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Abstract 

The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain 

employed in assessing local scale changes. Understanding and quantifying this cascade is essential to developing effective 10 

adaptation actions. We evaluate and quantify uncertainties in future flood quantiles associated with climate change for four 

Irish catchments, incorporating within our modelling chain uncertainties associated with 12 Global Climate Models contained 

in the Coupled Model Intercomparison Project Phase 6, five different bias correction approaches, hydrological model 

parameter uncertainty and use of three different extreme value distributions for flood frequency analysis. Results indicate 

increased flood risk in all catchments for different Shared Socioeconomic Pathways (SSPs), with changes in flooding related 15 

to changes in annual maximum precipitation. We use a sensitivity test based on the analysis of variance (ANOVA) to 

decompose uncertainties and their interactions in estimating selected flood quantiles in the 2080s for each catchment. We find 

that the dominant sources of uncertainty vary between catchments, calling into question the ability to generalise about the 

importance of different components of the cascade of uncertainty in future flood risk. For two of our catchments, uncertainties 

associated with bias correction methods and extreme value distributions outweigh the uncertainty associated with the ensemble 20 

of climate models. For all catchments and flood quantiles examined, hydrological model parameter uncertainty is the least 

important component of our modelling chain, while the uncertainties derived from the interaction of components are substantial 

(>20 percent of overall uncertainty in two catchments). While our sample is small, there is evidence that the dominant 

components of the cascade of uncertainty may be linked to catchment characteristics and rainfall runoff processes. Future work 

that seeks to further explore the dominant components of uncertainty as they relate to catchment characteristics may provide 25 

insight into a priori identifying the key components of modelling chains to be included in climate change impact assessments.   
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1 Introduction 

Climate change is likely to increasingly affect hydrological regimes and flood hazards over coming decades. Significant 30 

changes in atmospheric temperature, precipitation, humidity, and circulation are expected, which may result in increasing 

extreme events, including floods (IPCC, 2013). According to Rojas et al. (2013), flood frequency in Europe will  increase due 

to climate change, with significant socio-economic implications for the region. Blöschl et al., (2017) and Blöschl et al., (2019)  

conclude that the timing and magnitude of European floods are shifting due to climate change and its consequences are not 

uniform across the region, with north western Europe experiencing earlier and higher flood peaks. Modelling and 35 

understanding of catchment scale flood risk projections is therefore an important endeavour for informing adaptation strategies.  

 

However, this task is subject to considerable uncertainties (Wilby and Dessai, 2010; Smith et al., 2018). Traditional or top-

down climate change impact assessments typically follow a modelling chain where output from Global Climate Models 

(GCMs), forced with estimates of future greenhouse gas concentrations, are extracted, and scaled to represent a study 40 

catchment. Hydrological models, calibrated for current conditions, are then forced with these GCM outputs to create discharge 

series spanning multiple decades into the future. When assessing flood risk, extreme value distributions are typically fitted to 

samples of extreme events (e.g. annual maximum flood series) representing current and future climates to evaluate changes in 

the characteristics of flooding. This modelling chain is replete with uncertainties that propagate and interact, resulting in large 

ranges of change at the catchment scale (e.g. Meresa, 2019) that can impede decision making (Smith et al., 2018). Over recent 45 

decades many studies have attempted to quantify the uncertainties in future climate change impacts due to the use of different 

climate models (e.g Knutti & Sedláček, 2013), natural variability (e.g. Hughes et al., 2011), bias correction techniques (e.g.  

Kay et al., 2009; Saini et al., 2015; Soriano et al., 2019), downscaling approaches (e.g. Fowler et al., 2007; Gutmann et al., 

2014), hydrological modelling uncertainties (e.g. Wilby & Harris, 2006; Bastola et al., 2011;  Meresa & Romanowicz, 2017; 

Broderick et al., 2019) and the application of different extreme value distributions for flood risk estimation (e.g. Meresa & 50 

Romanowicz, 2017; Lawrence, 2020).   

 

Recognition of the uncertainties inherent in future climate risk have also given rise to novel approaches to decision-making 

that embrace uncertainties (e.g. Wilby & Murphy, 2019; Clark et al., 2016). Rather than aiming to derive precise assessments 

of future risk, such approaches aim to stress test and evaluate adaptation options, in static or dynamic ways (Mazzorana et al., 55 

2012), to identify actions that are functional across a range of plausible future conditions, rather than optimised to a certain 

outcome (e.g. structured decision making (SDM), robust decision making, decision scaling, adaptation pathways). Each of 

these approaches require the cascade of uncertainty to be evaluated or navigated in ways that can better inform adaptation. For 

example, in Ireland Broderick et al. (2019) employ a scenario neutral framework ( Prudhomme et al., 2011) to evaluate design 

allowances for flood defences taking into account uncertainties derived from a large climate model ensemble, natural 60 

variability and hydrological models.  
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Whether employing traditional impact led or novel decision centric approaches, it is critical that key components of the cascade 

of uncertainty are adequately included. Research over the past two decades clearly shows that methodological choices made 

in assessing future climate change fundamentally impact on the portrayal of climate risk (Clark et al., 2016; Melsen et al., 65 

2019). Moreover, deep uncertainty can arise by virtue of the ad-hoc ways in which components of possible modelling chains 

are assembled and characterised within the overall modelling framework adopted (Wilby and Murphy 2019). Yet there are no 

established ways of sampling from the hierarchy of models used to evaluate impacts of climate change (Clark et al., 2016). 

Therefore, an important step in better integrating future climate risk into decision-making is the development of techniques 

that allow the contribution of different components of uncertainty and their interactions to be quantified and partitioned to help 70 

scientists and decision makers better navigate the cascade of uncertainty. In this regard ANOVA (ANalysis Of Variance) based 

techniques, which can be used to decompose sources of uncertainty and their interaction, offer significant utility (e.g. Kay et 

al., 2009;Vetter et al., 2016; Hattermann et al., 2018; Meresa, 2020).  

 

In this study, we explore uncertainties in future flood risk for four Irish catchments and employ variance decomposition to 75 

quantify the contribution of various sources of uncertainty, together with their interaction, to the overall uncertainty in flood 

risk. In doing so we place emphasis on evaluating the uncertainties derived from; i) climate models in the newly available 

Coupled Model Inter-comparison Project Phase 6 (CMIP6) ensemble (Wyser et al., 2019); ii) widely used bias correction 

techniques; iii) hydrological model parameter uncertainty, and iv) the use of different extreme value distributions. The 

remainder of the paper is organised as follows; Section 2 outlines the study design and data/methods employed, Section 3 80 

presents key results, exploring uncertainties for key steps in the modelling chain examined, together with their contributions 

and interactions to the full range of project change in flood risk. Section 4 provides a discussion of key insights, limitations 

and future directions before drawing main conclusions in Section 5.  

