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Abstract. The assessment of future impacts of climate
change is associated with a cascade of uncertainty linked
to the modelling chain employed in assessing local-scale
changes. Understanding and quantifying this cascade is es-
sential for developing effective adaptation actions. We evalu-
ate and quantify uncertainties in future flood quantiles associ-
ated with climate change for four catchments, incorporating
within our modelling chain uncertainties associated with 12
global climate models contained in the Coupled Model In-
tercomparison Project Phase 6, five different bias correction
approaches, hydrological model parameter uncertainty and
the use of three different extreme value distributions for flood
frequency analysis. Results indicate increased flood hazard in
all catchments for different Shared Socioeconomic Pathways
(SSPs), with changes in flooding consistent with changes in
annual maximum precipitation. We use additive chains and
analysis of variance (ANOVA) to quantify and decompose
uncertainties and their interactions in estimating selected
flood quantiles for each catchment. We find that not only do
the contributions of different sources of uncertainty vary by
catchment, but that the dominant sources of uncertainty can
be very different on a catchment-by-catchment basis. While
uncertainties in future projections are widely assumed to be
dominated by the ensemble of climate models used, we find
that in one of our catchments uncertainties associated with
bias correction methods dominate, while in another the un-
certainty associated with the use of different extreme value
distributions outweighs the uncertainty associated with the
ensemble of climate models. These findings highlight the in-
ability to generalise a priori about the importance of differ-
ent components of the cascade of uncertainty in future flood
hazard at the catchment scale. Moreover, we find that the in-
teraction of components of the modelling chain employed

are substantial (> 20 % of overall uncertainty in two catch-
ments). While our sample is small, there is evidence that the
dominant components of the cascade of uncertainty may be
linked to catchment characteristics and rainfall–runoff pro-
cesses. Future work that seeks to further explore the charac-
teristics of the uncertainty cascade as they relate to catchment
characteristics may provide insight into a priori identifying
the key components of modelling chains to be targeted in cli-
mate change impact assessments.

1 Introduction

Climate change is likely to increasingly affect hydrologi-
cal regimes and flood hazards over coming decades. Con-
siderable changes in atmospheric temperature, precipita-
tion, humidity and circulation are expected, which may re-
sult in increasing extreme events, including floods (IPCC,
2013). According to Rojas et al. (2013), flood frequency
in Europe will increase due to climate change, with signif-
icant socio-economic implications for the region. Blöschl et
al. (2017, 2019) conclude that the timing and magnitude of
European floods have shifted due to climate change, and its
consequences are not uniform across the region, with north-
western Europe experiencing earlier and higher flood peaks.
Modelling and understanding of catchment-scale flood haz-
ard projections is therefore an important endeavour for in-
forming adaptation strategies.

Climate change impact assessment is subject to consid-
erable uncertainties (Wilby and Dessai, 2010; Smith et al.,
2018); Blöschl et al. (2019) recently highlighted uncertainty
in hydrology as one of the 25 challenges in hydrological
science. Traditional or top-down climate change impact as-
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sessments typically follow a modelling chain where output
from global climate models (GCMs), forced with scenarios
of future greenhouse gas concentrations, are extracted and
scaled to represent a study catchment. Hydrological models,
calibrated for current conditions, are then forced with these
GCM outputs to create discharge series spanning multiple
decades into the future. When assessing flood hazard, ex-
treme value distributions are typically fitted to samples of
extreme events (e.g. annual maximum flood series) repre-
senting current and future climates to evaluate changes in the
characteristics of flooding. This modelling chain is replete
with uncertainties that propagate and interact, resulting in po-
tential large ranges in projected change at the catchment scale
(e.g. Meresa and Gatachew, 2019) that can impede decision-
making (Smith et al., 2018).

Numerous studies have attempted to quantify the uncer-
tainties in future climate change impacts due to the use of
different climate models (e.g Knutti and Sedláček, 2013),
natural variability (e.g. Giuntoli et al., 2018; Hughes et al.,
2011), bias correction techniques (e.g. Kay et al., 2009; Saini
et al., 2015; Soriano et al., 2019), downscaling approaches
(e.g. Fowler et al., 2007; Gutmann et al., 2014), hydrolog-
ical modelling uncertainties (e.g. Wilby and Harris, 2006;
Bastola et al., 2011a; Addor et al., 2014; Meresa and Ro-
manowicz, 2017; Broderick et al., 2019) and the applica-
tion of different extreme value distributions for flood hazard
estimation (e.g. Meresa and Romanowicz, 2017; Lawrence,
2020). Findings from such studies confirm that the domi-
nant source of uncertainty varies across studies. For exam-
ple, Jobst et al. (2018) concluded that the GCM structure is
the dominant contributor followed by emission scenario, bias
correction and hydrological model structure in New Zealand
catchments. Peleg et al. (2015) found that the hydrological
regimes are highly sensitive to changes in convective pre-
cipitation in eastern Mediterranean catchments. Gosling et
al. (2011) evaluated seasonal flow changes in UK catchments
and found greater uncertainty in future estimates due to cli-
mate models than hydrological models. In Norwegian catch-
ments, Lawrence (2020) highlighted that climate models and
frequency models are dominant sources of uncertainty in fu-
ture flood projections. Therefore, the key components of the
uncertainty cascade and their contributions tend to vary de-
pending on the region, precipitation type and catchment.

Recognition of the uncertainties inherent in future climate
change impacts has also given rise to novel approaches to
decision-making that embrace uncertainties (e.g. Wilby and
Murphy, 2019; Clark et al., 2016). Rather than aiming to de-
rive precise assessments of future risk, such approaches aim
to stress test and evaluate adaptation options, either in static
or dynamic ways (Mazzorana et al., 2012), to identify actions
that are functional across a range of plausible future condi-
tions rather than optimised to a certain outcome (e.g. struc-
tured decision-making (SDM), robust decision-making, deci-
sion scaling and adaptation pathways). Shepherd et al. (2018)
recommend a storyline approach for navigating uncertainty,

whereby examination of recent, notable extremes and the de-
velopment of plausible narratives of change in their drivers
enables a novel assessment of future changes, placing em-
phasis on physical processes. Each of these approaches re-
quires the cascade of uncertainty to be evaluated or navi-
gated in ways that can better inform adaptation. For exam-
ple, Broderick et al. (2019) employ a scenario neutral frame-
work (Prudhomme et al., 2011) to evaluate design allowances
for flood defences, taking into account uncertainties derived
from a large climate model ensemble, natural variability and
hydrological models.

