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Abstract 

The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain 

employed in assessing local scale changes. Understanding and quantifying this cascade is essential to developing effective 10 

adaptation actions. We evaluate and quantify uncertainties in future flood quantiles associated with climate change for four 

catchments, incorporating within our modelling chain uncertainties associated with 12 Global Climate Models contained in 

the Coupled Model Intercomparison Project Phase 6, five different bias correction approaches, hydrological model parameter 

uncertainty and use of three different extreme value distributions for flood frequency analysis. Results indicate increased flood 

hazard in all catchments for different Shared Socioeconomic Pathways (SSPs), with changes in flooding consistent with 15 

changes in annual maximum precipitation. We use additive chains and analysis of variance (ANOVA) to quantify and 

decompose uncertainties and their interactions in estimating selected flood quantiles for each catchment. We find that not only 

do the contributions of different sources of uncertainty vary by catchment, but that the dominant sources of uncertainty can be 

very different on a catchment by catchment basis. While uncertainties in future projections are widely assumed to be dominated 

by the ensemble of climate models used, we find that in one of our catchments uncertainties associated with bias correction 20 

methods dominate, while in another uncertainty associated with use of different extreme value distributions outweigh the 

uncertainty associated with the ensemble of climate models. These findings highlight the inability to generalise a priori about 

the importance of different components of the cascade of uncertainty in future flood hazard at the catchment scale. Moreover, 

we find that the interaction of components of the modelling chain employed are substantial (>20 percent of overall uncertainty 

in two catchments). While our sample is small, there is evidence that the dominant components of the cascade of uncertainty 25 

may be linked to catchment characteristics and rainfall-runoff processes. Future work that seeks to further explore the 

characteristics of the uncertainty cascade as they relate to catchment characteristics may provide insight into a-priori 

identifying the key components of modelling chains to be targeted in climate change impact assessments.   
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1 Introduction 

Climate change is likely to increasingly affect hydrological regimes and flood hazards over coming decades. Considerable 

changes in atmospheric temperature, precipitation, humidity, and circulation are expected, which may result in increasing 

extreme events, including floods (IPCC, 2013). According to Rojas et al. (2013), flood frequency in Europe will  increase due 

to climate change, with significant socio-economic implications for the region. Blöschl et al. (2017) and Blöschl et al. (2019)  35 

conclude that the timing and magnitude of European floods have shifted due to climate change and its consequences are not 

uniform across the region, with north-western Europe experiencing earlier and higher flood peaks. Modelling and 

understanding of catchment scale flood hazard projections is therefore an important endeavour for informing adaptation 

strategies.  

 40 

Climate change impact assessment is subject to considerable uncertainties (Wilby and Dessai, 2010; Smith et al., 2018); 

Blöschl et al. (2019) recently highlighted uncertainty in hydrology as one of the 25 challenges in hydrological science. 

Traditional or top-down climate change impact assessments typically follow a modelling chain where output from Global 

Climate Models (GCMs), forced with scenarios of future greenhouse gas concentrations, are extracted, and scaled to represent 

a study catchment. Hydrological models, calibrated for current conditions, are then forced with these GCM outputs to create 45 

discharge series spanning multiple decades into the future. When assessing flood hazard, extreme value distributions are 

typically fitted to samples of extreme events (e.g. annual maximum flood series) representing current and future climates to 

evaluate changes in the characteristics of flooding. This modelling chain is replete with uncertainties that propagate and 

interact, resulting in potential large ranges in projected change at the catchment scale (e.g. Meresa, 2019) that can impede 

decision making (Smith et al., 2018).  50 

 

Numerous studies have attempted to quantify the uncertainties in future climate change impacts due to the use of different 

climate models (e.g Knutti & Sedláček, 2013), natural variability (e.g. Giuntoli et al., 2018; Hughes et al., 2011), bias 

correction techniques (e.g.  Kay et al., 2009; Saini et al., 2015; Soriano et al., 2019), downscaling approaches (e.g. Fowler et 

al., 2007; Gutmann et al., 2014), hydrological modelling uncertainties (e.g. Wilby & Harris, 2006; Bastola et al., 2011;  Addor 55 

et al., 2014; Meresa & Romanowicz, 2017; Broderick et al., 2019) and the application of different extreme value distributions 

for flood hazard estimation (e.g. Meresa & Romanowicz, 2017; Lawrence, 2020). Findings from such studies confirm that the 

dominant source of uncertainty varies across studies. For example, Jobst et al. (2018) concluded that the GCM structure is the 

dominant contributor followed by emission scenario, bias correction, and hydrological model structure in New Zealand 

catchments. Peleg et al. (2015)  found that the hydrological regimes are highly sensitive to changes in convective precipitation 60 

in eastern Mediterranean catchments. Gosling et al. (2011)  evaluated  seasonal flow changes in UK catchments and found 

greater uncertainty in future estimates due to climate models than hydrological models. In Norwegian catchments Lawrence 

(2020) highlighted that climate models and frequency models are dominant sources of uncertainty in future flood projections.  
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Therefore, the key components of the uncertainty cascade and their contributions tend to vary depending on the region, 

precipitation type, and catchment.  65 

 

Recognition of the uncertainties inherent in future climate change impacts has also given rise to novel approaches to decision-

making that embrace uncertainties (e.g. Wilby & Murphy, 2019; Clark et al., 2016). Rather than aiming to derive precise 

assessments of future risk, such approaches aim to stress test and evaluate adaptation options, in static or dynamic ways 

(Mazzorana et al., 2012), to identify actions that are functional across a range of plausible future conditions, rather than 70 

optimised to a certain outcome (e.g. structured decision making (SDM), robust decision making, decision scaling, adaptation 

pathways). Shepherd et al., (2018) recommend a storyline approach for navigating uncertainty, whereby examination of recent, 

notable extremes and the development of plausible narratives of change in their drivers enables novel assessment of future 

changes, placing emphasis on physical processes. Each of these approaches require the cascade of uncertainty to be evaluated 

or navigated in ways that can better inform adaptation. For example, Broderick et al. (2019) employ a scenario neutral 75 

framework (Prudhomme et al., 2011) to evaluate design allowances for flood defences taking into account uncertainties derived 

from a large climate model ensemble, natural variability and hydrological models.  

 

Whether employing traditional impact led or novel decision centric approaches, it is critical that key components of the cascade 

of uncertainty are adequately included. Research over the past two decades clearly shows that methodological choices made 80 

in assessing future climate change fundamentally impact on the portrayal of climate risk (Clark et al., 2016; Melsen et al., 

2019). Top-down approaches must a-priori decide on the components of the modelling chain to include. Including all relevant 

components is typically a very resource expensive task (Smith et al., 2018) and it may not be apparent at the outset which 

components of the uncertainty cascade  to include for specific catchments. For bottom up approaches, such as the scenario 

neutral method (Broderick et al., 2019), the modeller is forced to choose which aspects of uncertainty to include in assessing 85 

sensitivity to future changes. Again, this may not be apparent from the outset. It is widely acknowledged that climate models 

exhibit biases in their outputs (Krinner & Flanner, 2018; Giorgi & Gao, 2018), with numerous studies highlighting the need to 

post-process climate model output before use in simulating hydrological response (Ehret et al., 2012; Teng et al., 2012;  Osuch 

et al., 2017; Meresa & Romanowicz, 2017). Dobler et al. (2012) suggest that the dominant components of the modelling chain 

may further vary depending on which part of the flow regime (low, mean, high flows) is of interest. They highlight, for 90 

example, that the importance of bias correction approaches to the overall uncertainty in hydrological response increases for 

high flows. However, there is still no consensus on which bias correction techniques are most effective, nor in how bias 

correction techniques can modify future climate change signals. For instance, Teutschbein & Seibert (2013) and Yang et al. 