2 Modelling and numerical experiments  

Our study design is illustrated in Figure 1. We quantify uncertainties and their interaction in projected flood hazards using 12 85 

Global Climate Models (GCMs) contained in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) ensemble 

(https://esgf-node.llnl.gov/search/cmip6/), forced using three Shared Socioeconomic Pathways (SSP) scenarios. We use five 

bias correction techniques (Change factor (CF), Double Gamma Distribution Quantile (DGQM), Birnbaum distribution 

Quantile mapping (BQM), Single Gamma Distribution Quantile (SGQM), and Empirical Quantile (EQM)) to post-process 

climate model outputs (daily precipitation and air temperature time series). The daily bias corrected precipitation and 90 

temperature data are used as input to the Génie Rural à 4 paramètres Journalier (GR4J) hydrological model (Perrin et al., 2003). 

GR4J has been previously applied to simulate high flows in Ireland, showing good performance in capturing a range of 

hydrological signatures across diverse catchments (Broderick et al., 2019). The Generalized Likelihood Uncertainty Estimation 
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(GLUE) technique is used to quantify GR4J parameter uncertainty. In assessing future flood hazard the sensitivity of results 

to different extreme value distributions is examined. In addition to evaluating each source of uncertainty independently, we 95 

use variance decomposition to quantify the contribution of each methodological choice and their interactions to the overall 

uncertainty in assessing flood risk. The climate change impact is evaluated based on relative future changes in the magnitude 

of floods for the 2020s (2010-2039), 2050s (2040-2069) and 2080s (2070-2099) with respect to the reference period (1976-

2005). The following sections provide further details on the study catchments and each stage of the modelling chain employed. 

2.1 Study catchments and hydro-climate datasets  100 

Simulations are undertaken for four catchments (Boyne, Blackwater, Newport and Slaney), each representing different flood 

response types across the Ireland as evaluated by Broderick et al. (2019). Their location, together with a summary of hydro-

climatic conditions for each catchment is summarized in Table 1 and Figure 2. Catchment area ranges from 146 km2 (Newport) 

to 2447 km2 (Boyne), while elevation ranges from 56 m (Newport) to 112 m (Blackwater). For each catchment we use gridded 

(1 × 1 km) daily precipitation and temperature data (Walsh, 2012) area averaged for the period 1976-2005 to provide a single 105 

representative baseline series for each catchment. Daily potential evapotranspiration is derived using air temperature and 

elevation following the method of Hamon (1964). This approach is favored over less parsimonious but more physically based 

methods (e.g. Penman‐Monteith), which have greater data input requirements (e.g. wind speed, humidity) not available for all 

study catchments. Daily discharge data for each catchment was obtained from the Office of Public Works (OPW) 

(http://www.epa.ie/hydronet/).  110 

2.2 Climate Projections and Bias Correction   

Daily precipitation (pr) and air temperature (tas) time series for the period 1971-2100 were extracted for 12 members of the 

CMIP6 ensemble (https://esgf-node.llnl.gov/search/cmip6/) forced by each of three Shared Socioeconomic Pathway (SSP) 

(SSP1, SSP3 and SSP5) scenarios (see Table 2 for details). For each catchment daily precipitation and air temperature were 

extracted from the closest land-based GCM grid overlying the catchment centroid. It is widely acknowledged that climate 115 

models exhibit biases in their outputs (Krinner & Flanner, 2018; Giorgi & Gao, 2018), with numerous studies highlighting the 

need to post-process climate model output before use in simulating hydrological response (Ehret et al., 2012; Teng et al., 2012; 

Osuch et al., 2015; Meresa & Romanowicz, 2017). However, there is still no consensus on which bias correction techniques 

are most effective, nor in how bias correction techniques can modify future climate change signals. For instance, Teutschbein 

& Seibert (2013) and Yang et al. (2010) showed distribution mapping based on theoretical distributions outperforms other bias 120 

correction methods. Similarly, Chen et al. (2013) and  Berg et al. (2012) show that theoretical distribution mapping performs 

similar to, or marginally better than, empirical quantile mapping. On the contrary, Gudmundsson et al. (2012), Gutjahr & 

Heinemann, (2013) and Lafon et al. (2013), show that empirical quantile mapping demonstrates higher skill than theoretical 

distribution mapping in systematically correcting precipitation. Given these varied results, we employ five commonly used 
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techniques to bias correct raw climate model output and to examine the contribution of the selected bias correction methods to 125 

the total uncertainty in future flood hazard.  

2.2.1 Change factor /delta change (CF) 

The change factor technique applies multiplicative (for precipitation) and/or additive (for temperature) procedures for 

correcting raw model output. This involves correcting simulated daily precipitation (𝑃𝑓𝑢𝑡,𝑐𝑜𝑟𝑟) by multiplying the ratio of 

observed precipitation (𝑃𝑜𝑏𝑠) and reference precipitation simulation (𝑃𝑟𝑒𝑓,𝑟𝑎𝑤) to future simulations of raw climate model 130 

precipitation (𝑃𝑓𝑢𝑟,𝑟𝑎𝑤). For correcting future air temperature (𝑇𝑓𝑢𝑡,𝑐𝑜𝑟𝑟), the difference in observed air temperature (𝑇𝑜𝑏𝑠) 

and simulated temperature in the reference period (𝑇𝑟𝑒𝑓,𝑟𝑎𝑤) is added to raw climate output (𝑇𝑓𝑢𝑟,𝑟𝑎𝑤). 

 

𝑃𝑓𝑢𝑡,𝑐𝑜𝑟𝑟 = 𝑃𝑓𝑢𝑟,𝑟𝑎𝑤 ∗
𝑃𝑜𝑏𝑠

𝑃𝑟𝑒𝑓,𝑟𝑎𝑤
                                                                                (1) 

 135 

𝑇𝑓𝑢𝑡,𝑐𝑜𝑟𝑟 = 𝑇𝑓𝑢𝑟,𝑟𝑎𝑤 + (𝑇𝑜𝑏𝑠 − 𝑇𝑟𝑒𝑓,𝑟𝑎𝑤)                                                            (2) 

2.2.2 Empirical quantile mapping  

Empirical quantile mapping is based on pair-wise comparison between the empirical cumulative density functions (ecdf) of 

observed and simulated daily precipitation time series during the reference period (1976-2005). This is a purely empirical and 

direct matching of the histogram of the observed precipitation to the future period. Future precipitation and temperature are 140 

corrected using the inverse of the ecdf (𝑒𝑐𝑑𝑓−1 ) and fitted ecdf  𝑒𝑐𝑑𝑓ℎ𝑠𝑡,𝑚. 