Whether employing traditional impact-led or novel
decision-centric approaches, it is critical that key compo-
nents of the cascade of uncertainty are adequately included.
Research over the past 2 decades clearly shows that method-
ological choices made in assessing future climate change
fundamentally impact on the portrayal of climate risk (Clark
et al., 2016; Melsen et al., 2019). Top-down approaches must
a priori decide on the components of the modelling chain
to include. Including all relevant components is typically
a very resource expensive task (Smith et al., 2018), and it
may not be apparent at the outset which components of the
uncertainty cascade to include for specific catchments. For
bottom-up approaches, such as the scenario-neutral method
(Broderick et al., 2019), the modeller is forced to choose
which aspects of uncertainty to include in assessing sensitiv-
ity to future changes. Again, this may not be apparent from
the outset. It is widely acknowledged that climate models
exhibit biases in their outputs (Krinner and Flanner, 2018;
Giorgi and Gao, 2018), with numerous studies highlighting
the need to post-process climate model output before use in
simulating hydrological response (Ehret et al., 2012; Teng
et al., 2012; Osuch et al., 2017; Meresa and Romanowicz,
2017). Dobler et al. (2012) suggest that the dominant com-
ponents of the modelling chain may further vary, depend-
ing on which part of the flow regime (low, mean and high
flows) is of interest. They highlight, for example, that the
importance of bias correction approaches to the overall un-
certainty in hydrological response increases for high flows.
However, there is still no consensus on which bias correc-
tion techniques are most effective, nor in how bias correction
techniques can modify future climate change signals. For in-
stance, Teutschbein and Seibert (2013) and Yang et al. (2010)
showed distribution mapping based on theoretical distribu-
tions outperforms other bias correction methods. Similarly,
Berg et al. (2012) and Chen et al. (2013) show that theoretical
distribution mapping performs similar to, or marginally bet-
ter than, empirical quantile mapping. On the contrary, Gud-
mundsson et al. (2012), Gutjahr and Heinemann (2013) and
Lafon et al. (2013) show that empirical quantile mapping
demonstrates higher skill than theoretical distribution map-
ping in systematically correcting precipitation.

Moreover, deep uncertainty can arise by virtue of the ad
hoc ways in which components of possible modelling chains
are assembled and characterised within the overall modelling
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framework adopted (Wilby and Murphy, 2019). Yet there are
currently no established ways of sampling from the hierarchy
of models used to evaluate impacts of climate change (Clark
et al., 2016). Therefore, an important step in better inte-
grating future climate risk into decision-making is quantify-
ing and partitioning the contribution of different components
of uncertainty and their interactions to help scientists and
decision-makers better navigate the cascade of uncertainty
by identifying contributing sources that should be more fully
explored (Smith et al., 2018). In this regard, ANOVA (ANal-
ysis Of VAriance)-based techniques, which can be used to
decompose sources of uncertainty and their interaction, of-
fer considerable utility (e.g. Kay et al., 2009; Vetter et al.,
2016; Hattermann et al., 2018; Meresa, 2020). In this study,
we explore uncertainties in future flood hazard for four catch-
ments, representative of different flood response types, in Ire-
land and employ additive chains and variance decomposition
to quantify and examine the contribution of various sources
of uncertainty, together with their interaction, to the overall
uncertainty in flood hazard projections. In doing so, we place
emphasis on evaluating the uncertainties derived from (i) cli-
mate models in the newly available Coupled Model Inter-
comparison Project Phase 6 (CMIP6) ensemble (Wyser et al.,
2020), (ii) widely used bias correction techniques, (iii) hy-
drological model parameter uncertainty and iv) the use of dif-
ferent extreme value distributions. The remainder of the pa-
per is organised as follows: Sect. 2 outlines the study design
and data/methods employed, and Sect. 3 presents key results,
exploring uncertainties for key steps in the modelling chain
examined, together with their contributions and interactions
to the full range of projected change in flood risk. Section 4
provides a discussion of key insights, limitations and future
directions before drawing main conclusions in Sect. 5.

2 Models and study design

Our study design is illustrated in Fig. 1. We quantify uncer-
tainties and their interaction in projected flood hazards using
12 climate models (CMs) contained in the Coupled Model
Intercomparison Project Phase 6 (CMIP6) ensemble (https:
//esgf-node.llnl.gov/search/cmip6/, last access: 6 June 2020),
forced using three Shared Socioeconomic Pathways (SSPs)
scenarios. We use five bias correction techniques (change
factor – CF; double gamma distribution quantile – DGQM;
Birnbaum distribution quantile mapping – BQM; single
gamma distribution quantile – SGQM; empirical quantile
– EQM) to post-process climate model outputs (daily pre-
cipitation and air temperature time series). The daily bias-
corrected precipitation and temperature data are used as in-
put to the Génie Rural à 4 paramètres Journalier (GR4J)
hydrological model (Perrin et al., 2003). The generalised
likelihood uncertainty estimation (GLUE) technique is used
to quantify GR4J parameter uncertainty. In assessing future
flood hazard, the sensitivity of results to different extreme

value distributions is examined. In addition to evaluating
each source of uncertainty independently, we use variance
decomposition to quantify the contribution of each method-
ological choice and their interactions to the overall uncer-
tainty in assessing flood risk. The climate change impact
is evaluated based on relative future changes in the mag-
nitude of floods for the 2020s (2010–2039), 2050s (2040–
2069) and 2080s (2070–2099) with respect to the reference
period (1976–2005). The following sections provide further
details on the study catchments and each stage of the mod-
elling chain employed.

2.1 Study catchments and hydro-climate data sets

Simulations are undertaken for four catchments (Boyne,
Blackwater, Newport and Slaney), representing different
flood response types across Ireland (Broderick et al., 2019).
Their location, together with a summary of hydro-climatic
conditions for each catchment, is summarised in Table 1 and
Fig. 2. Catchment area ranges from 146 km2 (Newport) to
2447 km2 (Boyne), while mean elevation ranges from 56 m
(Newport) to 112 m (Blackwater). For each catchment, we
use gridded (1× 1 km) daily precipitation and temperature
data (Walsh, 2012) area averaged for the period 1976–2005
to provide a single representative baseline series for each
catchment. Daily potential evapotranspiration is derived us-
ing air temperature and elevation, following the method of
Hamon (1963). This approach is favoured over less parsi-
monious but more physically based methods (e.g. Penman–
Monteith) which have greater data input requirements (e.g.
wind speed and humidity) not available for all study catch-
ments. Daily discharge data for each catchment were ob-
tained from the Office of Public Works (OPW; http://www.
epa.ie/hydronet/, last access: 10 February 2020).

2.2 Climate projections and bias correction

Daily precipitation (pr) and air temperature (tas) time series
for the period 1971–2100 were extracted for 12 members
of the CMIP6 ensemble (https://esgf-node.llnl.gov/search/
cmip6/, last access: 6 June 2020) forced by each of the three
SSP (SSP126, SSP370 and SSP585) scenarios (see Table 2
for details). For each catchment, daily precipitation and air
temperature were extracted from the closest land-based CM
grid overlying the catchment centroid. We employ five com-
monly used techniques to bias correct raw climate model out-
put and to examine the contribution of the selected bias cor-
rection methods to the total uncertainty in future flood haz-
ard.

2.2.1 Change factor /delta change (CF)

The change factor technique applies multiplicative (for pre-
cipitation) and/or additive (for temperature) procedures for
correcting raw model output. This involves correcting sim-
ulated daily precipitation (Pfut,corr) by multiplying the ra-
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Figure 1. Research flow chart to estimate projections of flood hazard and identify associated uncertainty.

Table 1. Statistical and hydro-climatic characteristics of each study catchment.

