
 

Reviewer #2 Comment 1: (hereafter referred to as R2C1, R2C2…) The study applies 

a panel research design to estimate the causal effect of three hypothesized human-

related drivers (urban extent, cropland extent and reservoir regulation) of annual flood 

peaks in China. While the methodological contributions of the study are (in my view) 

limited compared to recent other studies using panel regressions in a similar context 

(e.g., Blum 2020 and Davenport 2020 cited in the study), the study is nonetheless 

valuable in that it provides important insights on how these process operate in 

conjunction, using a very large dataset in China. The study is in my view appropriate 

for publication in HESS, provided the author address the following major concerns that 

I have 

A: Thank you for your constructive comments. We have carefully considered your 

suggestions and addressed your concerns. We have made the following major revisions 

in the method and data. 

First, we added 3-day and 30-day total precipitation before flood peaks for each 

catchment in the regression to account for individual time-varying confounders. The 

reason for such a revision is that the delineated climate regions cannot fully control 

climatic confounders since the climatic drivers of floods have sub-regional spatial 

variability. Therefore, the regression equation has been revised as: 

𝑙𝑜𝑔(𝑄𝑖,𝑡) = 𝛼𝑖 + 𝑔1 (𝑈𝑟𝑏𝑎𝑛𝑖,𝑡) + 𝑔2(𝐶𝑟𝑜𝑝𝑖,𝑡) + 𝑔3(𝑅𝐼𝑖,𝑡) + 𝜋𝑟,𝑡𝐷𝑟𝐷𝑡

+ 𝐷𝑟(𝜑𝑟𝑃𝑖,𝑡
(3)

+ 𝜆𝑟𝑃𝑖,𝑡
(30)

) + 𝜀𝑖,𝑡 

where 𝑃𝑖,𝑡
(3)

 is the 3-day total precipitation before the flood peak in year 𝑡 of catchment 

𝑖, which accounts for the rainfall that causes the flood; 𝑃𝑖,𝑡
(30)

 is the 30-day total 

precipitation before the flood peak in year 𝑡 of catchment 𝑖, which accounts for the soil 

moisture and snowmelt that cause the flood. The coefficients of 𝑃𝑖,𝑡
(3)

 and 𝑃𝑖,𝑡
(30)

, 

namely 𝜑𝑟 and 𝜆𝑟, are assumed to be constant within a climatic region r. The original 

region term 𝜋𝑟,𝑡𝐷𝑟𝐷𝑡 accounts for omitted time-varying regional confounders other 

than 𝑃𝑖,𝑡
(3)

 and 𝑃𝑖,𝑡
(30)

. 

 Second, we selected 757 non-nested catchments to fit the regression model so that 

the residuals of the model were not highly correlated. This revision avoids uncorrected 

inference about the regression coefficients due to the underestimation of their standard 

deviations using correlated flood samples. 



 Note that the results do not substantially change after the methodology revision 

above. While we believe the revised method and data are more convincing and solid. 

 

R2C2: 1. Potentially misleading map figures. To be clear, the panel approach does 

*not* allow to estimate heterogeneous treatment effects. It allows to estimate one 

average effect of (say) urban expansion on flow peaks (i.e. one single value of beta, if 

g() is linear) across the whole sample. It does *not* allow to say that urban expansion 

has a larger effect on flood peaks in some regions than in others. Yet the maps in figures 

6 and 7 (and their discussion throughout the paper) appear to suggest exactly that, 

which I find misleading. The spatial variability in the “effect” of crop/urban on floods 

represented in these maps only emerges because changes crop and urban cover are 

themselves varying across regions. Figure 6 is nothing more than a map of urban cover 

change, scaled by a constant factor (the estimated beta) representing the linear effect 

it has on flood peaks. This point is important to clarify throughout the text, at the very 

least by specifying the estimated value of beta and theta in the captions of Figures 6 

and 7 (see minor comments for other suggestions). 

A: Thank you very much for your critical comment. As we know, the panel regression 

in this paper is unable to estimate heterogeneous effects across different catchments. 

The “average effect” of a factor on floods you mentioned is shown in Fig. 4 and Fig. 5, 

where the homogeneous sensitivities of floods to human factors across all catchments 

are presented. Fig. 6 and Fig. 7 show the accumulated changes in floods due to the 

changes in human factors in a long period for each catchment rather than the 

heterogeneous effects. To avoid misunderstanding, in the captions of Fig. 6 and Fig. 7 

in the revised manuscript, we will emphasize the changes in floods as the “accumulated 

changes” and clarify that the changes are calculated by Eq. (7), i.e., 𝛥𝑄(%) =

exp(𝑔(𝑋𝑖,𝑡2
) − 𝑔(𝑋𝑖,𝑡1

)) − 1). 

