∆Crop, and ∆RI. The summaries of RI and ∆RI are calculated based on 207 catchments with at least one large 
and medium dam. 

Variables Min. 1st Qu. Median Mean 3rd Qu. Max. 

Area ( 𝑘𝑚 ) 29 499 1096 3341 2763 142372 

Urban (%) 0 0.06 0.30 1.52 1.10 65.07 

∆Urban (%) 0 0.05 0.23 1.14 0.85 24.66 

Crop (%) 0 10.63 24.71 32.75 48.99 99.58 

∆Crop (%) -21.58 -0.81 -0.02 0.38 0.87 32.04 

RI 0.01 0.09 0.21 0.51 0.61 7.45 

∆RI 0 0 0 0.17 0.07 7.44 

 205 
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Figure 3. Spatial distribution of catchment characteristics in 757 independent catchments. (a) Urban percentages (𝑼𝒓𝒃𝒂𝒏), (b) 

cropland percentages (𝑪𝒓𝒐𝒑), and (c) reservoir indexes (𝑹𝑰) of 757 independent catchments in their last years with available flood 

data. The changes of (d) urban areas (∆𝑼𝒓𝒃𝒂𝒏), (e) cropland areas (∆𝑪𝒓𝒐𝒑), and (f) reservoir indexes (∆𝑹𝑰) in 1992-2017. 210 

 

4 Results 

4.1 The sensitivity of floods to human factors 

Table 2 shows the optimal regression forms according to AIC and the corresponding coefficient estimations of factor 𝑈𝑟𝑏𝑎𝑛, 

𝐶𝑟𝑜𝑝 and 𝑅𝐼 in Eq. (1). For 𝑈𝑟𝑏𝑎𝑛 and 𝑅𝐼, the effect types are consistent for varying values of 𝑘. 𝑈𝑟𝑏𝑎𝑛 exhibits a positive 215 

and stable effect (𝑔 𝑋 , 𝛽𝑋 ,  and 𝛽 0), which means a fixed percentage point increase of 𝑈𝑟𝑏𝑎𝑛 brings a fixed 
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percentage increase of 𝑄 no matter how large the initial 𝑈𝑟𝑏𝑎𝑛 is. 𝑅𝐼 exhibits a negative and decreasing effect (𝑔 𝑋 ,

𝜃𝑋 ,
/  and 𝜃 0), which means a fixed increase of 𝑅𝐼 brings a lower percentage decrease of 𝑄 with a larger value of initial 

𝑅𝐼. 𝐶𝑟𝑜𝑝 exhibits no significant effect. The maps of catchment groups for all 𝑘 values can be seen in Fig. A1 of Appendix A. 

Figure 4 shows the percentage change in 𝑄 caused by a 1% point increase of urban area according to Eq. (5). The values of 220 

∆𝑄 %  are relatively consistent with varying values of 𝑘. 𝐶𝑟𝑜𝑝 has no significant effect on 𝑄, therefore we do not calculate 

the corresponding sensitivity. Figure 5 shows the percentage change in 𝑄 caused by a 1 unit increase of 𝑅𝐼 according to Eq. 

(5). The relationship between ∆𝑄 and 𝑅𝐼 has little change when 𝑘 20. In summary, the method is robust to 𝑘, and thus, we 

regard the model with 𝑘 50 as the main model in the remaining part of the study. The sensitivity of 𝑄 to 𝑈𝑟𝑏𝑎𝑛 is ∆𝑄

3.9% with the 95% confidence interval 𝐶𝐼 1.9%, 5.7%  when ∆𝑈𝑟𝑏𝑎𝑛 1%. The absolute values of ∆𝑄 decrease with 225 

increasing initial values of 𝑅𝐼. For initial 𝑅𝐼 0, ∆𝑄 21.2% with 𝐶𝐼 29.9%, 11.4%  when 𝑅𝐼 increases by 1; for 

initial 𝑅𝐼 3, ∆𝑄 6.2%  with 𝐶𝐼 9.1%, 3.2%  when 𝑅𝐼 increases by 1. 
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Table 2. Optimal regression forms (with the lowest AIC) and the corresponding coefficient estimations of factor urban percentage 
(𝑼𝒓𝒃𝒂𝒏), cropland percentage (𝑪𝒓𝒐𝒑), and reservoir index (𝑹𝑰) in Eq. (1). * denotes that the coefficient does not equal to 0 at a 230 
0.05 significance level using bootstrapping inference. 𝒌 is the preset number of catchment groups. 

k Optimal 𝑔 ∙  2.5% Qu. Mean 97.5% Qu. 