(2010) showed distribution mapping based on theoretical distributions outperforms other bias correction methods. Similarly, 

Berg et al. (2012) and Chen et al. (2013) show that theoretical distribution mapping performs similar to, or marginally better 95 

than, empirical quantile mapping. On the contrary, Gudmundsson et al. (2012), Gutjahr & Heinemann, (2013) and Lafon et al. 
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(2013), show that empirical quantile mapping demonstrates higher skill than theoretical distribution mapping in systematically 

correcting precipitation. 

 

Moreover, deep uncertainty can arise by virtue of the ad-hoc ways in which components of possible modelling chains are 100 

assembled and characterised within the overall modelling framework adopted (Wilby and Murphy 2019). Yet there are 

currently no established ways of sampling from the hierarchy of models used to evaluate impacts of climate change (Clark et 

al., 2016). Therefore, an important step in better integrating future climate risk into decision-making is quantifying and 

partitioning the contribution of different components of uncertainty and their interactions to help scientists and decision makers 

better navigate the cascade of uncertainty by identifying contributing sources that should be more fully explored (Smith et al., 105 

2018). In this regard ANOVA (ANalysis Of Variance) based techniques, which can be used to decompose sources of 

uncertainty and their interaction, offer considerable utility (e.g. Kay et al., 2009;Vetter et al., 2016; Hattermann et al., 2018; 

Meresa, 2020). In this study, we explore uncertainties in future flood hazard for four catchments, representative of different 

flood response types, in Ireland and employ additive chains and variance decomposition to quantify and examine the 

contribution of various sources of uncertainty, together with their interaction, to the overall uncertainty in flood hazard 110 

projections. In doing so we place emphasis on evaluating the uncertainties derived from; i) climate models in the newly 

available Coupled Model Inter-comparison Project Phase 6 (CMIP6) ensemble (Wyser et al., 2019); ii) widely used bias 

correction techniques; iii) hydrological model parameter uncertainty, and iv) the use of different extreme value distributions. 

The remainder of the paper is organised as follows; Section 2 outlines the study design and data/methods employed, Section 3 

presents key results, exploring uncertainties for key steps in the modelling chain examined, together with their contributions 115 

and interactions to the full range of projected change in flood risk. Section 4 provides a discussion of key insights, limitations 

and future directions before drawing main conclusions in Section 5.  

2 Models and Study Design 

Our study design is illustrated in Figure 1. We quantify uncertainties and their interaction in projected flood hazards using 12 

Climate Models (CMs) contained in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) ensemble (https://esgf-120 

node.llnl.gov/search/cmip6/), forced using three Shared Socioeconomic Pathways (SSP) scenarios. We use five bias correction 

techniques (Change factor (CF), Double Gamma Distribution Quantile (DGQM), Birnbaum distribution Quantile mapping 

(BQM), Single Gamma Distribution Quantile (SGQM), and Empirical Quantile (EQM)) to post-process climate model outputs 

(daily precipitation and air temperature time series). The daily bias corrected precipitation and temperature data are used as 

input to the Génie Rural à 4 paramètres Journalier (GR4J) hydrological model (Perrin et al., 2003). The Generalized Likelihood 125 

Uncertainty Estimation (GLUE) technique is used to quantify GR4J parameter uncertainty. In assessing future flood hazard 

the sensitivity of results to different extreme value distributions is examined. In addition to evaluating each source of 

uncertainty independently, we use variance decomposition to quantify the contribution of each methodological choice and 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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their interactions to the overall uncertainty in assessing flood risk. The climate change impact is evaluated based on relative 

future changes in the magnitude of floods for the 2020s (2010-2039), 2050s (2040-2069) and 2080s (2070-2099) with respect 130 

to the reference period (1976-2005). The following sections provide further details on the study catchments and each stage of 

the modelling chain employed. 

2.1 Study catchments and hydro-climate datasets  

Simulations are undertaken for four catchments (Boyne, Blackwater, Newport and Slaney), representing different flood 

response types across the Ireland (Broderick et al., 2019). Their location, together with a summary of hydro-climatic conditions 135 

for each catchment is summarized in Table 1 and Figure 2. Catchment area ranges from 146 km2 (Newport) to 2447 km2 

(Boyne), while mean elevation ranges from 56 m (Newport) to 112 m (Blackwater). For each catchment we use gridded 

(1 × 1 km) daily precipitation and temperature data (Walsh, 2012) area averaged for the period 1976-2005 to provide a single 

representative baseline series for each catchment. Daily potential evapotranspiration is derived using air temperature and 

elevation following the method of Hamon (1964). This approach is favored over less parsimonious but more physically based 140 

methods (e.g. Penman‐Monteith), which have greater data input requirements (e.g. wind speed, humidity) not available for all 

study catchments. Daily discharge data for each catchment was obtained from the Office of Public Works (OPW) 

(http://www.epa.ie/hydronet/).  

2.2 Climate Projections and Bias Correction   

Daily precipitation (pr) and air temperature (tas) time series for the period 1971-2100 were extracted for 12 members of the 145 

CMIP6 ensemble (https://esgf-node.llnl.gov/search/cmip6/) forced by each of three Shared Socioeconomic Pathway (SSP) 

(SSP126, SSP370 and SSP585) scenarios (see Table 2 for details). For each catchment daily precipitation and air temperature 

were extracted from the closest land based CM grid overlying the catchment centroid. We employ five commonly used 

techniques to bias correct raw climate model output and to examine the contribution of the selected bias correction methods to 

the total uncertainty in future flood hazard.  150 

2.2.1 Change factor /delta change (CF) 

The change factor technique applies multiplicative (for precipitation) and/or additive (for temperature) procedures for 

correcting raw model output. This involves correcting simulated daily precipitation (𝑃𝑓𝑢𝑡,𝑐𝑜𝑟𝑟 ) by multiplying the ratio of 

observed precipitation (𝑃𝑜𝑏𝑠) and reference precipitation simulation (𝑃𝑟𝑒𝑓,𝑟𝑎𝑤) to future simulations of raw climate model 

precipitation (𝑃𝑓𝑢𝑟,𝑟𝑎𝑤). For correcting future air temperature (𝑇𝑓𝑢𝑡,𝑐𝑜𝑟𝑟 ), the difference in observed air temperature (𝑇𝑜𝑏𝑠) 155 

and simulated temperature in the reference period (𝑇𝑟𝑒𝑓,𝑟𝑎𝑤) is added to raw climate output (𝑇𝑓𝑢𝑟,𝑟𝑎𝑤). 