Boyne Blackwater Slaney Newport

Latitude (degree) 53.60 52.14 52.80 53.95
Longitude (degree) −6.96 −8.94 −6.61 −9.44
Catchment area (km2) 2447.36 1257.20 1032.68 146.02
Mean elevation (m) 70.00 116.00 107.00 56.00
Mean of annual max precipitation (mm) 28.58 39.17 38.23 41.69
Mean of annual max streamflow (m3/s) 232.22 233.59 137.39 24.26
Lower quantile of precipitation (P 85) (mm) 0.01 0.02 0.01 0.04
Higher quantile of precipitation (P15) (mm) 5.46 8.25 6.60 9.95
Low flow (Q95) (m3/s) 4.67 4.47 4.10 0.81
Peak flow (Q5) (m3/s) 106.22 105.40 53.30 16.20
Coefficient of variance of streamflow (–) 37.97 23.79 30.92 18.07
Coefficient of variance of precipitation (–) 29.34 24.68 30.86 33.17
Base flow index (–) 0.72 0.62 0.73 0.69
Mean of surface runoff (m3/s) 10.21 13.14 5.77 1.86
Mean of base flow (m3/s) 26.85 21.78 15.58 4.19

tio of observed precipitation (Pobs) and reference precipi-
tation simulation (Pref,raw) to future simulations of raw cli-
mate model precipitation (Pfur,raw). For correcting future air
temperature (Tfut,corr), the difference in observed air tempera-
ture (Tobs) and simulated temperature in the reference period
(Tref,raw) is added to raw climate output (Tfur,raw).

Pfut,corr = Pfur,raw ·
Pobs

Pref,raw
(1)

Tfut,corr = Tfur,raw+ (Tobs− Tref,raw). (2)

2.2.2 Empirical quantile mapping

Empirical quantile mapping (EQM) is based on pairwise
comparison between the empirical cumulative density func-
tions (ecdf) of observed and simulated daily precipitation
time series during the reference period (1976–2005). This
is a purely empirical approach with direct matching of the
histogram of the observed precipitation to the future period.
Future precipitation and temperature are corrected using the
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Table 2. List of CMIP6 climate models employed in this study.

Code Institute Parent source ID Institution ID

CM1 Commonwealth Scientific and Industrial Research Organisation, Australia ACCESS-CM2 CSIRO
CM2 Beijing Climate Center, China BCC-CSM2-MR BCC
CM3 National Center for Atmospheric Research, USA CESM2 NCAR
CM4 European EC – Earth consortium EC-Earth EC-Earth consortium
CM5 Global Fluid Dynamics Laboratory, USA GFDL NOAA-GFDL
CM6 Met Office Hadley Centre, UK HadGEM3-GC31-LL MOHC
CM7 JAMSTEC, AORI, NIES and R-CCS, Japan MIROC6 MIROC
CM8 Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR MPI-M
CM9 Meteorological Research Institute, Japan MRI-ESM2-0 MRI
CM10 Nanjing University of Information Science and Technology, China NESM3 NUIST
CM11 NorESM climate modelling consortium, Norway NorESM2-LM NCC
CM12 Met Office Hadley Centre, UK UKESM1-0-LL MOHC

Figure 2. Location of the selected study catchments.

inverse of the ecdf (ecdf−1) and fitted ecdf ecdfhst,m.

P cor
hst,m = (ecdf−1

obs,m(ecdfhst,m
(
Phst,m

)
)) (3)

T cor
hst,m = (ecdf−1

obs,m(ecdfhst,m
(
Thst,m

)
)). (4)

The non-parametric quantile matching was performed first in
the reference period (m – modelling period) using an expo-
nential transfer function assumption. Then the calibrated co-
efficients were used to correct the future daily precipitation
and air temperature.

2.2.3 Distribution quantile mapping

Distribution quantile mapping (DQM) is a distribution-
parameter-dependant bias correction technique. The param-
eters are extracted by fitting gamma distribution to observed

and simulated time series data and matching its correspond-
ing quantiles from the observed and raw climate model
output in the reference period (1976–2005; Piani et al.,
2010). We applied two types of DQM to correct climate
biases, namely single gamma distribution quantile mapping
(SGDQM) and double gamma distribution quantile mapping
(DGDQM), together with the Birnbaum–Sanders distribution
method (BSM; Osuch et al., 2016). These methods also al-
low for any excess in the number of dry, drizzle and wet days
to be considered and corrected. In the case of SGDQM, the
first step is fitting a gamma distribution to the upper 75 %
of daily observed and raw climate output precipitation dis-
tribution. Whereas, in the DGDQM, the gamma distribution
is fitted to both the upper ≥ 75 % and to the lower < 75 % of
the daily observed and raw climate output precipitation in the
reference period (1976–2005). In both cases, non-rain days
were removed, and only wet days were considered. Similarly,
BSM used the Birnbaum–Sanders distribution to transfer the
precipitation quantile from the observed time series to raw
output of the CMs in the reference period.

Pcorr = F
−1
dg (Fdg (Praw (t) ,αraw,βraw)αObsβObs) (5)

Pcorr = F
−1
db (Fdb (Praw (t) ,αraw,βraw)αObsβObs) (6)

Tcorr = F
−1
db (Fdb (Traw (t) ,αraw,βraw)αObsβObs) (7)

Tcorr = F
−1
dn (Fdn (Traw (t) ,αraw,βraw)αObsβObs), (8)

where Pcorr and Tcorr are the bias-corrected daily precipi-
tation and temperature, respectively. Likewise, Praw (t) and
Traw (t) represent the raw climate model output for precipita-
tion and temperature. The raw climate output inverse cumu-
lative density (CDF) is symbolised by F−1

dg , F−1
db and F−1

dn
for precipitation and temperature, respectively. The dn, db
and dg subscripts represent the normal (for temperature),
Birnbaum–Sanders (for both precipitation and temperature)
and gamma (for precipitation) distributions, respectively. The
gamma (for precipitation) and Birnbaum–Sanders distribu-
tions have two parameters, the shape and scale parameters
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which are symbolised by α and β, and the normal (for tem-
perature) distribution, with mean and standard deviation rep-
resented by µ and σ , respectively.

2.3 Bias correction performance evaluation

The performance of the selected bias correction techniques
was evaluated using the following four statistical measures:
Pearson correlation (RR), mean absolute error (MAE), root
mean square error (RMSE) and percent bias (PBIAS). Eval-
uation was performed by comparing the ability of each ap-
proach to capture observed precipitation and temperature.

RR=

∑(
PS−PS

)
· (PC−PC)√∑

(PS−PS)2 ·
∑
(PC−PC)2

(9)

MAE=
∑n
i=1 |PS−PC|

N
(10)

PBIAS=
∑n
i=1 |PS−PC|∑n

i=1PS
(11)

RMSE= [
∑n
i=1|PS−PC|

2

N
]
0.5, (12)

where PS and PC are observed and corrected precipitation,
respectively, PC is the mean of corrected precipitation,
PS is the mean of observed precipitation, and N is the num-
ber of observations.