Urban effect 

10 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 1.20E-02 2.72E-02 4.21E-02 

20 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 2.31E-02 3.89E-02 5.59E-02 

30 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 9.35E-03 2.65E-02 4.40E-02 

40 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 1.59E-02 3.64E-02 5.68E-02 

50 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 1.88E-02 3.71E-02 5.57E-02 

60 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 1.08E-02 3.10E-02 5.03E-02 

70 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 1.32E-02 3.18E-02 5.05E-02 

80 𝛽𝑈𝑟𝑏𝑎𝑛 ,  * 1.22E-02 3.23E-02 5.27E-02 

Crop effect 

10 𝜃𝐶𝑟𝑜𝑝 ,
/  -6.14E-02 1.43E-02 8.87E-02 

20 𝜃𝐶𝑟𝑜𝑝 ,
/  -4.59E-02 2.95E-02 1.01E-01 

30 𝛾𝐶𝑟𝑜𝑝 ,  -1.41E-04 -5.36E-05 3.42E-05 

40 𝛾𝐶𝑟𝑜𝑝 ,  -1.36E-04 -3.81E-05 5.61E-05 

50 𝜃𝐶𝑟𝑜𝑝 ,
/  -5.21E-02 2.49E-02 1.09E-01 

60 𝛾𝐶𝑟𝑜𝑝 ,  -1.66E-04 -7.54E-05 2.77E-05 

70 𝛾𝐶𝑟𝑜𝑝 ,  -1.62E-04 -6.71E-05 2.85E-05 

80 𝛾𝐶𝑟𝑜𝑝 ,  -1.71E-04 -7.21E-05 2.74E-05 

RI effect 

10 𝜃𝑅𝐼 ,
/  * -2.90E-01 -1.74E-01 -5.84E-02 

20 𝜃𝑅𝐼 ,
/  * -3.43E-01 -2.11E-01 -1.01E-01 

30 𝜃𝑅𝐼 ,
/  * -3.48E-01 -2.20E-01 -1.08E-01 

40 𝜃𝑅𝐼 ,
/  * -3.64E-01 -2.45E-01 -1.25E-01 

50 𝜃𝑅𝐼 ,
/  * -3.55E-01 -2.39E-01 -1.21E-01 

60 𝜃𝑅𝐼 ,
/  * -3.85E-01 -2.55E-01 -1.30E-01 

70 𝜃𝑅𝐼 ,
/  * -3.80E-01 -2.38E-01 -1.14E-01 

80 𝜃𝑅𝐼 ,
/  * -3.88E-01 -2.36E-01 -9.03E-02 
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Figure 4. Percentage change in annual maximum discharge (𝑸) caused by a 1% point increase of urban area (𝑼𝒓𝒃𝒂𝒏) based on 235 
different numbers of catchment groups (𝒌). The error bars are 95% confidence intervals. 

 

 

Figure 5. (a) Percentage change in annual maximum discharge (𝑸) caused by a 1 unit increase of reservoir index (𝑹𝑰) from 
different initial 𝑹𝑰 values based on different numbers of catchment groups (𝒌). (b) The same as (a) but with the 95% confidence 240 
intervals shown by shaded areas. 

 

4.2 National flood changes and attributions 

Figure 6 shows the changes in 𝑄 due to the changes in 𝑈𝑟𝑏𝑎𝑛 for 1625 catchments with at least 20 years of data in 1992-