 

R2C3: 2. Fixed Effects. I am wondering why you use “regions” as space fixed effects, 

and not the individual basins themselves. For Blum et al., this approach made sense 

because they interact the treatment (X) with covariates (e.g., soil permeability, etc) but 

I don’t really see the point of doing that here. I am concerned that it might introduce a 

bias associated with varying confounding factors within the regions (e.g., basin altitude 

can vary within regions and affect both the treatment crop or urban cover and flood 

magnitude). Adding a specification with basin-level fixed effect (i.e. setting k==number 

of basins) as robustness check might help alleviate my concern. 



A: Thank you for your important comment. We use “regions” to account for omitted 

time-varying confounders such as vegetation changes. If we set k=number of basins, 

i.e., we use a basin-level dummy variable interacted with a year dummy to represent 

time-varying confounders, the number of regression coefficients will be larger than the 

number of flood peak observations, which makes the estimation of coefficients 

infeasible. Therefore, we use a region-level dummy variable interacted with a year 

dummy (i.e., 𝜋𝑟,𝑡𝐷𝑟𝐷𝑡 ) to control omitted time-varying effects. As for basin-level 

confounders, the time-varying effect has been controlled by the event precipitation 

(𝑃𝑖,𝑡
(3)

 and 𝑃𝑖,𝑡
(30)

, see R2C1), and the time-invariant effect has been controlled by the 

individual-specific intercept ( 𝛼𝑖 ). Basin altitude, the sub-regional confounder you 

mentioned, has been included in 𝛼𝑖. 

 

R2C4: 3. Heterogeneous treatment effect: I am wondering if your results are affected 

by heterogenous treatment effects in the sense that most basins of the sample likely have 

little impervious surface cover. (By the way, please add a table with descriptive 

statistics for the reader to assess that). If the deviates (even slightly) from the three 

arbitrary functional forms that you impute to g(), this may potentially bias your average 

estimates. A way to control for this (perhaps) would be to do a robustness check by 

running the analysis to a subset of highly (lowly) impervious basin to see how sensitive 

the effect is. 

A: Thank you very much for your valuable comment. We agree with you that the results 

depend on the selection of basins. However, we believe the difference in the results 

brought by basin selection is more related to sampling uncertainties rather than 

heterogeneous treatment effects. If we manually select a subset of basins with low 

impervious areas to fit the model, we may get a model with a low signal-to-noise level 

since the changes in floods caused by changing impervious areas are far small than the 

model errors. Therefore, in the revision, we calculated the confidence intervals of the 

regression coefficients by bootstrapping, which resampled all pooling flood samples to 

fit the model 1000 times. Using bootstrapping, the confidence intervals of the 

regression coefficients accounted for the sampling uncertainties related to basin 

selection and year selection. We will add the bootstrapping part in the revised 

manuscript. 

 In addition, we will add a summary table of catchment characteristics (Table R1) 

in the revised manuscript. 



Table R1. Summary of catchment characteristics for 757 catchments in 1992-2017. 

The summaries of RI and ∆RI are calculated based on 207 catchments with at least 

one large and medium dam. 

Variables Min. 1st Qu. Median Mean 3rd Qu. Max. 

Area ( 𝐤𝐦𝟐) 29 499 1096 3341 2763 142372 

Urban (%) 0 0.06 0.30 1.52 1.10 65.07 

∆Urban (%) 0 0.05 0.23 1.14 0.85 24.66 

Crop (%) 0 10.63 24.71 32.75 48.99 99.58 

∆Crop (%) -21.58 -0.81 -0.02 0.38 0.87 32.04 

RI 0.01 0.09 0.21 0.51 0.61 7.45 

∆RI 0 0 0 0.17 0.07 7.44 

 

R2C5: 4. Nestedness: Finally, the ordinary least square estimator that (I assume) you 

are using only provides an unbiased estimate of standard errors if residuals (epsilon) 

are independant. In your case, I am concerned that many of your observations might 

be nested (i.e. taken along different reaches of a same river), which might introduce a 

correlation in the epsilon. For instance a time- and space- specific shock on flow peaks 

observed in a headwater catchment will likely affect flow peaks observed at several 

gauges along that river. The fact that errors congregate around specific basins in 

Figure 8 is actually a strong indication of that effect! This effect might lead you to 

underestimate the standard errors on your regression coefficient and find a significant 

effect where there is none. A way to address that would be to use the topology of your 

river network to specify the structure of your variance-covariance matrix (see, e.g., 

Muller and Thompson 2015) which you can then incorporate in your estimation via 

Generalized Least Square or Restricted Maximum Likelihood. Alternatively, you could 

do a robustness check where you run your OLS estimation on multiple subsets of your 

full sample, for which you made sure that all observations are from different catchments 

âA˘T hopefully the results will be similar. 

A: Thank you very much for your comment. We indeed used an ordinary least square 

estimator to fit the model. So we agree with you that nested catchments cause 

dependence between model residuals, and thus produce wrong inference about the 

regression coefficients. In order to select non-nested catchments and include as many 

catchments with dams as possible, in the revision, we selected the most upstream 

catchments with large or medium dams (if possible) among overlapping catchments. 

We got 757 catchments from this selection, among which 207 catchments had as least 



one dam. Although the results did not change substantially using the new subset of 

catchments, the regression model in the revised manuscript will be based on these 757 

catchments. 