2.4 Hydrological modelling

The GR4J model (Perrin et al., 2003) is a parsimonious four
parameter, lumped conceptual rainfall–runoff model that has
been widely applied in different hydro-climate conditions
(Meresa and Gatachew, 2019; Meresa et al., 2017; He et al.,
2018). The model is particularly suited to climate change
impact studies given its parsimonious structure. GR4J sim-
ulates streamflow using precipitation, temperature and po-
tential evapotranspiration (Perrin et al., 2003) and has pre-
viously been successfully used in Ireland to assess climate
change impacts (Broderick et al., 2016, 2019), river flow
reconstructions (O’Connor et al., 2020) and seasonal hy-
drological forecasting (Donegan et al., 2021). Broderick et
al. (2019) highlight the good performance of GR4J in cap-
turing a range of hydrological signatures across diverse Irish
catchments (Broderick et al., 2019). The model has two con-
secutive stores, i.e. one related to runoff production and the
other to runoff routing. Detailed information about the model
structure is given in Perrin et al. (2003). The upper and lower
limits of the four model parameters are listed in Table S1 in
the Supplement. The model was calibrated and validated us-
ing observations over the period 1976–2005. The first 4 years
were used as a model warmup to stabilise the initial states
of the hydrological parameters. Calibration was undertaken
from 1981–1999 and validation from 2000–2005. The Nash–
Sutcliffe efficiency (NSE) objective function was used to

evaluate the model performance and to identify behavioural
parameter sets (Nash and Sutcliffe, 1970). The NSE is de-
fined as follows:

NSE= 1−
∑j

t=1(Qo,t −Qm,t )
2∑j

t=1(Qo,t −Qo)
2
, (13)

whereQo,t andQm,t are observed and simulated flow at time
t ,Qo is the mean observed flow, and j is the length of the j th
time series. The ability of hydrological model simulations to
replicate the observations was further evaluated by deriving
the proportion of extreme high flows inside the 95 % confi-
dence intervals (PCI). This is helpful for identifying a fixed
NSE threshold for differentiating between behavioural and
non-behavioural simulations (Li et al., 2011; Xu, 2014).

The generalised likelihood uncertainty estimation (GLUE)
approach is widely applied to quantify hydrological model
parameter uncertainty (Beven and Binley, 1992). GLUE is
an informal statistical approach that uses Monte Carlo (MC)
simulation to generate many possible hydrological parame-
ter sets from specific ranges. The choice of the number of
samples is somewhat subjective, with studies typically em-
ploying a few thousand to tens of thousands of hydrological
model parameter set samples to simulate river flow (Zheng
and Bennett, 2002). In applying GLUE, we randomly gen-
erated a large number of parameter sets (30 000) using a
uniform distribution constrained by the acceptable ranges of
each GR4J parameter. Behavioural parameter sets were iden-
tified based on NSE (Eq. 13) scores > 0.50.

2.5 Flood frequency analysis

Numerous extreme value distributions can be deployed to es-
timate the frequencies of high flows. For example, the log-
Pearson III (LP3) distribution is very popular in the USA
and Australia for infrastructure design (Griffis and Stedinger,
2007), the generalised extreme value (GEV) and Pearson
type III distributions are widely used in Europe (Madsen et
al., 2014), while the Wakeby and log-normal (LN) distribu-
tions have been frequently used in Asia (Chen et al., 2012).
However, a single distribution model may not be able to cap-
ture the entire temporal and spatial variability of hydrological
extremes. Therefore, we employ three common distribution
types (LN, log-logistic and GEV) with maximum likelihood
parameter estimator (MLE) for flood frequency curve devel-
opment. MLE estimates the distribution parameters by opti-
mising the likelihood function of the cumulative probability
distribution density, and its reliability is evaluated using the
standard error of the estimated parameters. These distribu-
tions were fitted to the annual maximum daily peak flows
in each study catchment. In Eqs. (14)–(16), the respective
probability density function (PDF) of each distribution is pre-
sented. The log-normal and log-logistic models have two pa-
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rameters, while the GEV distribution has three parameters.

Log-Normal (LN) f (x)=
exp

(
−

1
2

(
lnx−µ
σ

)2
)

xσ
√

2π
σ,µ(σ>0) (14)

Log Logistic (LogL) f (x)=
µ( x
σ
)µ−1

σ [1+
(
x
σ

)µ
]2

(15)

GEVf (x)

=


1
σ

exp(−(1+ k( x−µ
σ
))∧−

1
k )
(
1+ k( x−µ

σ
)
)−1− 1

k k 6= 0
K,σ,µ(σ>0)
1
σ

exp
(
−(

x−µ
σ
)− exp(−((x−µ)/σ))

)
k = o

, (16)

where σ is the scale, µ is location, and k is the shape param-
eter.

2.6 Uncertainty estimation and decomposition

We used two approaches to uncertainty analysis in future
flood hazard. First is the additive chain approach, which is
similar to sensitivity analysis, whereby the main goal is to as-
sess components of the modelling chain independently (one
at a time). Second, we used ANOVA to separate the variance
contribution of each component of the modelling chain and
their interaction. Unlike the former (sensitivity approach), it
helps us to understand the interaction of factors and their
main variables using their total variance values.

2.6.1 Additive chain approach

We examine the relative contribution of four key components
of the modelling chain to the projected uncertainty in future
flood hazard. These are climate models (CM), bias correc-
tion techniques (BC), hydrological model parameters (HP)
and flood frequency distribution models (FF). We only use a
single SSP scenario (here SSP370) in our evaluation of the
uncertainty cascade, with the assumption that different stud-
ies will be interested in quantifying flood hazard for different
emissions outcomes separately.

Overall uncertainty is estimated based on the additive
chain method, while decomposition of the contribution of
different sources of uncertainty and their interactions is eval-
uated using ANOVA. The uncertainty in future flood haz-
ard can be defined as the total uncertainty resulting from the
components (s) of the modelling chain considered – here the
four components s1 to s4 (CM, BC, HP and FF). Initially
we define the cumulative uncertainty for each component (s)
of the modelling chain denoted by U cum(X1. . .Xs) and its
respective conditional probability as U

(
qxs+1......xs

)
. The un-

certainty in our modelling chain is characterised as the total
variance in the flood quantile generated from each of the four
components evaluated, with total uncertainty defined as fol-

lows:

U cum (x1, . . .,xs)=
1

π
nj

j=s+1

∑
xs+1εxs+1

. . .
∑
xsεxs

U(qx s+1......xs ). (17)

U(qx s+1......xs ) stands for the respective cumulative probabil-
ity of each output quantiles. This uncertainty quantification
method keeps summing as the number of components (s) of
the modelling chain increases. Therefore, the uncertainty of a
particular step along the modelling chain, e.g. s = 4, denoted
by U cum(X4), can be described as follows:

U cum (X4)= U
cum (X4)−U

cum (X3) in general

U cum (Xs)= U
cum (Xs−1)−U

cum (Xs−2) . (18)

Note that uncertainty of each component of the chain is a
magnitude of contribution to the total uncertainty so that the
sum of uncertainties of individual sources is always equal
to the cumulative uncertainty U cum(X1, . . .,Xs), whereas,
Eq. (18) was used to obtain the individual component from
the total uncertainty.