 

𝑃ℎ𝑠𝑡,𝑚
𝑐𝑜𝑟 = (𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚

−1 (𝑒𝑐𝑑𝑓ℎ𝑠𝑡,𝑚(𝑃ℎ𝑠𝑡,𝑚)))                                                        (3) 

 

𝑇ℎ𝑠𝑡,𝑚
𝑐𝑜𝑟 = (𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚

−1 (𝑒𝑐𝑑𝑓ℎ𝑠𝑡,𝑚(𝑇ℎ𝑠𝑡,𝑚)))                                                        (4) 145 

 

The non-parametric quantile matching was performed first in the reference period (m, modeling period) using an exponential 

transfer function assumption. Then the calibrated coefficients were used to correct the future daily precipitation and air 

temperature.  

2.2.3 Distribution Quantile Mapping (DQM) 150 

Distribution quantile mapping is a distribution parameter dependant bias correction technique. The parameters are extracted 

by fitting Gamma distribution to observed and simulated time series data, and matching its corresponding quantiles  from the 
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observed and raw climate model output in the reference period (1976-2005) (Piani et al., 2010). We applied two types of DQM 

to correct climate biases: Single Gamma Distribution Quantile Mapping (SGDQM) and Double Gamma Distribution Quantile 

Mapping (DGDQM), together with the Birnbaum-Sanders distribution method (BSM) (Marzena Osuch et al., 2016). These 155 

methods also allow for the excess number of dry, drizzle and wet days to be considered and corrected. In the case of SGQM, 

the first step is fitting a Gamma distribution to the upper 75 % of daily observed and raw climate output precipitation 

distribution. Whereas in the DGDQM, the Gamma distribution is fitted to both the upper ≥ 75 % and to the lower < 75 % of 

the daily observed and raw climate output precipitation in the reference period (1976-2005). In both cases, non-rain days were 

removed and only wet days were considered. Similarly, BSM used the Birnbaum-Sanders distribution to transfer the 160 

precipitation quantile from the observed time series to raw output of the GCMs in the reference period. 

 

𝑃𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑔
−1(𝐹𝑑𝑔(𝑃𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (5) 

 

𝑃𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑏
−1(𝐹𝑑𝑏(𝑃𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (6) 165 

 

𝑇𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑏
−1(𝐹𝑑𝑏(𝑇𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (7) 

 

𝑇𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑛
−1(𝐹𝑑𝑛(𝑇𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (8) 

 170 

Where 𝑃𝑐𝑜𝑟𝑟  and 𝑇𝑐𝑜𝑟𝑟  are the bias corrected daily precipitation and temperature, respectively. Likewise, 𝑃𝑟𝑎𝑤(𝑡) and 𝑇𝑟𝑎𝑤(𝑡) 

represent for raw climate model output for precipitation and temperature. The raw climate output inverse cumulative density 

(CDF) is symbolized by 𝐹𝑑𝑔
−1, 𝐹𝑑𝑏

−1 , and 𝐹𝑑𝑛
−1 for precipitation and temperature, respectively. The dn, db and dg subscripts 

represent the normal (for temperature), Birnbaum-Sanders (for both precipitation and temperature) and Gamma (for 

precipitation) distributions, respectively. The Gamma (for precipitation) and Birnbaum-Sanders distributions have two 175 

parameters – the shape and scale parameters which are symbolised by α and β, and the normal (for temperature) distribution, 

with mean and standard deviation represented by µ and σ, respectively. 

2.3 Bias correction performance evaluation  

The performance of the selected bias correction techniques was evaluated using four statistical measures: Pearson Correlation 

(RR), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Percent Bias (PBIAS). Evaluation was performed 180 

by comparing the ability of each approach to capture observed precipitation and temperature.  

 

𝑅𝑅 =
∑(𝑃𝑆−𝑃𝑆̅̅ ̅̅ )∗(𝑃𝐶−𝑃𝐶

̅̅ ̅̅ )

√∑(𝑃𝑆−𝑃𝑆̅̅ ̅̅ )2∗∑(𝑃𝐶−𝑃𝐶̅̅ ̅̅ )2
                                         (9) 
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𝑀𝐴𝐸 =
∑ |𝑃𝑆−𝑃𝐶|𝑛

𝑖=1 ^2

𝑁
      (10) 185 

 

    𝑃𝐵𝐼𝐴𝑆 =
∑ |𝑃𝑆−𝑃𝐶|𝑛

𝑖=1

∑ 𝑃𝑆
𝑛
𝑖=1

                                                       (11) 

 

 𝑅𝑀𝑆𝐸 = [
∑ |𝑃𝑆−𝑃𝐶|2𝑛

𝑖=1

𝑁
]0.5                                             (12) 

 190 

Where Ps and Pc are observed and corrected precipitation, respectively, 𝑃𝐶
̅̅ ̅  is the mean of corrected precipitation,  

𝑃𝑆̅     the mean of observed precipitation and N is the number of observations.  

2.4 Hydrological modelling  

The GR4J model (Perrin et al., 2003) is a four parameter, lumped conceptual rainfall-runoff model that has been widely applied 

in different hydro-climate conditions (Meresa & Gatachew, 2019; Meresa et al., 2017; He et al., 2018). GR4J simulates 195 

streamflow using precipitation, temperature and evapotranspiration (Perrin et al., 2003).  The model has two consecutive stores: 

one related to runoff production and the other to runoff routing. Detailed information about the model structure is given in 

Perrin et al. (2003). The upper and lower limits of the four model parameters are listed in Supplementary Table S1. The model 

was calibrated and validated using observations over the period 1976-2005. The first four years were used as a model warmup 

to stabilise the initial states of the hydrological parameters. Calibration was undertaken from 1981-1999 and validation from 200 

2000-2005. The Nash Sutcliffe Efficiency (NSE) objective function was used to evaluate the model performance and to identify 

behavioural parameter sets (Nash and Sutcliffe, 1970). NSE is defined as:   

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑡−𝑄𝑚,𝑡)2𝑗

𝑡=1

∑ (𝑄𝑂,𝑡−𝑄̅𝑜)2𝑗
𝑡=1

  (13) 

where Qo,t and Qm,t are observed and simulated flow at time t, Qo is the mean observed flow and j is the length of the jth time 

series. The ability of hydrological model simulations to replicate the observations was further evaluated by deriving the 205 

proportion of extreme high flows inside the 95% confidence intervals (PCI). This is helpful for identifying a fixed NSE 

threshold for differentiating between behavioural and non-behavioural simulations (Li et al., 2011; Xu, 2014).  