2017, according to Eq. (6). To avoid sample heterogeneity between these 1625 catchments and the 757 catchments used for 245 

regression, we compared the frequency distribution of 𝑈𝑟𝑏𝑎𝑛 and ∆𝑈𝑟𝑏𝑎𝑛 for catchments with ∆𝑈𝑟𝑏𝑎𝑛 0 in the two 

samples of catchments in Fig. A2. Since there is no substantial difference between the two distributions in Fig. A2, the 

sensitivity of 𝑄 to 𝑈𝑟𝑏𝑎𝑛, which is derived from the 757 catchments, can be used to infer the changes in 𝑄 due to ∆𝑈𝑟𝑏𝑎𝑛 
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in those 1625 catchments. According to Fig. 6, iIncreasing 𝑈𝑟𝑏𝑎𝑛 causes increases in 𝑄 of more than 10% in 184 (11.3% of 

1625) catchments, which are mainly located in the North Plain of China, especially in the Huaihe River Basin and the middle 250 

and down streams of the Haihe River Basin. Among these 184 catchments, increasing 𝑈𝑟𝑏𝑎𝑛 causes increases in 𝑄 of more 

than 25% in 71 (4.4% of 1625) catchments. In 61 catchments with significant increases in observed 𝑄, increasing 𝑈𝑟𝑏𝑎𝑛 

causes increases in 𝑄 of more than 10% in only 5 catchments, which means urbanization is not a predominant driver of flood 

changes in 1992-2017 in China. The changes in 𝑄 due to the changes in 𝐶𝑟𝑜𝑝 cannot be effectively quantified because 𝐶𝑟𝑜𝑝 

has no statistically significant effects on 𝑄 according to the results in Section 4.1. 255 

 

 

Figure 6. Accumulated increases in annual maximum discharges (𝑸) due to the increases in urban areas (𝑼𝒓𝒃𝒂𝒏) for 1625 
catchments with at least 20 years of flood data in 1992-2017, according to Eq. (6). Large dots represent catchments with significant 
increases in observed 𝑸 if p<0.05 for any one of the Mann-Kendall test and the Pettitt’s test. The boundary lines delineate nine 260 
major river basins of China. 
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Figure 7 shows the changes in 𝑄 due to the changes in 𝑅𝐼 for 536 catchments with at least one dam and at least 30 years of 

data in 1960-2017, according to Eq. (6). Similar to Fig. 6, to avoid sample heterogeneity between these 536 catchments and 

the 757 catchments used for regression, we compared the frequency distribution of 𝑅𝐼 and ∆𝑅𝐼 for catchments with ∆𝑅𝐼 0 265 

in the two samples of catchments in Fig. A3. Since there is no substantial difference between the two distributions in Fig. A3, 

the sensitivity of 𝑄 to 𝑅𝐼, which is derived from the 757 catchments, can be used to infer the changes in 𝑄 due to ∆𝑅𝐼 in 

those 536 catchments. According to Fig. 7, iIn 196 (36.6% of 536) catchments, increasing 𝑅𝐼 leads to more than 10% 

decreases in 𝑄. It indicates that flood peaks are likely to decrease severely if dams are built in the catchment. Among these 

196 catchments, increasing 𝑅𝐼 leads to more than 25% decreases in 𝑄 in 28 (5.2% of 536) catchments. Spatially, the impacts 270 

of dams on floods are larger in northern basins (the Huaihe River Basin, the Haihe River Basin, the Yellow River Basin, and 

the Songhua and Liaohe River Basin) than that in southern basins (the Yangtze River Basin, the Southeast River Basin, the 

Southwest River Basin, and the Pearl River Basin). In the northern basins, increasing 𝑅𝐼 leads to more than 10% and 25% 

decreases in 𝑄 in 47.8% and 10.0% catchments, respectively. By comparison, in southern basins, increasing 𝑅𝐼 leads to more 

than 10% and 25% decreases in 𝑄 in only 26.3% and 0.7% catchments, respectively. In 234 catchments with significant 275 

decreases in observed 𝑄, increasing 𝑅𝐼 leads to more than 10% decreases in 𝑄 in 138 (59.0% of 234) catchments, which 

means dam construction is a predominant driver of the decreases in flood magnitudes for catchments with dams in 1960-

2017. 
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 280 

 

Figure 7. Accumulated decreases in annual maximum discharges (𝑸) due to the increases in reservoir index (𝑹𝑰) for 536 
catchments with at least 30 years of flood data and at least one dam in 1960-2017, according to Eq. (6). Large dots represent 
catchments with significant decreases in observed 𝑸 if p<0.05 for any one of the Mann-Kendall test and the Pettitt’s test. The 
boundary lines delineate nine major river basins of China. 285 