 

http://www.epa.ie/hydronet/
https://esgf-node.llnl.gov/search/cmip6/
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𝑃𝑓𝑢𝑡,𝑐𝑜𝑟𝑟 = 𝑃𝑓𝑢𝑟,𝑟𝑎𝑤 ∗
𝑃𝑜𝑏𝑠

𝑃𝑟𝑒𝑓,𝑟𝑎𝑤
                                                                                (1) 

 

𝑇𝑓𝑢𝑡,𝑐𝑜𝑟𝑟 = 𝑇𝑓𝑢𝑟,𝑟𝑎𝑤 + (𝑇𝑜𝑏𝑠 − 𝑇𝑟𝑒𝑓,𝑟𝑎𝑤)                                                            (2) 160 

2.2.2 Empirical quantile mapping (EQM) 

Empirical quantile mapping is based on pair-wise comparison between the empirical cumulative density functions (ecdf) of 

observed and simulated daily precipitation time series during the reference period (1976-2005). This is a purely empirical 

approach with direct matching of the histogram of the observed precipitation to the future period. Future precipitation and 

temperature are corrected using the inverse of the ecdf (𝑒𝑐𝑑𝑓−1 ) and fitted ecdf  𝑒𝑐𝑑𝑓ℎ𝑠𝑡,𝑚. 165 

 

𝑃ℎ𝑠𝑡,𝑚
𝑐𝑜𝑟 = (𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚

−1 (𝑒𝑐𝑑𝑓ℎ𝑠𝑡,𝑚(𝑃ℎ𝑠𝑡,𝑚)))                                                        (3) 

 

𝑇ℎ𝑠𝑡,𝑚
𝑐𝑜𝑟 = (𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚

−1 (𝑒𝑐𝑑𝑓ℎ𝑠𝑡,𝑚(𝑇ℎ𝑠𝑡,𝑚)))                                                        (4) 

 170 

The non-parametric quantile matching was performed first in the reference period (m, modeling period) using an exponential 

transfer function assumption. Then the calibrated coefficients were used to correct the future daily precipitation and air 

temperature.  

2.2.3 Distribution Quantile Mapping (DQM) 

Distribution quantile mapping is a distribution parameter dependant bias correction technique. The parameters are extracted 175 

by fitting Gamma distribution to observed and simulated time series data, and matching its corresponding quantiles  from the 

observed and raw climate model output in the reference period (1976-2005) (Piani et al., 2010). We applied two types of DQM 

to correct climate biases: Single Gamma Distribution Quantile Mapping (SGDQM) and Double Gamma Distribution Quantile 

Mapping (DGDQM), together with the Birnbaum-Sanders distribution method (BSM) (Marzena Osuch et al., 2016). These 

methods also allow for any excess in the number of dry, drizzle and wet days to be considered and corrected. In the case of 180 

SGQM, the first step is fitting a Gamma distribution to the upper 75 % of daily observed and raw climate output precipitation 

distribution. Whereas in the DGDQM, the Gamma distribution is fitted to both the upper ≥ 75 % and to the lower < 75 % of 

the daily observed and raw climate output precipitation in the reference period (1976-2005). In both cases, non-rain days were 

removed and only wet days were considered. Similarly, BSM used the Birnbaum-Sanders distribution to transfer the 

precipitation quantile from the observed time series to raw output of the CMs in the reference period. 185 

 

𝑃𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑔
−1(𝐹𝑑𝑔(𝑃𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (5) 
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𝑃𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑏
−1(𝐹𝑑𝑏(𝑃𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (6) 

 190 

𝑇𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑏
−1(𝐹𝑑𝑏(𝑇𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (7) 

 

𝑇𝑐𝑜𝑟𝑟 = 𝐹𝑑𝑛
−1(𝐹𝑑𝑛(𝑇𝑟𝑎𝑤(𝑡), 𝛼𝑟𝑎𝑤 , 𝛽𝑟𝑎𝑤), 𝛼𝑂𝑏𝑠, 𝛽𝑂𝑏𝑠)                                               (8) 

 

Where 𝑃𝑐𝑜𝑟𝑟  and 𝑇𝑐𝑜𝑟𝑟  are the bias corrected daily precipitation and temperature, respectively. Likewise, 𝑃𝑟𝑎𝑤 (𝑡) and 𝑇𝑟𝑎𝑤(𝑡) 195 

represent for raw climate model output for precipitation and temperature. The raw climate output inverse cumulative density 

(CDF) is symbolized by 𝐹𝑑𝑔
−1, 𝐹𝑑𝑏

−1, and 𝐹𝑑𝑛
−1 for precipitation and temperature, respectively. The dn, db and dg subscripts 

represent the normal (for temperature), Birnbaum-Sanders (for both precipitation and temperature) and Gamma (for 

precipitation) distributions, respectively. The Gamma (for precipitation) and Birnbaum-Sanders distributions have two 

parameters – the shape and scale parameters which are symbolised by α and β, and the normal (for temperature) distribution, 200 

with mean and standard deviation represented by µ and σ, respectively. 

2.3 Bias correction performance evaluation  

The performance of the selected bias correction techniques was evaluated using four statistical measures: Pearson Correlation 

(RR), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Percent Bias (PBIAS). Evaluation was performed 

by comparing the ability of each approach to capture observed precipitation and temperature.  205 

 

𝑅𝑅 =
∑(𝑃𝑆−𝑃𝑆̅̅ ̅̅ )∗(𝑃𝐶−𝑃𝐶

̅̅ ̅̅ )

√∑(𝑃𝑆−𝑃𝑆̅̅ ̅̅ )2∗∑(𝑃𝐶−𝑃𝐶̅̅ ̅̅ )2
                                         (9) 

 

𝑀𝐴𝐸 =
∑ |𝑃𝑆−𝑃𝐶|𝑛

𝑖=1

𝑁
      (10) 

 210 

    𝑃𝐵𝐼𝐴𝑆 =
∑ |𝑃𝑆−𝑃𝐶|𝑛

𝑖=1

∑ 𝑃𝑆
𝑛
𝑖=1

                                                       (11) 

 

 𝑅𝑀𝑆𝐸 = [
∑ |𝑃𝑆−𝑃𝐶|2𝑛

𝑖=1

𝑁
]0.5                                             (12) 

 

Where Ps and Pc are observed and corrected precipitation, respectively, 𝑃𝐶
̅̅ ̅  is the mean of corrected precipitation,  215 

𝑃�̅�     the mean of observed precipitation and N is the number of observations.  
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2.4 Hydrological modelling  

The GR4J model (Perrin et al., 2003) is a parsimonious four parameter, lumped conceptual rainfall-runoff model that has been 

widely applied in different hydro-climate conditions (Meresa & Gatachew, 2019; Meresa et al., 2017; He et al., 2018). The 

model is particularly suited to climate change impact studies given its parsimonious structure. GR4J simulates streamflow 220 

using precipitation, temperature and potential evapotranspiration (Perrin et al., 2003) and has previously been successfully 

used in Ireland to assess climate change impacts (Broderick et al. 2016; Broderick et al., 2019), river flow reconstructions 

(O’Connor et al., 2020) and seasonal hydrological forecasting (Donegan et al., 2020). Broderick et al. (2019) highlight the 

good performance of GR4J in capturing a range of hydrological signatures across diverse Irish catchments (Broderick et al., 

2019). The model has two consecutive stores: one related to runoff production and the other to runoff routing. Detailed 225 

information about the model structure is given in Perrin et al. (2003). The upper and lower limits of the four model parameters 

are listed in Supplementary Table S1. The model was calibrated and validated using observations over the period 1976-2005. 

The first four years were used as a model warmup to stabilise the initial states of the hydrological parameters. Calibration was 

undertaken from 1981-1999 and validation from 2000-2005. The Nash Sutcliffe Efficiency (NSE) objective function was used 

to evaluate the model performance and to identify behavioural parameter sets (Nash and Sutcliffe, 1970). NSE is defined as:   230 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑡−𝑄𝑚,𝑡)2𝑗

𝑡=1

∑ (𝑄𝑜,𝑡−�̅�𝑜)2𝑗
𝑡=1

  (13) 

where Qo,t and Qm,t are observed and simulated flow at time t, Qo is the mean observed flow and j is the length of the jth time 

series. The ability of hydrological model simulations to replicate the observations was further evaluated by deriving the 

proportion of extreme high flows inside the 95% confidence intervals (PCI). This is helpful for identifying a fixed NSE 

threshold for differentiating between behavioural and non-behavioural simulations (Li et al., 2011; Xu, 2014).  235 

The Generalized Likelihood Uncertainty Estimation (GLUE) approach is widely applied to quantify hydrological model 

parameter uncertainty (Beven & Binley, 1992). GLUE is an informal statistical approach that uses Monte Carlo (MC) 

simulation to generate many possible hydrological parameter sets from specific ranges. The choice of the number of samples 

is somewhat subjective with studies typically employing a few thousand to tens of thousands of hydrological model parameter 

set samples to simulate river flow (Zheng and Bennett, 2002). In applying GLUE, we randomly generated a large number of 240 

parameter sets (30,000) using a uniform distribution constrained by the acceptable ranges of each GR4J parameter. Behavioural 

parameter sets were identified based on NSE (Equation 13) scores >0.50.   