2.6.2 ANOVA approach

Unlike single-chain-based additive approaches to uncertainty
estimation, ANOVA can decompose the aggregated source of
uncertainty into individual components and their interaction,
using specific extreme flow indices (Meresa and Romanow-
icz, 2017), and in mean runoff projections (Bosshard et al.,
2013). We develop a hypothesis test using an ANOVA model
that can identify the effect of each component (CM, BC, HP
and FF) in the model chain to the total variance of the ex-
treme index (Y ). According to n-way ANOVA principles, the
model splits the total sum of squares (SST) into the sum of
squares (SS) of the main variables and their interactions as
follows:

SST=
∑NCM=12

i=1

∑NBC=5
j=1

∑NHP=300
k=1

∑NFF=3
l=1(

Yijkl −Y
)2
, (19)

where Yijkl is estimated flood magnitude considering i = 12
climate models, j = 5 bias correction methods, k = 300 hy-
drological parameter sets and l = 3 extreme frequency distri-
butions, and Y is the mean of all variables. SST is the grand
square deviation of the main and interacting variables. Fur-
thermore, the deviation in SST is split into individual and
interacting components to explore their effect on the aggre-
gated extreme flood frequency indices as follows:

SST= SSCM+SSBC+SSHP+SSFF+SSCMBC

+SSCMHP+SSCMFF+SSBCHP+SSBCFF

+SSHPFF, (20)
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where SSCM is the sum of standard errors of climate mod-
els, SSBC is the sum of standard errors of bias correction
methods, SSHP is the sum of standard errors of hydrologi-
cal parameters, and SSFF is the sum of the standard errors of
flood frequency. In examining combined effects, SSCMBC is
the sum of standard errors of climate models and bias cor-
rection methods, SSCMFF is the sum of standard errors of cli-
mate models and extreme frequency, and SSBCHP is the sum
of standard errors of bias correction methods and hydrologi-
cal parameters.

3 Results

3.1 Evaluation of bias correction techniques

The annual maximum daily precipitation series from 12 CMs
were evaluated against observations for each catchment dur-
ing the period 1976–2005 (reference period). RR, MAE,
PBIAS and RMSE results for each catchment are presented
in Figs. 3 and S1. Following bias correction, results indi-
cate an improvement in the CMs in reproducing observed
annual maximum precipitation. However, the performance
of each bias correction method is not uniform for all catch-
ments and CMs. MAE values range from 0 to 195, RMSE
from 0 to 40, PBIAS from −65 to 40 and RR ranges from
−0.40 to 0.50. Overall, the distribution-based bias correc-
tion methods performed better in reproducing observed max-
imum precipitation in these catchments. The smallest PBIAS
is observed in the Boyne catchment and largest in the New-
port catchment. The BC-CCSM (Beijing Climate Center Cli-
mate System Model) and ACCESS-CM2 (Australian Com-
munity Climate and Earth System Simulator coupled model)
climate models show high RR (0.4) in the Slaney catchment
using DGQM, SGQM and BSM, whereas GFDL (Geophys-
ical Fluid Dynamics Laboratory Coupled Model) and MPI-
ESM-LR (Max Planck Institute Earth System Model) climate
models indicates lower performance in correcting precipita-
tion using all bias correction methods. Figure 4 shows the
raw GCM outputs together with the results of the five bias
correction methods applied to the CMIP6 ensemble in sim-
ulating the maximum daily precipitation in each month for
each catchment. The corrected precipitation gives a wider
spread in winter months (except DGQM and EQM tech-
niques), relative to summer months. However, the ensemble
spread is dependent on the bias correction method. DGQM
and EQM methods result in a relatively narrower spread,
whereas SGQM, BSM and CF return a wide range of sim-
ulations (Fig. 4).

The influence of each bias correction method on the mag-
nitude of simulated changes in annual maximum daily pre-
cipitation for the 2050s (2040–2069) and 2080s (2070–2099;
relative to reference period 1976–2005) was evaluated for
each GCM SSP combination (Fig. 5). Simulated changes
from the same 12 CMs using different bias correction ap-

proaches show substantial differences in the magnitude of
changes in annual maximum precipitation. Generally, pro-
jected changes are smaller in the Slaney and Boyne catch-
ments using DG (double gamma) methods, whereas the
changes in the Blackwater and Newport are smaller when us-
ing EQ (empirical quantile) and SG (single gamma). There
is also a linear relationship between the annual maximum
precipitation changes suggested for the 2050s and 2080s for
most bias correction techniques and catchments, indicating a
positive trend in the magnitude of changes with time (Fig. 5).
However, we note that there is greater scatter for EQM rel-
ative to other bias correction techniques and in the Black-
water catchment relative to other catchments. We also note
that the magnitude of change in annual maximum daily pre-
cipitation tends to be higher for SSP585 than for SSP370
and SSP126 and slightly higher in the Slaney and Newport
catchments relative to the Boyne and Blackwater catchments.
Changes in annual maximum daily precipitation for SSP126
are smaller than those simulated for SSP370 and SSP585 due
to the lower radiative forcing and socio-economic impact as-
sociated with SSP126 relative to other scenarios.

3.2 Hydrological modelling and parameter uncertainty
evaluation

The GLUE procedure was used to identify a set of model pa-
rameters that offer acceptable performance. In total, 30 000
parameter sets were randomly generated from uniform dis-
tributions with the NSE objective function threshold of
> 0.5 calculated from daily mean flows used to identify be-
havioural parameter sets. To produce future simulations, we
employ the top 300 behavioural parameter sets. Figure S3
shows the variation in model parameter values and NSE for
each GR4J model parameter and catchment. The majority of
parameters show clearly identified peaks for each catchment,
particularly the parameters X2, X3 and X4. The only pa-
rameter to show a lack of identifiability is the X1 param-
eter (the production storage capacity) in particular in the
Newport catchment. This is the smallest of the four catch-
ments and displays large variability in topography and land
cover (forestry) and has a lake present in the catchment. Fig-
ure 6 shows the ability of the GR4J model to simulate the
maximum daily flows in each month using behavioural sets
relative to observations for the years 1976–2005, together
with the 95 % confidence intervals of the simulations. Sim-
ulations successfully capture the observations, which mostly
fall within the 95 % confidence interval, except in the Boyne
catchment, where a portion of the observed maximum flow
time series falls outside of the simulated confidence interval.
We note that the Boyne catchment has undergone significant
arterial drainage works, which is likely to result in higher
peak flows (Harrigan et al., 2014) in the observations relative
to the model simulated values. GR4J achieved the best fit in
the 95 % CI modelling discharge in the Newport catchment.
Overall, the model was able to capture winter flows well in

Hydrol. Earth Syst. Sci., 25, 1–21, 2021 https://doi.org/10.5194/hess-25-1-2021



H. Meresa et al.: Uncertainties and their interaction in flood hazard assessment 9

Figure 3. Comparison of corrected annual maximum daily precipitation using five bias correction methods and observed annual maximum
precipitation using the (a) Pearson correlation coefficient (RR), (b) percent bias (PBIAS) and (c) mean absolute error (MAE). The y axis
indicates each of 12 CMIP6 climate models, and the x axis represents each of the five climate bias correction methods.

all catchments, particularly in winter peak flow simulations.
The biggest discrepancies were observed in modelled flows
during late summer, with poorer performance likely associ-
ated with use of the NSE objective function which is more

sensitive to the large peak values than lower flows in sum-
mer.