The Generalized Likelihood Uncertainty Estimation (GLUE) approach is widely applied to quantify hydrological model 

parameter uncertainty (Beven & Binley, 1992). GLUE is an informal statistical approach that uses Monte Carlo (MC) 

simulation to generate many possible hydrological parameter sets from specific ranges. In applying GLUE, we randomly 210 

generated 30,000 parameter sets (using a uniform distribution) from the ranges of each GR4J parameter. Behavioural parameter 
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sets were identified based on the NSE (Equation 13) weighting efficiency function and PCI (Equation (14), with a resultant 

fixed threshold of NSE ≥ 0.5 employed.  

 

                                                 𝑃𝐶𝐼 = [1 − | (
𝑁𝑄𝑖,𝑝

𝑇
− 0.95) |] ∗

1

𝑇
∗ (∑

𝐿𝑢,𝑡,𝑝−𝐿𝑙,𝑡,𝑝

𝑄𝑜,𝑡
)                           (14) 215 

where LL,t,p and LU,t,p  are the lower and upper boundary values of the extreme flow CI, T is the sum of time steps, Qo,t is the 

observed extreme flow at time step t,  NQin,p is the number of extreme peak flow observations which fall within the extreme 

flow CI. The shape of the 95% CI is governed by the value of PCI; if PCI is closer to 0.95 more of the observed time series 

extremes fall in the confidence interval band. 

2.5 Flood frequency analysis  220 

Numerous extreme value distributions can be deployed to estimate the frequencies of high flows. For example, the Log-Pearson 

III distribution is very popular in the USA and Australia for infrastructure design (Griffis & Stedinger, 2007), the General 

Extreme Value and Pearson Type III distributions are widely used in Europe (Madsen et al., 2013), while the Wakeby and 

Log-Normal distributions have been frequently used in Asia (Chen et al., 2012). However, a single distribution model may not 

be able to capture the entire temporal and spatial variability of hydrological extremes. Therefore, we employ three common 225 

distribution types (LogN, Loglogistic and GEV) with Maximum Likelihood parameter estimator (MLE) for flood frequency 

curve development. MLE estimates the distribution parameters by optimising the likelihood function of the cumulative 

probability distribution density, and its reliability is evaluated using the standard error of the estimated parameters. These 

distributions were fitted to the annual maximum daily peak flow in each study catchment. In Equations 15- 17, the respective 

probability density function (PDF) of each distribution is presented. The GEV and Log-logistic models have three parameters, 230 

while the Log-Normal distribution has two parameters;   

Log-Normal   𝑓(𝑥) =
exp (−

1

2
(

𝑙𝑛𝑥−𝜇

𝜎
)

2
)

𝑥𝜎√2𝜋
            σ, µ (σ>0) (15) 

Log Logistic  𝑓(𝑥) =
𝛽(

𝑥

𝛼
)𝛽−1

𝛼[1+(
𝑥

𝛼
)

𝛽
]2

   (16) 

GEV   𝑓(𝑥) = {

1

𝜎
exp (−(1 + 𝑘𝑧)^−

1

𝑘)(1 + 𝑘𝑧)−1−
1

𝑘  𝑘 ≠ 0

1

𝜎
exp(−𝑧 − 𝑒𝑥𝑝(−𝑧))   𝑘 = 𝑜

         K, σ, µ (σ>0)  (17) 

Where, α is the scale parameter, β is the shape parameter and k is the location parameter.  235 
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2.6 Uncertainty decomposition and estimation  

We examine the relative contribution of four key components of the modelling chain to the projected uncertainty in future 

flood risk. These are climate models (CM), bias correction techniques (BC), hydrological model parameters (HP) and flood 

frequency distribution models (FF). For uncertainty decomposition, we only use a single SSP scenario (here SSP3), with the 

assumption that different studies will be interested in quantifying flood risk for different emissions outcomes separately. Unlike 240 

additive or multiplicative approaches to uncertainty estimation, ANOVA can decompose the aggregated source of uncertainty 

into individual components and their interaction using specific extreme flow indices (Meresa & Romanowicz, 2017). We 

develop a hypothesis test using an ANOVA model that can identify the effect of each component (CM, BC, HP, FF) in the 

model chain to the total variance of the extreme index (Y). According to n-way ANOVA principles, the model splits the total 

sum of squares (SST) into the sum of squares (SS) of the main variables and their interactions as follows:    245 

 𝑆𝑆𝑇 = ∑ ∑ ∑ ∑ (𝑌𝑖𝑗𝑘𝑙 − 𝑌̅)
2𝑁𝐹𝐹=3

𝑙=1
𝑁𝐻𝑃=300
𝑘=1

𝑁𝐵𝐶=5
𝑗=1

𝑁𝐶𝑀=12
𝑖=1   (18) 

Where Yijkl is estimated flood magnitude considering i=12 climate models, j=5 bias correction methods, k=300 hydrological 

parameter sets, l=3 extreme frequency distributions, and 𝑌̅ is the mean of all variables. SST is a grand square deviation of the 

main and interacting variables. Further, the deviation in SST is split into the individual and interacting components to explore 

their effect on the aggregated extreme flood frequency indices as follows:  250 

 𝑆𝑆𝑇 = 𝑆𝑆𝐶𝑀 + 𝑆𝑆𝐵𝐶 + 𝑆𝑆𝐻𝑃 + 𝑆𝑆𝐹𝐹 + 𝑆𝑆𝐶𝑀𝐵𝐶 + 𝑆𝑆𝐶𝑀𝐻𝑃 + 𝑆𝑆𝐶𝑀𝐹𝐹 + 𝑆𝑆𝐵𝐶𝐻𝑃 + 𝑆𝑆𝐵𝐶𝐹𝐹 + 𝑆𝑆𝐻𝑃𝐹𝐹  (19) 

where SSCM is the sum of standard errors of climate models, SSBC is the sum of standard errors of bias correction methods, 

SSHP the sum of standard errors of hydrological parameters and SSFF is the sum of the standard errors of flood frequency. In 

examining combined effects, SSCMBC is the sum of standard errors of climate models and bias correction methods, SSCMFF the 

sum of standard errors of climate models and extreme frequency, and SSBCHP is the sum of standard errors of bias correction 255 

methods and hydrological parameters. 