2.5 Flood frequency analysis  

Numerous extreme value distributions can be deployed to estimate the frequencies of high flows. For example, the Log-Pearson 

III distribution is very popular in the USA and Australia for infrastructure design (Griffis & Stedinger, 2007), the General 245 

Extreme Value and Pearson Type III distributions are widely used in Europe (Madsen et al., 2013), while the Wakeby and 

Log-Normal distributions have been frequently used in Asia (Chen et al., 2012). However, a single distribution model may not 
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be able to capture the entire temporal and spatial variability of hydrological extremes. Therefore, we employ three common 

distribution types (LN, Log-logistic and GEV) with Maximum Likelihood parameter estimator (MLE) for flood frequency 

curve development. MLE estimates the distribution parameters by optimising the likelihood function of the cumulative 250 

probability distribution density, and its reliability is evaluated using the standard error of the estimated parameters. These 

distributions were fitted to the annual maximum daily peak flows in each study catchment. In Equations 14 - 16, the respective 

probability density function (PDF) of each distribution is presented. The Log-Normal and Log-logistic models have two 

parameters, while the GEV distribution has three parameters.   

Log-Normal (LN)   𝑓(𝑥) =
exp (−

1
2

(
𝑙𝑛𝑥−𝜇

𝜎
)

2
)

𝑥𝜎 √2𝜋
            σ, µ (σ>0) (14) 255 

 

Log Logistic (LogL)  𝑓(𝑥) =
μ(

𝑥

σ
)μ−1

σ[1+(
𝑥
σ

)
μ

]2
   (15) 

GEV   𝑓(𝑥) = {

1

𝜎
exp (−(1 + 𝑘(

x−μ

σ
))^−

1
𝑘) (1 + 𝑘(

x−μ

σ
))

−1−
1
𝑘

  𝑘 ≠ 0

1

𝜎
exp (−(

x−μ

σ
) − 𝑒𝑥𝑝(−((x − μ)/σ )))   𝑘 = 𝑜

         K, σ, µ (σ>0)  (16) 

 

Where, σ is the scale,  μ is location and k is the shape parameter.  260 

2.6 Uncertainty estimation and decomposition 

We used two approaches to uncertainty analysis in future flood hazard. First is the additive chain approach which is similar to 

sensitivity analysis. whereby the main goal is to assess components of the modelling chain independently (one-at-the-time). 

Second, we used ANOVA to separate the variance contribution of each component of the modelling chain and their interaction. 

Unlike the former (sensitivity approach), it helps us to understand the interaction of factors and their main variables using their 265 

total variance values.  

2.6.1 Additive chain approach 

We examine the relative contribution of four key components of the modelling chain to the projected uncertainty in future 

flood hazard. These are climate models (CM), bias correction techniques (BC), hydrological model parameters (HP) and flood 

frequency distribution models (FF). We only use a single SSP scenario (here SSP370) in our evaluation of the uncertainty 270 

cascade, with the assumption that different studies will be interested in quantifying flood hazard for different emissions 

outcomes separately.  



10 

 

Overall uncertainty is estimated based on the additive chain method, while decomposition of the contribution of different 

sources of uncertainty and their interactions is evaluated using ANOVA. The uncertainty in future flood hazard can be defined 

as the total uncertainty resulting from the components (s) of the modelling chain considered – here four components s1 to s4 275 

(CM, BC, HP and FF). Initially we define the cumulative uncertainty for each component (s) of the modelling chain denoted 

by 𝑈𝑐𝑢𝑚 (𝑋1 … . . 𝑋𝑠) and its respective conditional probability as 𝑈(𝑞𝑥 𝑠+1……𝑥𝑠). The uncertainty in our modelling chain is 

characterized as the total variance in the flood quantile generated from each of the four components evaluated, with total 

uncertainty defined as; 

 280 

𝑈𝑐𝑢𝑚(𝑥1, … , 𝑥𝑠) =
1

𝜋𝑗=𝑠+1
𝑛𝑗 ∑ …𝑥𝑠+1𝜖𝑥𝑠+1

∑ 𝑈(𝑞𝑥 𝑠+1……𝑥𝑠)𝑥𝑠𝜖𝑥𝑠
                              (17) 

 

𝑈(𝑞𝑥 𝑠+1……𝑥𝑠) stands for respective cumulative probability of each output quantiles. This uncertainty quantification method 

keeps summing as the number of components (s) of the modelling chain increases.  Therefore, the uncertainty of a particular 

step along the modelling chain e.g. s=4, denoted by 𝑈𝑐𝑢𝑚 (𝑋4), can be described as: 285 

 

𝑈𝑐𝑢𝑚 (𝑋4) = 𝑈𝑐𝑢𝑚 (𝑋4) − 𝑈𝑐𝑢𝑚(𝑋3)       in general        𝑈𝑐𝑢𝑚 (𝑋𝑠) = 𝑈𝑐𝑢𝑚 (𝑋s−1) − 𝑈𝑐𝑢𝑚 (𝑋s−2)                                  (18) 

 

Note that uncertainty of each component of the chain is a magnitude of contribution to the total uncertainty so that the sum of 

uncertainties of individual sources is always equal to the cumulative uncertainty 𝑈𝑐𝑢𝑚 (𝑋1, … , 𝑋𝑠). Whereas, Equation 18 was 290 

used to get the individual component from the total uncertainty. 

 

2.6.2 ANOVA approach 

Unlike single chain based additive approaches to uncertainty estimation, ANOVA can decompose the aggregated source of 

uncertainty into individual components and their interaction using specific extreme flow indices (Meresa & Romanowicz, 295 

2017) and in mean runoff projections (Bosshard et al., 2013). We develop a hypothesis test using an ANOVA model that can 

identify the effect of each component (CM, BC, HP, FF) in the model chain to the total variance of the extreme index (Y). 