 

Figure 8 shows the change directions of 𝑄 during 1960-2017 in 1249 catchments with at least 30 years of data, 𝑈𝑟𝑏𝑎𝑛

2.6% and 𝑅𝐼 0.19. These catchments were selected based on the thresholds that ensure each factor leads to no more than 

10% changes in 𝑄, as stated in Section 2.3. In these catchments, the changes in 𝑄 are free from the impacts of 𝑈𝑟𝑏𝑎𝑛, 𝐶𝑟𝑜𝑝, 

and 𝑅𝐼. Significant increases in 𝑄 occur in 85 (6.9% of 1249) catchments. Significant decreases in 𝑄 occur in 403 (32.3% of 290 

1249) catchments, among which 188 (46.7% of 403) are located in the Yellow River Basin (mainly in the middle and down 

streams) and the Haihe River Basin (mainly in the upper streams). Such regional coherence of similar trends cannot be found 

in other regions. 
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Figure 8. Change directions of annual maximum discharges (𝑸) during 1960-2017 for 1249 catchments with at least 30 years of 
flood data, 𝑼𝒓𝒃𝒂𝒏 𝟐.𝟔% and 𝑹𝑰 𝟎.𝟏𝟗. These catchments are considered to be free from the impacts of urbanization and dam 
constructions. The change is significant if p<0.05 for any one of the Mann-Kendall test and Pettitt’s test. The boundary lines 
delineate nine major river basins of China.  300 

 

5 Discussion 

5.1 Strengths and limitations of panel regressions 

We use panel regressions to derive the causal effects of urban areas, cropland areas, and dams on annual maximum 

discharges across mainland China. In this study, the panel regressions exhibit the following strengths. 1. We obtain a 305 
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nationally generalizable sensitivity of floods to each human factor. This sensitivity helps understand the overall added risks 

of specific human activity on floods on a national scale. In addition, with quantitative sensitivity, scientists are able to select 

catchments with limited impacts of dams and land cover changes for studying the effects of climate change, e.g., Blöschl et 

al. (2019). 2. Compared with previous studies using panel regressions in hydrology (Ferreira and Ghimire, 2012; 

Steinschneider et al., 2013; McManamay et al., 2014; Bassiouni et al., 2016; Levy et al., 2018; Blum et al., 2020; Davenport 310 

et al., 2020), we take a further step by considering multiple types of human impacts simultaneously and distinguishing their 

increasing or decreasing effects. Blum et al. (2020) and Davenport et al. (2020) considered non-linear forms of response 

functions for the targeted factors, but they did not distinguish increasing and decreasing effects. These improvements provide 

a more comprehensive understanding of human impacts on floods. 

The limitations are as follows. 1. The assumptions in the regressions are difficult to test. As stated in Section 2, we assume (i) 315 

no more important time-varying sub-regional confounders and (ii) no interaction terms between human factors and regional 

or individual characteristics that produce significant spatially heterogeneous effects. These assumptions may be violated in 

some cases. For example, the effect of urbanization on floods may be larger in regions with higher soil permeability, which 

means spatially heterogeneous effects may be nonnegligible. Testing these assumptions requires detailed information about 

catchment characteristics such as topography and geology. Moreover, adding too many variables into the regressions will 320 

decrease model interpretability. 2. The method cannot distinguish the heterogeneous effects of human factors on different 

floods. As stated in Section 2.3, the method derives a common percentage change in all flood peaks given changing human 

factors, which means no changes in coefficients of variation. However, practically, the variability of floods may change by 

human activities. For example, reservoirs tend to regulate extreme floods but omit small floods. 3. This study does not 

comprehensively assess the effects of total human impacts on floods. We omit many other human factors due to the lack of 325 

data. For example, the data about water diversion, irrigation, channelization, and afforestation on a national scale are 

currently not available to the public. 