We examined the uncertainty associated with model pa-
rameters for different CMs and future time periods. Figure 7
shows the simulated annual maximum daily flow for the
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Figure 4. Comparison of raw and bias-corrected simulations from 12 CMIP6 GCMs with observed maximum daily precipitation in each
month for each of our four study catchments. Each row presents results of one of five bias correction techniques (top row – Birnbaum
distribution (BSM); second row – change factors (CF); third row – double quantile mapping using gamma distribution (DGQM); fourth row
– empirical quantile mapping using simple interpolation (EQM); fifth row – single quantile mapping using gamma distribution (SGQM);
last row – raw GCMs output). In each panel the grey shaded region represents the spread of 12 GCM simulations, with blue line being the
observed maximum precipitation.

reference and each future time period using the 300 GR4J
behavioural parameter sets forced with 12 CMs bias cor-
rected using DGQM. It is evident that the uncertainty asso-
ciated with hydrological model parameters is not static and
varies depending on climate model, catchment and future
time period. The importance of hydrological model uncer-
tainty tends to be greatest for climate models that project
the largest magnitude of change, indicating that the chang-
ing characteristics of precipitation (e.g. mean and variabil-
ity) have a large bearing on the importance of hydrological
model uncertainty. It is also likely that different bias cor-
rection techniques interact with parameter uncertainty. The
uncertainties associated with hydrological model parameters
tend to be greatest for the 2080s (black lines in Fig. 7) and
for the Boyne and Slaney catchments.

Percent changes in maximum annual daily flow are simu-
lated using behavioural parameter sets and 12 CMs bias cor-
rected by each of the five methods, together with the raw sim-
ulations are presented in Fig. 8. A clear increase in the annual
maximum flow is suggested using DGQM, SGQM, CF, EQM
and BSM; however, the magnitude of simulated increases
differs depending on bias correction approach and is not uni-
form across the selected catchments. Overall, distribution-
based bias correction models give smaller changes in annual
maximum flow time series. This indicates that wet day fre-
quency correction is very important for understanding future

annual maximum flow projections. Annual maximum flow
changes using EQM gives a higher spread range and uncer-
tainty in each catchment, while the change factor method
produces the most modest changes. Changes in annual maxi-
mum flow are smallest in the Blackwater, which is notable as
the catchment with largest groundwater storage. Changes in
annual maximum flow are more constrained under SSP126
than SSP370 and SSP585; however, differences between
SSPs are modest, and uncertainty ranges of changes in an-
nual maximum flow are considerable for each one (Fig. 8).

3.3 Flood quantile projections under varying climate
conditions

Figure 9 shows the estimated flood quantile values at differ-
ent return periods (from 2 to 100 years), using GEV, LN and
log-logistic (LogL) distribution models, and associated 95 %
confidence intervals from 12 CMs (under the SSP370 sce-
nario) bias corrected using the DGQM method over the full
simulation period (1976–2100). Overall, the LN distribution
returned the smallest flood quantile magnitude, while the es-
timated quantile values using LogL tend to be largest across
each catchment and have the narrowest uncertainty bands.
The GEV distribution produces the largest uncertainty ranges
in flood quantiles in all catchments (Fig. 9).

Percent changes in flood quantiles for return periods rang-
ing from 10 to 50 years were also evaluated for each future
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Figure 5. Scatterplots of the change in maximum annual daily precipitation as simulated by 12 CMIP6 GCMs (each dot) and corrected using
each of the five bias correction techniques for three SSP scenarios for the 2050s (2040–2069) and 2080s (2070–2099). The dark blue circle
represents SSP126, light blue represents SSP370, and dark green represents SSP585.

Figure 6. Observed and simulated monthly maximum daily flows (cubic metres per second; hereafter m3/s) using the GR4J behavioural
parameter sets for the reference period (1976–2005). The black line and shaded area represent the median and 95 % confidence interval of
simulated flows, respectively, and the red dot represents observations. Box plots show the spread in NSE scores for behavioural parameters
sets in each catchment.

period under SSP370, using an ensemble mean of three dis-
tribution types fitted to the median GR4J simulation com-
bining all CMs and bias correction methods (Fig. 10), and
Figure S4 shows the quantile values using the GEV distri-
bution fitted to the median GR4J simulation combining all

CMs and DGQM bias correction methods (Fig. S4). Each
catchment shows a significant increase in the magnitude of
flood quantiles in the future. Overall, changes in flood quan-
tiles are consistent with changes in annual maxima daily flow
and changes depending on the climate period (2020s, 2050s
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Figure 7. Hydrological model parameter uncertainty in simulating the annual maximum daily flow in each catchment using the best 300
parameter sets for each climate model for the reference period (red), the 2020s (green), 2050s (blue) and 2080s (black) under the SSP370
scenario and DGQM bias correction method.

Figure 8. Matrix of projected percent changes in annual maximum daily flow for the 2020s (2010–2039), 2050s (2040–2069) and 2080s
(2070–2099) for SSP126, SSP370 and SSP585 in each catchment with respect to the reference period (1976–2005). Each box plot represents
the spread of 12 GCMs for each of the five bias correction techniques, as simulated using behavioural model parameter sets. Marked for each
box plot are the median and 0.25 and 0.75 quantiles. The red dots are outliers (changes above 200 %).

and 2080s). However, future flood changes are not the same
across catchments, and differences exist based on the bias
correction methods employed. The largest changes in flood
quantiles across all catchments are found using the BSM bias
correction method, where, in the Blackwater catchment, in-
creases of over 90 % are found for the 50-year return period
in the 2050s and 2080s. Other bias correction techniques re-

turn more modest increases. Changes in flood quantiles es-
timated using the CF and DGQM approaches show larger
changes in the 2050s relative to the 2080s in the Blackwater.
Indeed, the CF method shows the most modest changes in all
quantiles for the 2080s relative to other time periods across
all catchments. In the Slaney catchment, most bias correction
methods show only small changes in flood quantiles between
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Figure 9. Comparison of flood quantiles estimated using three flood distribution models (log-logistic, GEV and LN) fitted to projected annual
maxima series derived from 12 GCMs bias corrected using the DGQM method. The shaded region indicates the 95 % confidence interval
of the annual maximum projections from 12 GCMs under the SSP370 scenario over the full projection period (1970–2100 period) in each
catchment.

time periods, with the exception being EQM, which shows
substantial increases in each flood quantile moving across
each time period. The EQM method tends to show the great-
est increases in magnitude for higher quantile floods, with
the largest percent changes returned for the 50-year return
period. In the Newport and Boyne catchments, the CF ap-
proach shows modest reductions in the magnitude of higher-
frequency floods, a characteristic not reported using other
bias correction techniques. Interestingly, the changes depend
on the future climate period, with most catchments show-
ing higher change in the 2020s than the 2050s. This is likely
due to climate variability and nonlinearity in the climate re-
sponse.