3. Results   

3.1 Evaluation of bias correction techniques 

The annual maximum daily precipitation series from 12 GCMs were evaluated against observations for each catchment during 

the period 1976-2005 (reference period). RR, MAE, PBIAS and RMSE results for each catchment are presented in Figure 3 260 

and Figure S1. Following bias correction, results indicate an improvement of the GCMs in reproducing observed annual 

maximum precipitation. However, the performance of each bias correction method is not uniform for all catchments and 

GCMs. MAE values range from 0 to 195, RMSE 0 to 40, PBIAS -65 to 40, and R ranges from -0.40 to 0.50. Overall, the 

distribution based bias correction methods performed better in reproducing observed maximum precipitation in these 
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catchments. The smallest PBIAS is observed in the Boyne catchment and largest in the Newport catchment. Figure 4 shows 265 

the raw GCM outputs together with the results of the five bias correction methods applied to the CMIP6 ensemble in simulating 

monthly maximum precipitation for each catchment. The corrected monthly precipitation gives a wider spread in winter 

months (except DGQM and EQM techniques), relative to summer months. However, the ensemble spread is dependent on the 

bias correction method. DGQM and EQM methods result in a relatively narrower spread in monthly simulations, whereas 

SGQM, BSM and CF return a wide range of simulations (Figure 4).  270 

 

The influence of each bias correction method on the magnitude of simulated changes in annual maximum precipitation for the 

2050s (2040-2069) and 2080s (2070-2099) (relative to reference period: 1976-2005) was evaluated for each GCM SSP 

combination (Figure 5). Simulated changes from the same 12 GCMs using different bias correction approaches show 

substantial differences in the magnitude of changes in annual maximum precipitation. Generally, projected changes are smaller 275 

in the Slaney and Boyne using DG methods, whereas the changes in the Blackwater and Newport are smaller using EQ and 

SG. There is also a linear relationship between the annual maximum precipitation changes suggested for the 2050s and 2080s, 

indicating a positive trend in the magnitude of changes with time (Figure 5). We also note that the magnitude of change in 

annual maximum precipitation tends to be higher for SSP5 than for SSP3 and SSP1 and slightly higher in the Slaney and 

Newport catchments, relative to the Boyne and Blackwater.  280 

 

A similar evaluation was undertaken for mean annual air temperature for each catchment. Figure 6 shows the bias corrected 

projected mean annual temperature for each catchment under each GCM/SSP combination, together with the ensemble median 

for each SSP. The selected catchments show continuous warming during the 21st century. The ensemble mean changes for 

SSP1, SSP3, and SSP5 scenarios are projected to be 10-12oC, 11-13.3oC, and 12-15oC, respectively by the end of the century. 285 

The spread at the end of 21st century is somewhat wider than the earlier periods. Bias correction results for precipitation are 

shown in Figure S2 and for temperature in Figure S3. 

 

3.2 Hydrological modelling and parameter uncertainty evaluation  

Using the GR4J hydrological model, 30,000 parameter sets were randomly generated from uniform distributions with the NSE 290 

objective function threshold set to > 0.5, used to identify behavioural parameter sets. Figure 7 shows the seasonal maximum 

flow simulations derived using behavioural sets relative to observations for the years 1976-2005, together with the 90 percent 

confidence intervals of the simulations. Monthly maximum simulations mostly fall within the 95% and 5% confidence interval 

except in the Boyne catchment, where a portion of the observed maximum flow time series fall outside of the simulated 

confidence interval.  295 
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Ensemble median projections of monthly maximum flow derived from 12 GCMs under SSP3 and 5 bias correction techniques 

for each catchment for the period 1976 to 2100 are shown in Figure 8. Increases are largest during the winter and early spring 

months in the Blackwater and Newport catchments, with maximum flow increasing from 17 m3/s to 25 m3/s during winter in 

the Newport catchment, and from 120 m3/s to 160 m3/s in the Blackwater. Also, the projected flows during late autumn and 300 

early summer periods shows the same trend and uniform pattern, with a maximum flow rate of about 35 m3/s for the  

Blackwater, 5 m3/s for Newport, 40 m3/s for the Boyne and 15 m3/s for the Slaney.  

 

Percent changes in maximum flow simulated using each of the 12 GCMs bias corrected by each of the five methods, together 

with the raw simulations are presented in Figure 9. A clear increase in flow is suggested using DGQM, SGQM, CF, EQM and 305 

BSM, however, the magnitude of simulated increases differs depending on bias correction approach and are not uniform across 

the selected catchments. Overall, distribution based bias correction models give smaller changes in annual maximum flow time 

series. This indicates that wet-day frequency correction is very important for understanding future annual maximum flow 

projections. Annual maximum flow changes using EQM gives a higher spread range and uncertainty. Changes in annual 

maximum flow are smallest in the Boyne catchment and largest in the Newport catchment. Changes in annual maximum flow 310 

are more constrained under SSP3 and SSP5, than SSP1 (Figure 9).  

3.3 Flood hazard projections under varying climate conditions  

To evaluate changes in flood frequency we use the Akaike Information Criteria (AIC) to identify the best fitting distribution 

type in the reference period and observed time series for each GCM projection and catchment. Figure 10 shows the estimated 

flood quantile values at different return periods (from 2 year to 100 year) using GEV, LogN and LogL distribution models, 315 

and associated 95% confidence intervals from 12 GCMs (under SSP3 scenario) bias corrected using the DGQM method over 

the full simulation period (1976-2100). Overall, the LogL distribution returned the smallest changes in flood quantiles and the 

narrowest uncertainty band, while the estimated quantile values using LogL tend to be the largest across each catchment. The 

GEV distribution gives the largest uncertainty ranges in flood quantiles in all catchments (Figure 10).  

 320 

Flood quantile changes were also evaluated for each future period under SSP3 using the GEV distribution fitted to the median 

GR4J simulation combining all GCMs and bias correction methods (Figure 11 and Figure S4). Each catchment shows a 

significant increase in flood quantile magnitudes in the future. Overall, changes in flood quantiles are consistent with changes 

in annual maxima daily flow. However, future flood quantile changes are not the same across catchments and differences exist 

based on bias correction methods employed. The frequency of the larger return period flood (100-year flood) increases to 325 

higher than once in 20 years. The smallest changes (0-15%) in flood quantiles are observed in the Slaney using DGQM, the 

Boyne using SGQM and DGQM, Newport using CF and EQM, and in the Blackwater using CF. For the 100-year flood, the 

largest changes in magnitude (50-200%) are noted using EQM in the selected catchments. By comparison, the other bias 

correction methods are consistent and indicate changes of between 30-50% in the Slaney and Boyne, and 50-100% in 
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Blackwater and Newport in the future. Overall, the Slaney catchment shows smaller relative change in flood quantiles (0-20%) 330 

at different return periods using BSM, SGQM and CF, similarly using the DGQM projected changes range from 0-15%. 