5.2 Consistency with knowledge and other large-sample studies 

We detect a stable positive effect of urban areas on floods. In theory, expanding urban areas magnify floods in two major 

ways. Firstly, natural soil grounds are replaced by impervious surfaces, which lead to more rainfall water appearing on the 330 

surface rather than infiltrating into the soil (Villarini and Slater, 2017). Second, urban areas have smooth surfaces, where 

floods propagate faster and become more flashy (Mogollón et al., 2016). This study finds a 3.9% (with 𝐶𝐼 1.9%, 5.7% ) 

increase in annual maximum discharges given a 1% point increase in urban areas. This finding accords with the result from a 

national investigation in the US (Blum et al., 2020), which reported a 3.3% (with 𝐶𝐼 1.9%, 4.7% ) increase in annual 

maximum discharges based on panel regressions. 335 

The cropland areas impose no significant impacts on floods according to our results. Theoretically, expanding cropland areas 

affect floods in many ways. For example, during agricultural practices, soil depths may decrease due to erosion while 

increase due to soil compaction (Rogger et al., 2017). Cropland may also bring artificial drainages that lower groundwater 
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tables (Rogger et al., 2017). Some effects may be offset by others, which masks the relationship between cropland areas and 

floods. Similar to our result, Bertola et al. (2019) found that agricultural land-use intensification rarely caused flood changes 340 

in 95 catchments of Austria using covariate-based non-stationary flood probability distributions. To our knowledge, large-

sample studies are limited on the relationship between cropland and floods. Therefore, more detailed in-site investigations 

are required to uncover the causal chain from cropland changes to flood changes. 

This study suggests that dams have a negative decreasing effect on floods. Generally, dams buffer water during floods and 

thus decrease flood peaks. More dams may not necessarily decrease floods at a constant rate because existing dams with 345 

sufficient storage capacities are already capable to control floods. This effect was confirmed by Wang et al. (2017), who 

used detailed conceptual models of reservoir regulation and found that the mean annual floods had a slowing decrease with 

increasing reservoirs. In a large-sample study on 4859 catchments in the US (FitzHugh et al., 2011), median annual 1-day 

maximum flows were estimated to decrease by more than 20% when the storage ratios, i.e., the total storage capacity of 

upstream dams divided by average annual runoff, were larger than 1. If a dam with storage capacity equaling the annual 350 

runoff is established at the outlet of the catchment without any dam before, both the reservoir index defined in this study and 

the storage ratio defined by FitzHugh et al. (2011) increase from 0 to 1. In this special case, the annual maximum discharges 

change by -21.2% (with 𝐶𝐼 29.9%, 11.4% ) in this study, comparable to the 20% decrease from FitzHugh et al. 

(2011). It is noteworthy that this study only focuses on the effects of human factors on annual maximum discharges. 

Generally, the effects are larger for less frequent floods. Zhao et al. (2020) investigated floods in 1403 catchments in the US 355 

and found a decrease of 100-year floods by more than 60% in 47% of catchments with a dam upstream. 

5.3 Insights toward a national investigation of flood changes 

This study takes the first step to explain flood changes quantitatively on a national scale in China. In this study, urbanization 

and dam constructions significantly change annual maximum discharges in the middle and down streams of the Yellow 

River Basin and the Haihe River Basin, where step changes were detected by Yang et al. (2019). As a major human 360 

residence with a high density of population, the North Plain of China experiences fast urbanization in recent years (Du et al., 

2018), which brings larger flood risks on lives and properties. In addition, the degree of dam regulation is larger in northern 

China because the annual runoff is much smaller than that in wet southern China. In this study, after removing the 

catchments with nonnegligible impacts of urbanization and dams, unexplained decreasing annual maximum discharges show 

spatial coherence in the middle and down streams of the Yellow River Basin and the upper streams of the Haihe River Basin, 365 

where decreasing trends were also derived by Yang et al. (2019). Yang et al. (2019) interpreted these trends as the results of 

soil conservation practices (Bai et al., 2016) and decreasing extreme rainfall (Yang et al., 2013; Wu et al., 2016). Besides, 

other reasons include decreasing soil moisture (Cheng et al., 2015; Yang et al., 2020a) and the impacts of cascade small soil-

retaining dams (Yang et al., 2020b). It indicates that the impact factors of floods are complex in this region and further 

studies are required. 370 
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Caution is required to interpret the flood changes attributed to urbanization and dam constructions on a national scale 

because the sensitivity of floods to these factors is derived from a subset of catchments. Although the catchments used for 

sensitivity calculation and the ones used for flood change attribution have similar frequency distributions of urban areas and 

reservoir indexes in Fig. A2 and A3, these different sets of catchments may not be completely homogeneous in terms of all 

characteristics (topography, climate, etc.). Moreover, one should also be cautious to apply the sensitivity results to other 375 

regions such as catchments in other countries. 