 

Minor Comments. 

R2C6: The first sentence of the abstract is awkward (“because the knowledge and 

observations toward the effects are limited”). Please reformulate. 

A: Thank you very much for your comment. We will revise the sentence as 

“Quantifying the effects of human activities on floods is challenging because of limited 

knowledge and observations” in the revised manuscript. 

 

R2C7: L79: middle -> medium ? 

A: Thank you very much for your suggestion. We will change all “large and middle 

dams” to “large and medium dams” in the revised manuscript. 

 

R2C8: L94: It took me a while to realize that you *defined* your regions such that 

climate is homogeneous within them (as oppose to assuming that climate is 

homogeneous within a bunch of predetermined regions). Maybe clarify that here? 

A: Thank you very much for your comment. We will introduce how we define regions 

here in the revised manuscript. 

 

R2C9: Eqn 6: My understanding is that ∆Q varies of space but not time: if so, how to 

you “average over” the time index in the middle expression. Also, this would be an 

ideal place to clarify that ∆Q varies in space only because ∆X varies in space. Your 

estimation of g() is constant in space and time. 

A: Thank you very much for your comment. The ∆Q here is the effect is the sensitivity 

of Q to X rather than the accumulated change of floods along time. As we said in Line 

133, this sensitivity is “the percentage change in 𝑄 given a fixed change in 𝑋”. When 

we exhibited this sensitivity, we kept X and ∆X to be constant across all catchments 

(See Fig. 4 and Fig. 5), so the ∆Q here was constant not only in time but also in space. 

To avoid misunderstanding, in the revised manuscript, we will change Equation 6 to: 

Δ𝑄(%) = Δ𝑄 𝑄⁄ = 𝑒𝑔(𝑋+𝛥𝑋)−𝑔(𝑋) − 1 

 

R2C10: Fig 2: I agree with the other reviewer that p-values are an odd criteria for 

model selection. Either justify it, or use goodness of fit metric. 



A: Thank you very much for your comment. We agree with you that p-values are not 

appropriate for choosing models. In the revision, we used AIC to select effect terms (i.e, 

function 𝑔1(∙), 𝑔2(∙), and 𝑔3(∙)) and found no change in the terms compared with the 

original manuscript. We will use AIC in the revised manuscript. 

 

R2C11: L155-160 and Fig 8. I find it a good idea to analyze the spatial distribution of 

model deviations (i.e. locations where variations in Q are not explained by the modeled 

drivers), but I find the approach chosen to identify these locations odd/arbitrary and 

challenging to understand. Wouldn’t it be more straightforward to simply map the 

temporal variance of the residuals (i.e. Var_i(Eps_it))? 

A: Thank you very much for your suggestion. However, our purpose here is to see how 

floods change in catchments that are free from the impacts of urbanization and dam 

constructions. Therefore, we selected catchments with low Urban and RI to derive flood 

trends. Analyzing the spatial distribution of model deviations (e.g., to calculate 

Var(ε𝑖,𝑡)) only tells us the places where some drivers are missing in the regression. 

Model deviations do not tell us the directions and magnitudes of changes in floods. We 

will clarify our purpose of Fig. 8 in the revised manuscript. 

 

R2C12: L294 “Coefficient of Variation” can be understood as the ratio between the 

standard deviation and the mean. I don’t think that’s what you mean here, so please 

reformulate. 

A: Thank you very much for your comment. We believe the “Coefficient of Variation” 

is correct here. As we said in Line 291-293, “the method derives a common percentage 

change in all flood peaks given changing human factors, which means no changes in 

coefficients of variation.” For example, suppose we have random variable Z, a 

percentage change in Z (e.g., a 10% decrease) makes Z to be 0.9*Z. In this case, the 

coefficient of variation is Std.(0.9*Z)/Mean(0.9*Z)= Std.(Z)/Mean(Z). Therefore, the 

causal effect in our study does not allow the changes in the coefficient of variation of 

floods. 

 

R2C13: L294. You provide a good illustrative example of the models inability to 

capture heterogeneous treatment in time, but here would also be a good opportunity to 

give an example of a heterogeneous treatment in space (i.e. a scenario where cropland 

might persistently have a stronger effect on flow peaks in some locations than in other ). 

That would contribute alleviating my first major concern, above. 



A: Thank you very much for your comment. Omitting spatially heterogeneous effects 

has been mentioned as the first limitation of the method in Line 288 as “no interaction 

terms between human factors and regional or individual characteristics”. To make it 

clear, we will change this sentence to “no interaction terms between human factors and 

regional or individual characteristics that produce significant spatially heterogeneous 

effects”. We will also give an example of spatially heterogeneous effects, e.g., the effect 

of increasing urban areas on floods may be larger in regions with high soil permeability. 

 

R2C14: SI. Please add a descriptive statistics table with key stats on all the considered 

variable across your sample. 

A: We will add the table in the revised manuscript. Please also see R2C4. 

 

 

Marc Muller 
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