Moreover, changes in extreme flood quantiles do not increase linearly from the 2050s to 2080s. In almost all catchments and 

combinations of bias correction techniques changes are greater in the 2050s than the 2080s under SSP3.  

3.4 Uncertainty estimation and decomposition for flood hazard estimation  

The magnitude of each of the four sources of uncertainty on flood risk estimation was estimated first based on the additive 335 

chain principle to reveal their contribution to the overall uncertainty in projected changes. Projections from each of 12 climate 

models were iteratively passed through five bias correction techniques and used to force the GR4J model using behavioural 

parameters sets, before fitting each of the three frequency distributions to estimate future flood hazard. Figure 12 presents the 

integrative range of this cascade of uncertainty in estimating return period floods for each catchment using data spanning the 

years 1976-2100. The dominant source of uncertainty differs from catchment to catchment. Climate models, flood frequency 340 

distribution and bias correction techniques tend to be the dominant contributing source of uncertainty in estimating flood 

quantiles. In the Newport and Blackwater catchments climate model projections present the dominant source of uncertainty, 

particularly for higher flood quantiles. Notably the relative magnitude of uncertainty in the smaller flood quantiles in the 

Blackwater catchment is different than for larger flood quantiles, with the extreme value distribution becoming dominant at 

lower flood quantiles. The largest source of uncertainty in the Slaney is derived from the use of different frequency distribution 345 

models. For the Boyne catchment the bias correction methods contribute more to the total uncertainty. Therefore, the various 

steps in the modelling chain contribute differently in each catchment to total uncertainty in future flood risk estimation and in 

some catchments vary depending on the flood quantile of interest (Figure 12).  

 

While additive chains may be useful for evaluating individual components of uncertainty, they do not allow identification of 350 

the interactive components of the uncertainty cascade. We use ANOVA to decompose the contribution of individual sources 

of uncertainty and their interaction in contributing to the total uncertainty in future flood hazard (Figure 13). We evaluate 

changes in 10-year, 50-year and 100-year return period flood for the 2080s (2070-2099) relative to the reference period (1976-

2005). The decomposition of uncertainty is based on the variance in changes of flood quantile values and calculated out of 100 

percent, i.e. the sum of all sources is equal to 100. The contribution of each source of uncertainty is not uniform across the 355 

selected catchments (Figure 13). Taking the example of the magnitude of the 100 year flood (Figure 13 outer band), future 

flood hazard in the Blackwater catchment for the 2080s is highly sensitive to the climate model used (36.5% of total uncertainty 

in 100-year flood) and respective bias correction methods (20% of total uncertainty). By contrast, future flood frequency in 

the Boyne is more sensitive to bias correction methods (30.0%) and extreme value distribution (25.5%) employed. In the 

Boyne catchment, the climate model ensemble accounts for less than one quarter (22.5%) of the uncertainty in simulations of 360 

the 100-year flood by the 2080s and is comparable in magnitude to the interactive components of the cascade. In the Newport 

catchment the use of different extreme value distributions (36.3%) presents the largest component of uncertainty. The results 
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of ANOVA analysis also confirm that the uncertainty resultant from the interaction of the key sources considered is not 

negligible and also varies on a catchment basis. In the Slaney and Blackwater catchments the interaction of various uncertainty 

components accounts for 16.8% and 16% of the total uncertainty in estimates of the 100-year flood by the 2080s. By contrast, 365 

interactive components in the Newport and Boyne catchments account for approximately one quarter of the uncertainty range 

(25.2% in the Newport and 22% in the Boyne). Overall, hydrological parameter uncertainty is the least dominant source of 

uncertainty in future flood frequency estimates across each catchment (Figure 12 and Figure 13). For estimates of the 100-year 

flood in the 2080s (Figure 13 outer band), hydrological model parameter uncertainty is typically 5% of the total uncertainty, 

reaching up to 9% in the Boyne. Furthermore, the contribution of each of the main components of uncertainty and their 370 

interactions to total uncertainty is broadly similar for the different return periods considered for our analysis of the 2080s 

(Figure 13).  

 

4. Discussion 

 375 

We examined future flood risk for four catchments in Ireland, including within our modelling chain the uncertainties derived 

from 12 CMIP6 GCMs, 5 commonly used bias correction techniques, hydrological model parameters and three flood frequency 

distributions. We found that maximum precipitation and mean air temperature in all catchments are projected to increase over 

the coming decades, however changes are not uniform across catchments. The largest change in annual maximum precipitation 

was found for the Newport catchment, with ensemble median increases becoming progressively larger for the 2020s, 2050s 380 

and 2080s (27%, 40%, 60%, respectively). In the Slaney catchment, increases in annual maximum precipitation between the 

2050s and 2080s are not statistically significant. In the Blackwater catchment, most of the climate models indicate a positive 

change but these have a wide range of uncertainty relative to other catchments (from 0 to 55% in 2050s and 0 to 60% in 2080s). 

We find projected changes in flood magnitudes to be proportional to changes in maximum precipitation in all catchments. 

Projected changes in flood magnitude are higher using the SSP1 and SSP5 climate scenarios, whereas the SSP3 results in more 385 

modest flood increases. Overall changes in precipitation and air temperature are broadly consistent with previous findings 

using CMIP5 (Broderick et al., 2019) in Ireland.  

 

Our findings demonstrate the large uncertainties associated with projected flood magnitudes. Over recent years much research 

has sought to explore the dominant sources of uncertainty in climate change impact assessments. For instance, Bastola et al. 390 

(2011b) identify hydrological model uncertainty as important in previous assessment of change in flood risk, others have 

identified climate models as being the dominant source (e.g. Sulis et al., 2012; Hattermann et al., 2018). Mizukami et al. (2016) 

rank hydrological model structure of greater importance than bias correction approaches in US catchments. However, our 

findings call into question the ability to generalise the most important components of the cascade of uncertainty in assessing 

future flood risk across catchments. Using variance decomposition to partition the components of the modelling chain 395 

employed, together with their interactions, we show that the dominant sources of uncertainty in assessing climate change 

https://doi.org/10.5194/hess-2020-606
Preprint. Discussion started: 4 December 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

impacts on future floods differ on a catchment by catchment basis. In two of our study catchments the extreme value 

distribution employed for flood frequency analysis and the bias correction method used to adjust raw GCM output contribute 

greater uncertainty to future flood risk than the ensemble of GCMs employed. Across all catchments the uncertainty in future 

hydrological model parameters is the smallest component of total uncertainty, while the contribution to total uncertainty from 400 

the interaction of components within the modelling chain is substantial – up to one quarter of the uncertainty range considered 

in two catchments.  