6 Conclusions 

We conducted a data-based analysis on the causal effects of human impacts on floods using a panel regression on a national 

scale, based on annual maximum discharges (Q) from 757 non-nested catchments in China, CCI-LC land cover data, and 

GRanD dam data. Specifically, we derived nationally generalizable information about the sensitivity of Q to human factors, 380 

namely the changes in urban areas, cropland areas, and reservoir indexes for large and medium dams. Furthermore, using a 

dataset of 2739 streamflow stations, we determined the explained and unexplained changes in floods by the human factors 

on a national scale based on the sensitivity of Q to human factors. The major findings are as follows. 

- Floods are sensitive to the changes in urban areas and dams. Urban areas have a positive and stable effect on floods, i.e., 

a 1% point increase in urban areas causes a 3.9% increase in annual maximum discharges with a confidence interval 385 

𝐶𝐼 1.9%, 5.7% . Cropland areas have no significant effect on Q. Reservoir index has a negative and decreasing 

effect on Q, i.e., the decrease of Q caused by a 1 unit increase of reservoir indexes ranges from 21.4% (with 𝐶𝐼

11.4%, 29.9% ) to 6.2% (with 𝐶𝐼 3.2%, 9.1% ) corresponding to initial reservoir indexes from 0 to 3. 

- Urbanization is not a predominant driver of the increases in flood magnitudes on a national scale. In 1992-2017, 

increasing urban areas cause increases in Q of more than 10% in 184 (11.3%) of 1625 catchments. These catchments are 390 

mainly located in the North Plain of China, especially in the Huaihe River Basin and the middle and down streams of 

the Haihe River Basin. However, among these 184 catchments, only 5 of them have significant increases in observed 𝑄.  

- Dam construction is a predominant driver of the decreases in flood magnitudes on a national scale. Among the 536 

catchments with at least one dam in 1960-2017, increasing reservoir indexes cause decreases in Q of more than 10% in 

196 (36.6%) catchments. Spatially, the impacts of dams on floods are larger in northern basins, including the Huaihe 395 

River Basin, the Haihe River Basin, the Yellow River Basin, and the Songhua and Liaohe River Basin. There are 138 of 

those 196 catchments having significant decreases in observed Q, accounting for 59.0% of the total 234 catchments with 

significant decreases in observed Q.  

- Unexplained decreases in flood magnitudes show spatial coherence in the middle and down streams of the Yellow River 

Basin and the upper streams of the Haihe River Basin. Among 1249 catchments with less than 10% changes in Q caused 400 

by urban areas or dams, 403 (32.3%) catchments have significant decreases in Q during 1960-2017, and 46.7% of the 

403 catchments are located in the Yellow River Basin and the Haihe River Basin. 
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This study extends the panel regression method to quantify the effects of multiple human factors on floods, which helps 

understand the causes of flood changes on a national scale in China. Future studies may collect more data to consider more 

human factors and quantify the effects on different return periods of floods. 405 

Appendix A 

 

Figure A1. Catchment groups for all 𝒌 values in Eq. (1). The points are the geometric centers of catchments. 
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 410 

Figure A2. Frequency distribution of 𝑼𝒓𝒃𝒂𝒏 and ∆𝑼𝒓𝒃𝒂𝒏 in catchments with ∆𝑼𝒓𝒃𝒂𝒏 𝟎 from two catchment sets: the one 
used for the regression in Fig. 3(d) (green) and the one used for the flood change attribution in Fig. 6 (red). 

 

 

Figure A3. Frequency distribution of 𝑹𝑰 and ∆𝑹𝑰 in catchments with ∆𝑹𝑰 𝟎 from two catchment sets: the one used for the 415 
regression in Fig. 3(f) (green) and the one used for the flood change attribution in Fig. 7 (red). 
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