According to n-way ANOVA principles, the model splits the total sum of squares (SST) into the sum of squares (SS) of the 

main variables and their interactions as follows:    

 𝑆𝑆𝑇 = ∑ ∑ ∑ ∑ (𝑌𝑖𝑗𝑘𝑙 − �̅�)
2𝑁𝐹𝐹=3

𝑙=1
𝑁𝐻𝑃=300
𝑘=1

𝑁𝐵𝐶=5
𝑗=1

𝑁𝐶𝑀=12
𝑖=1   (19) 300 

Where Yijkl is estimated flood magnitude considering i=12 climate models, j=5 bias correction methods, k=300 hydrological 

parameter sets, l=3 extreme frequency distributions, and �̅� is the mean of all variables. SST is the grand square deviation of 
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the main and interacting variables. Further, the deviation in SST is split into individual and interacting components to explore 

their effect on the aggregated extreme flood frequency indices as follows:  

 𝑆𝑆𝑇 = 𝑆𝑆𝐶𝑀 + 𝑆𝑆𝐵𝐶 + 𝑆𝑆𝐻𝑃 + 𝑆𝑆𝐹𝐹 + 𝑆𝑆𝐶𝑀𝐵𝐶 + 𝑆𝑆𝐶𝑀𝐻𝑃 + 𝑆𝑆𝐶𝑀𝐹𝐹 + 𝑆𝑆𝐵𝐶𝐻𝑃 + 𝑆𝑆𝐵𝐶𝐹𝐹 + 𝑆𝑆𝐻𝑃𝐹𝐹  (20) 305 

where SSCM is the sum of standard errors of climate models, SSBC is the sum of standard errors of bias correction methods, 

SSHP the sum of standard errors of hydrological parameters and SSFF is the sum of the standard errors of flood frequency. In 

examining combined effects, SSCMBC is the sum of standard errors of climate models and bias correction methods, SSCMFF the 

sum of standard errors of climate models and extreme frequency, and SSBCHP is the sum of standard errors of bias correction 

methods and hydrological parameters. 310 

Results   

3.1 Evaluation of bias correction techniques 

The annual maximum daily precipitation series from 12 CMs were evaluated against observations for each catchment during 

the period 1976-2005 (reference period). RR, MAE, PBIAS and RMSE results for each catchment are presented in Figure 3 

and Figure S1. Following bias correction, results indicate an improvement of the CMs in reproducing observed annual 315 

maximum precipitation. However, the performance of each bias correction method is not uniform for all catchments and CMs. 

MAE values range from 0 to 195, RMSE 0 to 40, PBIAS -65 to 40, and RR ranges from -0.40 to 0.50. Overall, the distribution 

based bias correction methods performed better in reproducing observed maximum precipitation in these catchments. The 

smallest PBIAS is observed in the Boyne catchment and largest in the Newport catchment. The BC-CCSM and ACCES CM2 

climate models show high RR (0.4) in the Slaney catchment using DGQM, SGQM and BSM. Whereas GFDL and MPIESM-320 

LR climate models indicates lower performance in correcting precipitation using all bias correction methods. Figure 4 shows 

the raw GCM outputs together with the results of the five bias correction methods applied to the CMIP6 ensemble in simulating 

the maximum daily precipitation in each month for each catchment. The corrected precipitation gives a wider spread in winter 

months (except DGQM and EQM techniques), relative to summer months. However, the ensemble spread is dependent on the 

bias correction method. DGQM and EQM methods result in a relatively narrower spread, whereas SGQM, BSM and CF return 325 

a wide range of simulations (Figure 4).  

 

The influence of each bias correction method on the magnitude of simulated changes in annual maximum daily precipitation 

for the 2050s (2040-2069) and 2080s (2070-2099) (relative to reference period: 1976-2005) was evaluated for each GCM SSP 

combination (Figure 5). Simulated changes from the same 12 CMs using different bias correction approaches show substantial 330 

differences in the magnitude of changes in annual maximum precipitation. Generally, projected changes are smaller in the 

Slaney and Boyne using DG methods, whereas the changes in the Blackwater and Newport are smaller using EQ and SG. 

There is also a linear relationship between the annual maximum precipitation changes suggested for the 2050s and 2080s, for 
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most bias correction techniques and catchments, indicating a positive trend in the magnitude of changes with time (Figure 5). 

However, we note that there is greater scatter for EQM relative to other bias correction techniques and in the Blackwater 335 

catchment relative to other catchments. We also note that the magnitude of change in annual maximum daily precipitation 

tends to be higher for SSP585 than for SSP370 and SSP126 and slightly higher in the Slaney and Newport catchments, relative 

to the Boyne and Blackwater. Changes in annual maximum daily precipitation for SSP126 are smaller than those simulated 

for SSP370 and SSP585 due to the lower radiative forcing and socio-economic impact associated with SSP126 relative to other 

scenarios.  340 

3.2 Hydrological modelling and parameter uncertainty evaluation  

The GLUE procedure was used to identify a set of model parameters that offer acceptable performance. Thirty thousand 

parameter sets were randomly generated from uniform distributions with the NSE objective function threshold of > 0.5 

calculated from daily mean flows used to identify behavioural parameter sets. To produce future simulations, we employ the 

top 300 behavioural parameter sets. Figure S3 shows the variation in model parameter values and NSE for each GR4J model 345 

parameter and catchment. The majority of parameters show clearly identified peaks for each catchment, particularly the 

parameters X2, X3 and X4. The only parameter to show a lack of identifiability is the X1 parameter (the production storage 

capacity) in particular in the Newport catchment. This is the smallest of the four catchments and displays large variability in 

topography, landcover (forestry) and has a lake present in the catchment. Figure 6 shows the ability of the GR4J model to 

simulate the maximum daily flows in each month using behavioural sets relative to observations for the years 1976-2005, 350 

together with the 95 percent confidence intervals of the simulations. Simulations successfully capture the observations, which 

mostly fall within the 95 percent confidence interval, except in the Boyne catchment, where a portion of the observed maximum 

flow time series fall outside of the simulated confidence interval. We note that the Boyne catchment has undergone significant 

arterial drainage works, which is likely to result in higher peak flows (Harrigan et al., 2014) in the observations relative to the 

model simulated values. GR4J achieved the best fit in the 95% CI modelling discharge in the Newport catchment. Overall, the 355 

model was able to capture winter flows well in all catchments, particularly winter peak flow simulations. The biggest 

discrepancies were observed in modelled flows during late summer, with poorer performance likely associated with use of the 

NSE objective function which is more sensitive to the large peak values than lower flows in summer.   

 

We examined the uncertainty associated with model parameters for different CMs and future time periods. Figure 7 shows the 360 

simulated annual maximum daily flow for the reference and each future time period using the 300 GR4J behavioural parameter 

sets forced with 12 CMs bias corrected using DGQM. It is evident that the uncertainty associated with hydrological model 

parameters is not static and varies depending on climate model, catchment and future time period. The importance of 

hydrological model uncertainty tends to be greatest for climate models that project the largest magnitude of change indicating 

that the changing characteristics of precipitation (e.g. mean and variability) have a large bearing on the importance of 365 

hydrological model uncertainty. It is also likely that different bias correction techniques interact with parameter uncertain ty. 
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The uncertainties associated with hydrological model parameters tend to be greatest for the 2080s (black lines in Figure 7), 

and for the Boyne and Slaney catchments.  

 

Percent changes in maximum annual daily flow simulated using behavioural parameter sets, 12 CMs bias corrected by each of 370 

the five methods, together with the raw simulations are presented in Figure 8. A clear increase in the annual maximum flow is 

suggested using DGQM, SGQM, CF, EQM and BSM, however, the magnitude of simulated increases differs depending on 

bias correction approach and are not uniform across the selected catchments. Overall, distribution based bias correction models 

give smaller changes in annual maximum flow time series. This indicates that wet-day frequency correction is very important 

for understanding future annual maximum flow projections. Annual maximum flow changes using EQM gives a higher spread 375 

range and uncertainty in each catchment, while the change factor method produces the most modest changes. Changes in 

annual maximum flow are smallest in the Blackwater, which is notable as the catchment with largest groundwater storage. 

Changes in annual maximum flow are more constrained under SSP126 than SSP370 and SSP585, however differences between 

SSPs are modest and uncertainty ranges of changes in annual maximum flow are considerable for each (Figure 8).  