 

While our sample is small, results suggest that rather than being the same across catchments, the dominant sources of 

uncertainty in future flood quantiles are catchment dependent. Vetter et al. (2017) used variance decomposition to examine the 405 

contribution of modelling chains (GCM, emissions scenario (in the form of Representative Concentration Pathways (RCPs)) 

and hydrological model) to total uncertainty in different parts of the flow regime. In their study they examine 12 large 

catchments globally. While Vetter et al. (2017) highlight the dominance of GCMs in total uncertainty across many catchments 

they highlight that the share of emissions scenario and hydrological model contributions to overall uncertainty can differ 

between catchments. Similar to our findings, Vetter et al. (2017) highlight the importance of interacting components of the 410 

modelling chain employed. The possibility that dominant sources of uncertainty differ on a catchment by catchment basis 

presents challenges for both top down and bottom up approaches to climate change adaptation. Top down approaches must a-

priori decide on the components of the modelling chain to include. Including all relevant components is a very resource 

expensive task (Smith et al., 2018) and it may not be apparent at the outset which components of modelling chain to include 

for specific catchments. For bottom up approaches, such as the scenario neutral method (Broderick et al., 2019), the modeller 415 

is forced to choose which aspects of uncertainty to prioritise in assessing sensitivity to future changes. Again, this may not be 

apparent a priori. Moreover, the findings of Dobler et al. (2012) suggest that the dominant components of the modelling chain 

may further vary depending on which part of the flow regime (low, mean, high flows) is of interest. They highlight, for 

example, that the importance of bias correction approaches to the overall uncertainty in hydrological response increases for 

high flows. Our analysis of flood magnitudes for different return periods using all data from 1976-2100 suggests that the 420 

dominant source of uncertainty may also vary based on the return period of interest.  

 

Our results show the value of ANOVA based methods for examining and visualising the relative contribution of uncertainties 

within the modelling chain considered. In our example we used the planning horizon of the 2080s to decompose uncertainties. 

In addition, the use of ANOVA techniques to quantify uncertainty may offer insight into where effort to reduce uncertainty 425 

may be most fruitful (Clark et al., 2016). In all catchments the magnitude of change in flood events is heavily dependent on 

the approach to bias correction. Across all catchments EQM performs the poorest at matching precipitation quantiles during 

the historical period. All other methods considered show consistent performance except in the Blackwater catchment. This is 

likely due to long positive tail of the precipitation distribution and intensity characteristics in the Blackwater. On the whole, 
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distribution-based methods tend to be most consistent across the selected catchments and also have relatively smaller spread. 430 

Therefore, the DGQM or SGQM method (s) are promising for future risk evaluation and minimizing uncertainty.  

 

Given the importance of uncertainty quantification in adapting to climate change it should be a priority for future work to 

examine how the dominant components of uncertainty in modelling chains relate to catchment characteristics.  While our study 

of four catchments is limited in this regard, there is evidence that catchment characteristics, which provide insight into the 435 

processes governing the rainfall runoff response, may also play a role in determining the components of the modelling chain 

that dominate uncertainties in future flood projections. The Newport catchment is the smallest of our sample (146 Km2) and is 

an elevated catchment with a flashy response to rainfall. The shorter time of concentration and linear precipitation-runoff 

relationship mean that this catchment is highly sensitive to changes in extreme precipitation with uncertainty in flood frequency 

distribution and bias correction accounting for over half of the total uncertainty in the projected 100 year flood in the 2080s. 440 

The Boyne catchment has been subject to significant arterial drainage works which have resulted in a faster rainfall runoff 

response and elevated high flows (Harrigan et al., 2020; Berghuijs et al., 2019). Our findings suggest that bias correction and 

flood frequency distribution are the dominant sources of uncertainty in the projected 100 year flood by the 2080s in this 

catchment. In the Blackwater and Slaney catchments groundwater contributes significantly to runoff and the catchments are 

larger with typically well drained soils. In both catchments the climate model ensemble represents the dominant source of 445 

uncertainty.  

 

As our study has shown, the evaluation of uncertainties and their interaction in future flood risk assessment with climate change 

is a critical step in understanding future impacts and informing adaptation decision making. However, results depend on the 

modelling chain employed. The work presented here is illustrative rather than exhaustive. We do not, for example, include 450 

uncertainties in future flood estimates derived from different hydrological model structures, nor do we evaluate the 

transferability of parameter sets to represent future rainfall runoff response (e.g. Broderick et al. 2016). We also assume that 

flood processes remain stationary within the 30-year windows used to evaluate changes, while we also assume that other 

factors that can influence rainfall runoff response, such as land use change, remain unchanged from the calibration period used 

to train our hydrological models.  455 

 

5. Conclusions  

This study evaluates changes in future flood magnitude with climate change for four Irish catchments using a modelling chain 

incorporating 12 GCMs comprising the CMIP6 ensemble, 5 bias correction techniques, hydrological model parameter 

uncertainty and the use of extreme value distributions. Our findings suggest increasing flood risk over the coming decades in 460 

all catchments, with changes in flooding largely consistent with changes in maximum precipitation. However, uncertainties in 

future flood changes are large and increase with time and flood quantile. Using ANOVA, we decompose uncertainties in future 
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flood quantiles to examine how individual components of the modelling chain and their interactions contribute to overall 

uncertainty. Our results show that the dominant sources of uncertainty vary on a catchment basis, calling into question the 

ability to generalise on the dominant components of uncertainty across catchments, even in a relatively small domain like 465 

Ireland. Across all four catchments the climate models, bias correlation methods and the extreme value distributions used to 

evaluate flood return periods were differentially dominant, while the uncertainty derived from the interaction of various 

components was substantial in all catchments. Hydrological model parameter uncertainty was the least important component. 

Our work shows the value of ANOVA methods in visualising and quantifying the uncertainty cascade at a catchment level 

which will be helpful in navigating the uncertainties associated with future flood risk for better adaptation decision making. 470 

While our sample is small, there is evidence that the dominant components of uncertainty in future flood risk may be related 

to catchment characteristics. Future work to better understand the link between the key components of the cascade of 

uncertainty and catchment characteristics is therefore recommended.  
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Figure 1. Research flow chart to estimate projections of flood hazard and identify associated uncertainty  
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Figure 2. Location of the selected study catchments. 670 
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 675 

Figure 3 Comparison of corrected annual maximum precipitation using five bias correction methods and observed annual 

maximum precipitation using a) Pearson correlation coefficient (RR), b) Percent Bias (PBIAS) and c) Mean Absolute Error 

(MAE). The y-axis indicates each of 12 CMIP6 climate models and the x-axis represents each of 5 climate bias correction 

method. 
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Figure 4 Comparison of raw and bias corrected simulations from 12 CMIP6 GCMs with observed monthly maximum 

precipitation for each of our four study catchments. Each row presents results of one of five bias correction techniques (top 685 

row - Birnbaum Distribution (BSM), second row-Change Factors (CF), third row- Double Quantile Mapping using Gamma 

Distribution (DGQM), fourth row-Empirical Quantile Mapping using Simple Interpolation (EQM), fifth row- Single Quantile 

Mapping using Gamma Distribution (SGQM), and the last row is the raw GCMs output). In each panel the grey shaded region 

represents the spread of 12 GCM simulations, with blue line being the observed monthly maximum precipitation.  
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Figure 5. Scatter plots of change in maximum annual precipitation as simulated by 12 CMIP6 GCMs (each circle dot) corrected 695 

using each of the five bias correction techniques for three SSP scenarios for the 2050s (2040-2069) and 2080s (2070-2099). 