3.4 Uncertainty estimation and decomposition for flood
quantile estimation

The magnitude of each of the four sources of uncertainty on
flood hazard estimation was estimated first based on the ad-
ditive chain principle to reveal their contribution to the over-
all uncertainty in projected changes. Projections from each
of the 12 climate models were iteratively passed through
five bias correction techniques and used to force the GR4J
model using behavioural parameters sets before fitting each
of the three frequency distributions to estimate future flood

hazard. Therefore, the sensitivity to climate model uncer-
tainty was evaluated by using each of the 12 CMs together
with a single bias correction technique, median hydrologi-
cal model parameter set and a single flood frequency distri-
bution. Figure 11 presents the integrative range of this cas-
cade of uncertainty in estimating return period floods for
each catchment using data spanning the years 1976–2100.
The dominant source of uncertainty differs from catchment
to catchment. Climate models, flood frequency distribution
and bias correction techniques tend to be the dominant con-
tributing source of uncertainty in estimating flood quantiles.
Using the one-at-a-time approach to evaluating uncertainties
in flood quantiles, climate model projections in the Newport
and Blackwater catchments present the dominant source of
uncertainty, particularly for higher flood quantiles. Notably,
the relative magnitude of uncertainty in the smaller flood
quantiles in the Blackwater catchment is different than for
larger flood quantiles, with the extreme value distribution be-
coming dominant at lower flood quantiles. The largest source
of uncertainty in the Slaney is derived from the use of differ-
ent frequency distribution models. For the Boyne catchment,
the bias correction methods contribute more to the total un-
certainty. Therefore, the various steps in the modelling chain
contribute differently in each catchment to total uncertainty
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Figure 10. Percent changes in extreme flow quantiles using the ensemble mean of three distribution types, 12 GCMs and 300 parameter
sets in each catchment for the 2020s (red), 2050s (blue) and 2080s (green). Simulated changes are derived using raw (bottom row) and
bias-corrected (the first four rows) simulations.

in future flood hazard estimation and, in some catchments,
vary, depending on the flood quantile of interest (Fig. 11).

While additive chains may be useful for evaluating indi-
vidual components of uncertainty, they do not allow iden-
tification of the interactive components of the uncertainty
cascade. We use ANOVA to decompose the contribution
of individual sources of uncertainty and their interaction in
contributing to the total uncertainty in future flood hazard
(Fig. 12). We evaluate changes in the 10-, 50- and 100-year
return period flood for the 2080s (2070–2099) relative to the
reference period (1976–2005). The decomposition of uncer-
tainty is based on the variance in changes of flood quantile
values and calculated out of 100 %, i.e. the sum of all sources
is equal to 100. The contribution of each source of uncer-
tainty is not uniform across the selected catchments (Fig. 12).
Taking the example of the magnitude of the 100-year flood
(Fig. 12; outer band), future flood hazard in the Blackwa-
ter catchment for the 2080s is highly sensitive to the climate
model used (36.5 % of total uncertainty in 100-year flood)
and respective bias correction methods (20 % of total un-
certainty). In contrast, future flood frequency in the Boyne
catchment is more sensitive to the bias correction methods
(30.0 %) and extreme value distribution (25.5 %) employed.
In the Boyne catchment, the climate model ensemble ac-
counts for less than one-quarter (22.5 %) of the uncertainty in
simulations of the 100-year flood by the 2080s and is compa-

rable in magnitude to the interactive components of the cas-
cade. In the Newport catchment, the use of different extreme
value distributions (36.3 %) presents the largest component
of uncertainty, followed by the climate model ensemble. The
results of the ANOVA also confirm that the uncertainty re-
sultant from the interaction of the key sources considered is
not negligible and also varies on a catchment basis. In the
Slaney and Blackwater catchments, the interaction of vari-
ous uncertainty components accounts for 16.8 % and 16 %
of the total uncertainty in estimates of the 100-year flood by
the 2080s. In contrast, interactive components in the New-
port and Boyne catchments account for approximately one-
quarter of the uncertainty range (25.2 % in the Newport and
22 % in the Boyne catchments). Overall, hydrological param-
eter uncertainty is the least dominant source of uncertainty
in future flood frequency estimates across each catchment
(Figs. 11 and 12). For estimates of the 100-year flood in the
2080s (Fig. 12; outer band), hydrological model parameter
uncertainty is typically 5 % of the total uncertainty, reaching
up to 9 % in the Boyne catchment. Furthermore, the contribu-
tion of each of the main components of uncertainty and their
interactions to total uncertainty is broadly similar for the dif-
ferent return periods considered for our analysis of the 2080s
(Fig. 12).
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Figure 11. Total uncertainty in flood frequency curve using 12 CMIP6 GCMs (CM), five bias correction methods (BC), 300 behavioural
parameter sets (HP) and three extreme value distribution models (DMs). Shaded areas represent the 95 % confidence interval for each
component in the modelling chain, while the dotted line stands for their respective median values. The curves are fitted to annual maximum
time series derived for 1976–2100.

4 Discussion

We examined future changes in flooding for four catchments
in Ireland, including within our modelling chain the uncer-
tainties derived from 12 CMIP6 CMs, five commonly used
bias correction techniques, hydrological model parameters
and three flood frequency distributions. We found that max-
imum precipitation in all catchments is projected to increase
over the coming decades; however, changes are not uniform
across catchments. The largest change in annual maximum
precipitation was found for the Newport catchment, with en-
semble median increases becoming progressively larger for
the 2020s, 2050s and 2080s (27 %, 40 % and 60 %, respec-
tively). In the Slaney catchment, increases in annual max-
imum precipitation between the 2050s and 2080s are not
statistically significant. In the Blackwater catchment, most
of the climate models indicate a positive change, but these
have a wide range of uncertainty relative to other catchments
(from 0 % to 55 % in 2050s and 0 % to 60 % in 2080s). We
find projected changes in flood magnitudes to be broadly pro-
portional to changes in maximum precipitation in all catch-

ments. Projected changes in flood magnitude are higher using
the SSP585 and lower using SSP126 climate scenarios. Over-
all changes in precipitation and air temperature are broadly
consistent with previous findings using CMIP5 (Broderick et
al., 2019) in Ireland.

Our findings demonstrate the large uncertainties associ-
ated with projected flood magnitudes. Over recent years,
much research has sought to explore the dominant sources
of uncertainty in climate change impact assessments. Similar
studies have identified climate models as being the dominant
source (e.g. Sulis et al., 2012; Hattermann et al., 2018). In-
deed, Addor et al. (2014) highlight that there seems to be a
general agreement in the literature on the dominant contri-
bution of climate models to the uncertainty in discharge pro-
jections. In contrast, our findings demonstrate the challenges
of generalising about the dominant components of the cas-
cade of uncertainty at the catchment scale, important for un-
derstanding future flood risk. Using both additive chains and
variance decomposition to examine components of the mod-
elling chain employed, our results show that not only does the
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Figure 12. Contribution of each component of the modelling chain, together with their interaction, to the range of simulated changes in flood
hazard magnitude for the 2080s (2070–2099) relative to the reference period (1976–2005). Sources considered include 12 CMIP6 climate
models (CM), five bias correction (BC) techniques, hydrological model parameter uncertainty (HP) and three extreme value distribution
models (DMs). The outermost circle/doughnut represents the flood quantile change at return period (RP) of 100 years, the middle circle RP
of 50 years and innermost circle RP of 10 years for the 2080s. Percent changes are annotated for the outermost circle (100-year flood).

contribution and importance of different components of the
modelling chain vary across catchments, but that the domi-
nant source of uncertainty can be completely different. More-
over, the dominant sources of uncertainty vary depending on
which approach is used to evaluate uncertainty. Using addi-
tive chains, in two of our study catchments the climate model
ensemble was the dominant source of uncertainty, as was ex-
pected. However, for the Boyne and the Slaney catchments,
the extreme value distribution employed for flood frequency
analysis and the bias correction method used to adjust raw
GCM output contribute greater uncertainty to future flood
risk than the ensemble of CMs employed. Using variance
decomposition allows for the interaction of components of
the modelling chain to be evaluated and quantified and of-
fers a fuller assessment of uncertainty. Our results show that
in the Slaney and Blackwater catchments the climate model
ensemble used dominated the cascade of uncertainty. In the
Slaney catchment, the second most important component is
the bias correction technique used, while in the Blackwa-
ter catchment the frequency distribution model is the second
most important component. In the Newport catchment, the
flood frequency distribution model ranks as the most impor-
tant component of the cascade of uncertainty, followed by the
climate model ensemble. Finally, in the Boyne catchment,
the climate model ensemble ranks as only the third most im-
portant component of the uncertainty cascade in simulating

flood quantiles, with the bias correction methods coming first
and the flood frequency distribution second.