3.3 Flood quantile projections under varying climate conditions  380 

Figure 9 shows the estimated flood quantile values at different return periods (from 2 year to 100 year) using GEV, LN and 

LogL distribution models, and associated 95% confidence intervals from 12 CMs (under SSP370 scenario) bias corrected 

using the DGQM method over the full simulation period (1976-2100). Overall, the LogN distribution returned the smallest 

flood quantile magnitude, while the estimated quantile values using LogL tend to be largest across each catchment and have 

the narrowest uncertainty bands.. The GEV distribution produces the largest uncertainty ranges in flood quantiles in all 385 

catchments (Figure 9).  

 

Percent changes in flood quantiles for return periods ranging from 10 to 50 years were also evaluated for each future period 

under SSP370 using ensemble mean of three distribution types fitted to the median GR4J simulation combining all CMs and 

bias correction methods (Figure 10); and Figure S4 shows the quantile values using the GEV distribution fitted to the median 390 

GR4J simulation combining all CMs and DGQM bias correction methods (Figure S4). Each catchment shows a significant 

increase in the magnitude of flood quantiles in the future. Overall, changes in flood quantiles are consistent with changes in 

annual maxima daily flow and changes depending on the climate period (2020s, 2050s and 2080s). However, future flood 

changes are not the same across catchments and differences exist based on bias correction methods employed. The largest 

changes in flood quantiles across all catchments are found using the BSM bias correction method, where in the Blackwater 395 

catchment increases of over 90 percent are found for the 50-year return period in the 2050s and 2080s. Other bias correction 

techniques return more modest increases. Changes in flood quantiles estimated using the CF and DGQM approaches show 

larger changes in the 2050s relative to the 2080s in the Blackwater. Indeed, the CF method shows the most modest changes in 

all quantiles for the 2080s relative to other time periods across all catchments. In the Slaney most bias correction methods 
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show only small changes in flood quantiles between time periods, the exception being EQM which shows substantial increases 400 

in each flood quantile moving across each time-period. The EQM method tends to show the greatest increases in magnitude 

for higher quantile floods, with largest percent changes returned for the 50-year return period. In the Newport and Boyne 

catchments, the CF approach shows modest reductions in the magnitude of higher frequency floods, a characteristic not 

reported using other bias correction techniques.  Interestingly, the changes depend on the future climate period withmost 

catchments showing higher change in the 2020s than the 2050s. This is likely due to climate variability and nonlinearity climate 405 

response. 

3.4 Uncertainty estimation and decomposition for flood quantile estimation  

The magnitude of each of the four sources of uncertainty on flood hazard estimation was estimated first based on the additive 

chain principle to reveal their contribution to the overall uncertainty in projected changes. Projections from each of 12 climate 

models were iteratively passed through five bias correction techniques and used to force the GR4J model using behavioural 410 

parameters sets, before fitting each of the three frequency distributions to estimate future flood hazard. Therefore, the 

sensitivity to climate model uncertainty was evaluated by using each of the 12 CMs together with a single bias correction 

technique, median hydrological model parameter set and a single flood frequency distribution. Figure 11 presents the 

integrative range of this cascade of uncertainty in estimating return period floods for each catchment using data spanning the 

years 1976-2100. The dominant source of uncertainty differs from catchment to catchment. Climate models, flood frequency 415 

distribution and bias correction techniques tend to be the dominant contributing source of uncertainty in estimating flood 

quantiles. Using the one-at-a-time approach to evaluating uncertainties in flood quantiles, climate model projections in the 

Newport and Blackwater catchments present the dominant source of uncertainty, particularly for higher flood quantiles. 

Notably the relative magnitude of uncertainty in the smaller flood quantiles in the Blackwater catchment is different than for 

larger flood quantiles, with the extreme value distribution becoming dominant at lower flood quantiles. The largest source of 420 

uncertainty in the Slaney is derived from the use of different frequency distribution models. For the Boyne catchment the bias 

correction methods contribute more to the total uncertainty. Therefore, the various steps in the modelling chain contribute 

differently in each catchment to total uncertainty in future flood hazard estimation and in some catchments vary depending on 

the flood quantile of interest (Figure 11).  

 425 

While additive chains may be useful for evaluating individual components of uncertainty, they do not allow identification of 

the interactive components of the uncertainty cascade. We use ANOVA to decompose the contribution of individual sources 

of uncertainty and their interaction in contributing to the total uncertainty in future flood hazard (Figure 12). We evaluate 

changes in 10-year, 50-year and 100-year return period flood for the 2080s (2070-2099) relative to the reference period (1976-

2005). The decomposition of uncertainty is based on the variance in changes of flood quantile values and calculated out of 100 430 

percent, i.e. the sum of all sources is equal to 100. The contribution of each source of uncertainty is not uniform across the 

selected catchments (Figure 12). Taking the example of the magnitude of the 100-year flood (Figure 12 outer band), future 
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flood hazard in the Blackwater catchment for the 2080s is highly sensitive to the climate model used (36.5% of total uncertainty 

in 100-year flood) and respective bias correction methods (20% of total uncertainty). By contrast, future flood frequency in 

the Boyne is more sensitive to bias correction methods (30.0%) and extreme value distribution (25.5%) employed. In the 435 

Boyne catchment, the climate model ensemble accounts for less than one quarter (22.5%) of the uncertainty in simulations of 

the 100-year flood by the 2080s and is comparable in magnitude to the interactive components of the cascade. In the Newport 

catchment the use of different extreme value distributions (36.3%) presents the largest component of uncertainty, followed by 

the climate model ensemble. The results of ANOVA analysis also confirm that the uncertainty resultant from the interaction 

of the key sources considered is not negligible and also varies on a catchment basis. In the Slaney and Blackwater catchments 440 

the interaction of various uncertainty components accounts for 16.8% and 16% of the total uncertainty in estimates of the 100-

year flood by the 2080s. By contrast, interactive components in the Newport and Boyne catchments account for approximately 

one quarter of the uncertainty range (25.2% in the Newport and 22% in the Boyne). Overall, hydrological parameter uncertainty 

is the least dominant source of uncertainty in future flood frequency estimates across each catchment (Figure 11 and Figure 

12). For estimates of the 100-year flood in the 2080s (Figure 12 outer band), hydrological model parameter uncertainty is 445 

typically 5% of the total uncertainty, reaching up to 9% in the Boyne. Furthermore, the contribution of each of the main 

components of uncertainty and their interactions to total uncertainty is broadly similar for the different return periods 

considered for our analysis of the 2080s (Figure 12).  

 

4. Discussion 450 

 

We examined future changes in flooding for four catchments in Ireland, including within our modelling chain the uncertainties 

derived from 12 CMIP6 CMs, five commonly used bias correction techniques, hydrological model parameters and three flood 

frequency distributions. We found that maximum precipitation in all catchments is projected to increase over the coming 

decades, however changes are not uniform across catchments. The largest change in annual maximum precipitation was found 455 

for the Newport catchment, with ensemble median increases becoming progressively larger for the 2020s, 2050s and 2080s 

(27%, 40%, 60%, respectively). In the Slaney catchment, increases in annual maximum precipitation between the 2050s and 

2080s are not statistically significant. In the Blackwater catchment, most of the climate models indicate a positive change but 

these have a wide range of uncertainty relative to other catchments (from 0 to 55% in 2050s and 0 to 60% in 2080s). We find 

projected changes in flood magnitudes to be broadly proportional to changes in maximum precipitation in all catchments. 460 

Projected changes in flood magnitude are higher using the SSP585 and lower using SSP126 climate scenarios. Overall changes 

in precipitation and air temperature are broadly consistent with previous findings using CMIP5 (Broderick et al., 2019) in 

Ireland.  