The dark blue circle represents SSP1, light blue represents SSP3 and dark green represents SSP5. 
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Figure 6. Ensemble of bias corrected simulations of annual mean air temperature (temp) from 12 CMIP6 GCMs for each 700 

catchment for the period 1976-2100. Orange, blue and green shaded areas represent the spread of GCM simulations forced 

using SSP1, SSP3 and SSP5, respectively. The solid lines represent the median of the 12 GCMs for each SSP scenario.   

Figure 7. Observed and simulated monthly maximum flows (m3/s) using GR4J behavioural parameter sets for the reference 

period (1976-2005). The black line and shaded area represent the median and 95 percent confidence interval of simulated 705 

flows, respectively, the red dot represents observed monthly maxima. Boxplots show the spread in NSE scores for behavioural 

parameters sets in each catchment.   
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710 

Figure 8. Ensemble median monthly maximum flow (m3/s) projections for 1976-2100 in each catchment as simulated using 

12 CMIP6 GCMs, the five bias correction techniques and the best parameter sets of the hydrological model.  
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Figure 9. Matrix of projected percent changes in annual maximum river flow for the 2020s (2010-2039), 2050s (2040-2069), 

and 2080s (2070-2099) for SSP1, SSP3 and SSP5 in each catchment with respect to the reference period (1976-2005). Each 720 

box plot represents the spread of 12 GCMs for each of the five bias correction techniques as simulated using behavioural model 

parameter sets. Marked for each boxplot are the median and 0.25 and 0.75 quantiles. The red dots are outliers (changes above 

200%).   
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Figure 10. Comparison of flood quantiles estimated using three flood distribution models (LogL, GEV and LogN) fitted to 725 

projected annual maxima series using derived from 12 GCMs bias corrected using the DGQM method.  The shaded region 

indicates the 95% confidence interval of annual maximum projections from 12 GCMs under SSP3 scenario during full 

projection period (1970-2100 period) in each catchment.  
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Figure 11. Percent changes in extreme flow quantiles using ensemble of three distribution types in each catchment for the 

2020s (clim1), 2050s (clim2) and 2080s (clim3). Simulated changes are derived using raw (bottom row) and bias corrected 735 

(the first four rows) simulations. The shaded region is the spread of 12 climate model and three flood frequency models in the 

2020s (blue), 2050s (green) and 2080s (brown) period.  
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    750 
Figure 12. Total uncertainty in flood frequency curve using 12 CMIP6 GCMs (CM), 5 bias correction methods (BC), 300 

behavioural parameter sets (HM) and 3 extreme value distributions (DM). Shaded areas represent the 95 percent confidence 

interval for each component in the modelling chain while the dotted line stands for their respective median values. The curves 

are fitted to annual maximum time series derived for 1976-2100. 
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 760 
Figure 13. Contribution of each component of the modelling chain, together with their interaction, to the range of simulated 

changes in flood risk for the 2080s (2070-2099) relative to the reference period (1976-2005). Sources considered include 12 

CMIP6 climate models (CM), 5 bias correction techniques (BC), hydrological model parameter uncertainty (HP) and 3 extreme 

value distribution models (DM). The outermost circle/donut represents the flood quantile change at return period (RP) of 100 

years, the middle circle RP of 50 years and innermost circle RP of 10 years for the 2080s. Percent changes are annotated for 765 

the outermost circle (100-year flood).   
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Table 1. Statistical and hydro-climatic characteristics of each study catchment.    

 

  Boyne Blackwater Slaney Newport 

Latitude [degree] 53.60 52.14 52.8 53.95 

Longitude [degree] -6.96 -8.94 -6.61 -9.44 

Catchment Area [km2] 2447.36 1257.20 1032.68 146.02 

Elevation [m] 70.00  116.00 107.00 56.00  

95% of river flow value [m3/s] 95.42 144.64 68.76 14.20 

Annual max flow [m3/s] 379.09 351.06 247.30 33.40 

95% of precipitation value [mm] 17.38 24.46 24.09 25.45 

Mean Annual max precipitation [mm] 45.28 61.76 71.69 93.48 

Coefficient of Variance of river flow 

[monthly] 
0.94 0.75 0.82 0.56 

Median of annual maximum flow[m3/s] 214.83 220.65 135.51 24.60 

Coefficient of Variance of precipitation 

[monthly] 
0.49 0.47 0.53 0.45 

Base flow index [-] 0.724 0.624 0.73 0.69 

Mean of surface runoff [m3/s] 10.21 13.14 5.77 1.86 

Mean of base flow [m3/s] 26.85 21.781 15.584 4.19 
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Table 2 List of CMIP6 climate models employed in this study 

 

Code Institute  Parent source Id   Institution Id   

CM1 

Commonwealth Scientific and Industrial Research 

Organisation, Australia ACCESS-CM2 CSIRO 

CM2  Beijing Climate Center, China BCC-CSM2-MR BCC 

CM3 National Center for Atmospheric Research, USA CESM2 NCAR 

CM4 European: EC-EARTH consortium EC-Earth 

EC-EARTH 

consortium 

CM5 Global Fluid Dynamics Laboratory, USA GFDL NOAA-GFDL 

CM6 Met Office Hadley Centre, UK HadGEM3-GC31-LL MOHC 

CM7 JAMSTEC, AORI, NIES, and R-CCS, Japan MIROC6 MIROC 

CM8  Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR MPI-M 

CM9  Meteorological Research Institute, Japan MRI-ESM2-0 MRI 

CM10 

 Nanjing University of Information Science and 

Technology, China NESM3 NUIST 

CM11 NorESM Climate modeling Consortium, Norway NorESM2-LM NCC 

CM12 Met Office Hadley Centre, UK UKESM1-0-LL MOHC 
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