We hypothesise that catchment characteristics may influ-
ence the dominant components of the cascade of uncertainty
in each catchment. The Slaney and Blackwater catchments,
where climate models dominate, are among the largest in
our sample, with groundwater contributing significantly to
runoff in both. In the Blackwater catchment, topography has
a large bearing on flood response time within the catchment,
with flood peaks moving more rapidly from elevated sub-
catchments into the main channel, and may be a reason as to
why the flood frequency model ranks as the second dominant
component in the cascade of uncertainty. The Slaney catch-
ment drains the southern component of the Wicklow Moun-
tains before reaching shallower elevations as it flows south
through Carlow and Wexford. The variation in topography
and, hence, precipitation from upper to lower reaches may
be a reason as to why bias correction methods emerge as the
second most important component of the uncertainty cascade
in this catchment. The Newport catchment is the smallest in
our sample, with the flood response influenced more strongly
by varied land use cover (forestry and rotational cropping)
and the presence of a lake in the upper reaches of the catch-
ment. The flood frequency distribution dominates the cas-
cade, followed by the climate model ensemble used. Finally,
the Boyne catchment has been heavily influenced by arte-
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rial drainage works, resulting in the insertion of field drains
and the deepening and widening of the river channel (Harri-
gan et al., 2014). These interventions have resulted in a faster
rainfall–runoff response. In the Boyne catchment, therefore,
projected changes in future rainfall are likely to have a more
direct bearing on the flood response, with uncertainty in bias
correction and the flood frequency distribution dominating
the cascade of uncertainty.

Across each of our catchments and in the context of the
modelling chain employed, the uncertainty from hydrologi-
cal model parameters is the smallest component of total un-
certainty in the estimation of future flood hazard magnitude.
Bastola et al. (2011a, b) identify hydrological model uncer-
tainty as being important in a previous assessment of change
in flood risk, while Mizukami et al. (2016) rank hydrological
model uncertainty to be of greater importance than bias cor-
rection approaches in USA catchments. We note that we do
not consider hydrological model structure uncertainty in our
modelling chain, and that our decision to select only the top
300 behavioural parameter sets, rather than all those identi-
fied, may be a factor here. This highlights how subjective de-
cisions in the application of hydrological models may have
important implications for uncertainty in future projections
(Melsen et al., 2019). We also find that the contribution to
total uncertainty from the interaction of components within
the modelling chain is substantial – up to one-quarter of the
uncertainty range considered in two catchments.

While uncertainty decomposition may be useful in help-
ing scientists navigate the cascade of uncertainty by prioritis-
ing the key components of the uncertainty cascade to sample
(Clark et al., 2016) for a particular catchment, our small sam-
ple makes it difficult to determine how catchment character-
istics may be informative in identifying the dominant sources
of uncertainty a priori. There are some indications that catch-
ment properties and the characteristics of observed precipi-
tation may influence which uncertainties may dominate. Vet-
ter et al. (2017) used variance decomposition to examine the
contribution of modelling chains (GCM, emissions scenario
– in the form of Representative Concentration Pathways or
RCPs – and hydrological model) to total uncertainty in dif-
ferent parts of the flow regime. In their study, they examine
12 large catchments globally. While Vetter et al. (2017) high-
light the dominance of CMs in total uncertainty across many
catchments, they also highlight that the share of emissions
scenario and hydrological model contributions to overall un-
certainty can differ between catchments. Similar to our find-
ings, Vetter et al. (2017) highlight the importance of interact-
ing components of the modelling chain employed.

As our study has shown, the evaluation of uncertainties
and their interaction in future flood risk assessment with cli-
mate change is a critical step in understanding future im-
pacts and informing adaptation decision-making. However,
results depend on the modelling chain employed and the
method used to quantify uncertainties. Given the possibility
of examining interactive components of a modelling chain,

we recommend the use of ANOVA-based techniques to de-
compose the cascade of uncertainty. We highlight, however,
that our modelling chain is not complete, and that the work
presented here is illustrative rather than exhaustive. We do
not, for example, include uncertainties in future flood esti-
mates derived from different hydrological model structures
with previous work, as indicated above, showing that hy-
drological model structure and complexity may be an im-
portant component of future uncertainties. Other potential
sources of hydrological model uncertainty are also omitted.
For example, we neither evaluated the transferability of pa-
rameter sets to represent the future rainfall–runoff response
(e.g. Broderick et al., 2016) nor did we evaluate the influ-
ence that selection of different objective functions may have
on the identification of behavioural parameter sets. Wester-
berg et al. (2020) also highlight the potential importance of
uncertainty in the discharge data used to calibrate hydrolog-
ical models. In assessing different flood quantiles, we use
only 30 years of annual maxima to extrapolate to return pe-
riods outside our record length. Such extrapolations should
be treated cautiously but are prevalent in many studies (e.g.
Kay et al., 2006; Lawrence, 2020; Meresa and Romanow-
icz, 2017), while rarer floods are also associated with design
standards (e.g. 100-year flood) and are therefore of interest
to decision-makers. We also assume that flood processes re-
main stationary within the 30-year windows used to evalu-
ate changes, while other factors that can influence rainfall–
runoff response, such as land use change, remain unchanged
from the calibration period used to train our hydrological
models.

5 Conclusions

This study evaluates changes in future flood magnitude with
climate change for four Irish catchments using a modelling
chain incorporating 12 CMs comprising the CMIP6 ensem-
ble, five bias correction techniques, hydrological model pa-
rameter uncertainty and the use of extreme value distribu-
tions. Our findings suggest increasing flood hazards over the
coming decades in all catchments, with changes in flood-
ing largely consistent with changes in maximum precipita-
tion. However, uncertainties in future flood changes are large
and increase with time and flood quantile. Using ANOVA,
we decompose uncertainties in future flood quantiles to ex-
amine how individual components of our modelling chain
and their interactions contribute to overall uncertainty. Our
results show how the dominant sources of uncertainty may
vary on a catchment basis, highlighting the inability to gen-
eralise on the dominant components of uncertainty across
catchments. Across all four catchments, the climate mod-
els, bias correction methods and the extreme value distri-
butions used to evaluate flood return periods were differen-
tially dominant, while the uncertainty derived from the in-
teraction of various components was substantial in all catch-
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ments. Our work shows the value of ANOVA methods in vi-
sualising and quantifying the uncertainty cascade at a catch-
ment level, which will be helpful in navigating the uncer-
tainties associated with future flood risk for better adaptation
decision-making. While our sample is small, the dominant
components of uncertainty in future flood risk may be related
to catchment characteristics. We, therefore, recommend that
future work seeks to better understand the link between the
key components of the cascade of uncertainty and catchment
characteristics. The ability to do so would offer considerable
advantages in knowing a priori which sources of uncertainty
should be targeted as priority.
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