 

Our findings demonstrate the large uncertainties associated with projected flood magnitudes. Over recent years much research 465 

has sought to explore the dominant sources of uncertainty in climate change impact assessments. Similar studies have identified 
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climate models as being the dominant source (e.g. Sulis et al., 2012; Hattermann et al., 2018). Indeed Addor et al. (2014) 

highlight that there seems to be a general agreement in the literature on the dominant contribution of climate models to the 

uncertainty in discharge projections. In contrast, our findings demonstrate the challenges of generalising about the dominant 

components of the cascade of uncertainty at the catchment scale, important for understanding future flood risk. Using both 470 

additive chains and variance decomposition to examine components of the modelling chain employed, our results show that 

not only does the contribution and importance of different components of the modelling chain vary across catchments, but that 

the dominant source of uncertainty can be completely different. Moreover, the dominant sources of uncertainty vary depending 

on which approach is used to evaluate uncertainty. Using additive chains, in two of our study catchments, the climate model 

ensemble was the dominant source of uncertainty, as was expected. However, for the Boyne and the Slaney, the extreme value 475 

distribution employed for flood frequency analysis and the bias correction method used to adjust raw GCM output contribute 

greater uncertainty to future flood risk than the ensemble of CMs employed. Using variance decomposition allows for the 

interaction of components of the modelling chain to be evaluated and quantified and offers a fuller assessment of uncertainty. 

Our result show that in the Slaney and Blackwater catchments the climate model ensemble used dominated the cascade of 

uncertainty. In the Slaney, the second most important component is the bias correction technique used, while in the Blackwater 480 

the frequency distribution model is the second most important component. In the Newport catchment, the flood frequency 

distribution model ranks as the most important component of the cascade of uncertainty, followed by the climate model 

ensemble. Finally, in the Boyne catchment, the climate model ensemble ranks as only the third most important component of 

the uncertainty cascade in simulating flood quantiles, with the bias correction methods coming first and the flood frequency 

distribution second.  485 

 

We hypothesise that catchment characteristics may influence the dominant components of the cascade of uncertainty in each 

catchment. The Slaney and Blackwater, where climate models dominate, are among the largest in our sample with groundwater 

contributing significantly to runoff in both. In the Blackwater catchment topography has a large bearing on flood response 

time within the catchment with flood peaks moving more rapidly from elevated sub-catchments into the main channel and may 490 

be a reason as to why the flood frequency model ranks as the second dominant component in the cascade of uncertainty.  The 

Slaney catchment drains the southern component of the Wicklow mountains before reaching shallower elevations as it flows 

south through Carlow and Wexford. The variation in topography and hence precipitation from upper to lower reaches may be 

a reason as to why bias correction methods emerge as the second most important component of the uncertainty cascade in this 

catchment. The Newport catchment is the smallest in our sample with flood response influenced more strongly by varied land 495 

use cover (forestry, rotational cropping) and the presence of a lake in the upper reaches of the catchment. The flood frequency 

distribution dominates the cascade, followed by the climate model ensemble used. Finally, the Boyne catchment has been 

heavily influenced by arterial drainage works, resulting in the insertion of field drains and the deepening and widening of the 

river channel (Harrigan et al., 2014). These interventions have resulted in a faster rainfall runoff response. In the Boyne 
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catchment therefore, projected changes in future rainfall are likely to have a more direct bearing on the flood response, with 500 

uncertainty in bias correction and the flood frequency distribution dominating the cascade of uncertainty.  

 

Across each of our catchments and in the context of the modelling chain employed, the uncertainty from hydrological model 

parameters is the smallest component of total uncertainty in the estimation of future flood hazard magnitude. Bastola et al. 

(2011a; 2011 b) identify hydrological model uncertainty as important in a previous assessment of change in flood risk, while 505 

Mizukami et al. (2016) rank hydrological model uncertainty of greater importance than bias correction approaches in US 

catchments. We note that we do not consider hydrological model structure uncertainty in our modelling chain and that our 

decision to select only the top 300 behavioural parameter sets, rather than all those identified may be a factor here. This 

highlights how subjective decisions in the application of hydrological models may have important implications for uncertainty 

in future projections (Melsen et al., 2019). We also find that the contribution to total uncertainty from the interaction of 510 

components within the modelling chain is substantial – up to one quarter of the uncertainty range considered in two catchments.  

 

While uncertainty decomposition may be useful in helping scientists navigate the cascade of uncertainty by prioritising the 

key components of the uncertainty cascade to sample (Clark et al., 2016) for a particular catchment, our small sample makes 

it difficult to determine how catchment characteristics may be informative in identifying the dominant sources of uncertainty 515 

a priori. There are some indications that catchment properties and the characteristics of observed precipitation may influence 

which uncertainties may dominate. Vetter et al. (2017) used variance decomposition to examine the contribution of modelling 

chains (GCM, emissions scenario (in the form of Representative Concentration Pathways (RCPs)) and hydrological model) to 

total uncertainty in different parts of the flow regime. In their study, they examine 12 large catchments globally. While Vetter 

et al. (2017) highlight the dominance of CMs in total uncertainty across many catchments they highlight that the share of 520 

emissions scenario and hydrological model contributions to overall uncertainty can differ between catchments. Similar to our 

findings, Vetter et al. (2017) highlight the importance of interacting components of the modelling chain employed. 

 

As our study has shown, the evaluation of uncertainties and their interaction in future flood risk assessment with climate change 

is a critical step in understanding future impacts and informing adaptation decision making. However, results depend on the 525 

modelling chain employed and the method used to quantify uncertainties. Given the possibility of examining interactive 

components of modelling chain, we recommend the use of ANOVA based techniques to decompose the cascade of uncertainty. 

We highlight however that our modelling chain is not complete and that the work presented here is illustrative rather than 

exhaustive. We do not, for example, include uncertainties in future flood estimates derived from different hydrological model 

structures with previous work, as indicated above, showing that hydrological model structure and complexity may be an 530 

important component of future uncertainties. Other potential sources of hydrological model uncertainty are also omitted. For 

example, we did not evaluate the transferability of parameter sets to represent future rainfall runoff response (e.g. Broderick 

et al. 2016), nor did we evaluate the influence that selection of different objective functions may have on the identification of 
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behavioural parameter sets. Westerberg et al. (2020) also highlight the potential importance of uncertainty in the discharge 

data used to calibrate hydrological models. In assessing different flood quantiles, we use only 30 years of annual maxima to 535 

extrapolate to return periods outside our record length. Such extrapolations should be treated cautiously but are prevalent in 

many studies (e.g. Alison L. Kay et al., 2006; Lawrence, 2020; Meresa and Romanowicz, 2017) while rarer floods are also 

associated with design standards (e.g. 100-year flood) and therefore of interest to decision makers. We also assume that flood 

processes remain stationary within the 30-year windows used to evaluate changes, while other factors that can influence rainfall 

runoff response, such as land use change, remain unchanged from the calibration period used to train our hydrological models.  540 

 

5. Conclusions  

This study evaluates changes in future flood magnitude with climate change for four Irish catchments using a modelling chain 

incorporating 12 CMs comprising the CMIP6 ensemble, 5 bias correction techniques, hydrological model parameter 

uncertainty and the use of extreme value distributions. Our findings suggest increasing flood hazards over the coming decades 545 

in all catchments, with changes in flooding largely consistent with changes in maximum precipitation. However, uncertainties 

in future flood changes are large and increase with time and flood quantile. Using ANOVA, we decompose uncertainties in 

future flood quantiles to examine how individual components of our modelling chain and their interactions contribute to overall 

uncertainty. Our results show how the dominant sources of uncertainty may vary on a catchment basis, highlighting the 

inability to generalise on the dominant components of uncertainty across catchments. Across all four catchments the climate 550 

models, bias correction methods and the extreme value distributions used to evaluate flood return periods were differentially 

dominant, while the uncertainty derived from the interaction of various components was substantial in all catchments. Our 

work shows the value of ANOVA methods in visualising and quantifying the uncertainty cascade at a catchment level which 

will be helpful in navigating the uncertainties associated with future flood risk for better adaptation decision making. Whil e 

our sample is small, the dominant components of uncertainty in future flood risk may be related to catchment characteristics. 555 

We therefore recommend that future work seeks to better understand the link between the key components of the cascade of 

uncertainty and catchment characteristics. Ability to do so would offer considerable advantages in knowing a-priori which 

sources of uncertainty should be targeted as priority. 
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Figure 1. Research flow chart to estimate projections of flood hazard and identify associated uncertainty   
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Figure 2. Location of the selected study catchments. 780 
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 785 

Figure 3 Comparison of corrected annual maximum daily precipitation using five bias correction methods and observed annual 

maximum precipitation using a) Pearson correlation coefficient (RR), b) Percent Bias (PBIAS) and c) Mean Absolute Error 

(MAE). The y-axis indicates each of 12 CMIP6 climate models and the x-axis represents each of 5 climate bias correction 

method. 
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Figure 4 Comparison of raw and bias corrected simulations from 12 CMIP6 GCMs with observed maximum daily 

precipitation in each month for each of our four study catchments. Each row presents results of one of five bias correction 795 

techniques (top row - Birnbaum Distribution (BSM), second row-Change Factors (CF), third row- Double Quantile Mapping 

using Gamma Distribution (DGQM), fourth row-Empirical Quantile Mapping using Simple Interpolation (EQM), fifth row- 

Single Quantile Mapping using Gamma Distribution (SGQM), and the last row is the raw GCMs output). In each panel the 

grey shaded region represents the spread of 12 GCM simulations, with blue line being the observed maximum precipitation.  
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Figure 5. Scatter plots of change in maximum annual daily precipitation as simulated by 12 CMIP6 GCMs (each dot) corrected 805 

using each of the five bias correction techniques for three SSP scenarios for the 2050s (2040-2069) and 2080s (2070-2099). 

The dark blue circle represents SSP126, light blue represents SSP370 and dark green represents SSP585. 
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Figure 6. Observed and simulated monthly maximum daily flows (m3/s) using GR4J behavioural parameter sets for the 810 

reference period (1976-2005). The black line and shaded area represent the median and 95 percent confidence interval of 

simulated flows, respectively, the red dot represents observations. Boxplots show the spread in NSE scores for behavioural 

parameters sets in each catchment.   

 

 815 

Figure 7. Hydrological model parameter uncertainty in simulating the annual maximum daily flow in each catchment using 

the best 300 parameter sets for each climate model for the reference period (red), the 2020s (green), 2050s (blue) and 2080s 

(black) under SSP370 scenario and DGQM bias correction method.  
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 820 
   
Figure 8. Matrix of projected percent changes in annual maximum daily flow for the 2020s (2010-2039), 2050s (2040-2069), 

and 2080s (2070-2099) for SSP126, SSP370 and SSP585 in each catchment with respect to the reference period (1976-2005). 

Each box plot represents the spread of 12 GCMs for each of the five bias correction techniques as simulated using behavioural 

model parameter sets. Marked for each boxplot are the median and 0.25 and 0.75 quantiles. The red dots are outliers (changes 825 

above 200%).   
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Figure 9. Comparison of flood quantiles estimated using three flood distribution models (LogL, GEV and LN) fitted to 

projected annual maxima series derived from 12 GCMs bias corrected using the DGQM method.  The shaded region indicates 

the 95% confidence interval of annual maximum projections from 12 GCMs under SSP370 scenario over the full projection 830 

period (1970-2100 period) in each catchment.  
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Figure 10. Percent changes in extreme flow quantiles using ensemble mean of three distribution types, 12 GCMs and 300 

parameter sets in each catchment for the 2020s (red), 2050s (blue) and 2080s (green). Simulated changes are derived using 

raw (bottom row) and bias corrected (the first four rows) simulations.  
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 885 

Figure 11. Total uncertainty in flood frequency curve using 12 CMIP6 GCMs (CM), 5 bias correction methods (BC), 300 

behavioural parameter sets (HP) and 3 extreme value distributions (DM). Shaded areas represent the 95 percent confidence 

interval for each component in the modelling chain while the dotted line stands for their respective median values. The curves 

are fitted to annual maximum time series derived for 1976-2100. 
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 895 
Figure 12. Contribution of each component of the modelling chain, together with their interaction, to the range of simulated 

changes in flood hazard magnitude for the 2080s (2070-2099) relative to the reference period (1976-2005). Sources considered 

include 12 CMIP6 climate models (CM), 5 bias correction techniques (BC), hydrological model parameter uncertainty (HP) 

and 3 extreme value distribution models (DM). The outermost circle/donut represents the flood quantile change at return period 

(RP) of 100 years, the middle circle RP of 50 years and innermost circle RP of 10 years for the 2080s. Percent changes are 900 

annotated for the outermost circle (100-year flood).  
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Table 1. Statistical and hydro-climatic characteristics of each study catchment.    

 

 920 

  Boyne Blackwater Slaney Newport 

Latitude [degree] 53.60 52.14 52.80 53.95 

Longitude [degree] -6.96 -8.94 -6.61 -9.44 

Catchment Area [km2] 2447.36 1257.20 1032.68 146.02 

Mean Elevation [m] 70.00 116.00 107.00 56.00 

Mean of annual max precipitation [mm] 28.58 39.17 38.23 41.69 

Mean of annual max streamflow [m3/s] 232.22 233.59 137.39 24.26 

lower quantile of precipitation (P85) [mm] 0.01 0.02 0.01 0.04 

higher quantile of precipitation (P15) [mm] 5.46 8.25 6.60 9.95 

Low flow (Q95) [m3/s] 4.67 4.47 4.10 0.81 

Peak flow (Q5) [m3/s] 106.22 105.40 53.30 16.20 

Coefficient of Variance of streamflow [-] 37.97 23.79 30.92 18.07 

Coefficient of Variance of precipitation [-] 29.34 24.68 30.86 33.17 

Base flow index [-] 0.72 0.62 0.73 0.69 

Mean of surface runoff [m3/s] 10.21 13.14 5.77 1.86 

Mean of base flow [m3/s] 26.85 21.78 15.58 4.19 
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Table 2 List of CMIP6 climate models employed in this study 

 

Code Institute  Parent source Id   Institution Id   

CM1 

Commonwealth Scientific and Industrial Research 

Organisation, Australia ACCESS-CM2 CSIRO 

CM2  Beijing Climate Center, China BCC-CSM2-MR BCC 

CM3 National Center for Atmospheric Research, USA CESM2 NCAR 

CM4 European: EC-EARTH consortium EC-Earth 

EC-EARTH 

consortium 

CM5 Global Fluid Dynamics Laboratory, USA GFDL NOAA-GFDL 

CM6 Met Office Hadley Centre, UK HadGEM3-GC31-LL MOHC 

CM7 JAMSTEC, AORI, NIES, and R-CCS, Japan MIROC6 MIROC 

CM8  Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR MPI-M 

CM9  Meteorological Research Institute, Japan MRI-ESM2-0 MRI 

CM10 

 Nanjing University of Information Science and 

Technology, China NESM3 NUIST 

CM11 NorESM Climate modeling Consortium, Norway NorESM2-LM NCC 

CM12 Met Office Hadley Centre, UK UKESM1-0-LL MOHC 

  940 

 

 

 

 

 945 

 


