Response to the Editor

Dear Authors,

| would like to thank your responses. It would be useful to upload the revised manuscript, and a ver-
sion with tracked changes. BTW, although sticking to the probabilistic evaluation is ok, the comments
on CC might be biased. It is a commonly used metric for assessing predictive skill both in meteorology

and hydrology.
Looking forward to your revision.

Regards
Xing Yuan

Dear Xing,

Thank you for inviting us to revise our manuscript. We sincerely apologise for the delay and hope that
our revisions are satisfactory. We are sticking to the probabilistic evaluation, though we disagree with
the contention that our comments on the use of the correlation coefficient are biased. Please find
below our original response to referee comments with relevant changes in the manuscript indicated

in red text. Line numbers refer to the tracked changes document.

Regards,

Sean Donegan



Response to Anonymous Referee #1

Referee comments are labelled consecutively (e.g., R#1-1 is comment 1) and given in blue text.

The authors apply the ensemble streamflow prediction (ESP) and conditioned ESP to quantify the pre-
dictability across time scales over different catchments in Ireland by hydrological model. In this work,
they find that the prediction based on memory of initial hydrological condition is skillful up to several
months, especially in summer. In addition, the skillful prediction of North Atlantic Oscillation (NAO) is
benefit to the hydrological prediction in winter. Overall, this manuscript is well prepared and orga-

nized. | only have the following minor suggestions.

We thank the referee for their constructive review of our manuscript. Please find our point-by-point

response below.

R#1-1. Besides the CRPSS, NSE and ROC, the correlation coefficient (CC) is an important index. There-
fore, | think you should also provide the CC in your analysis, such as the relationship between obser-

vation and simulation.

We recognise that the correlation coefficient (CC) is a common verification metric in hydrometeoro-
logical forecasting; however, we do not believe a deterministic analysis of this nature is necessary in
a paper whose overarching focus is the evaluation of a probabilistic forecasting system. Our choice of
the continuous ranked probability skill score (CRPSS) was informed by the ensemble forecasting liter-
ature. It is for most cases the recommended evaluation method for ensemble hydrological forecasts
and it features prominently in official reports and peer-reviewed research (Pappenberger et al., 2015).
Furthermore, it is well-known that fundamental deficiencies in the CC limit its usefulness for evaluat-
ing forecasts. Among these are its sensitivity to outliers and its insensitivity to additive and propor-
tional differences between model predictions and observed data (Moriasi et al., 2007). This may lead
to a substantial overestimation of forecast performance (Murphy, 1988). To illustrate this, we con-
ducted an assessment of ESP skill using the CC. However, as the CC and the CRPSS are not directly
comparable, we also calculated the mean absolute error skill score (MAESS) as an additional measure
of deterministic performance. The MAESS is the equivalent of the CRPSS for a single-valued forecast
and differences between these metrics can therefore be attributed to the use of the probabilistic en-

semble. Our findings are presented in Fig. S1 (below).



(a)1.00

0.75 1

0.50 1

Mean

0.25 1

0.00 1

OMn 1Mn 2Mn 3Mn 4Mn 5Mn 6Mn 7Mn 8Mn 9Mn 10Mn 11Mn 12 Mn

(b) Jan Feb Mar Apr
1.004
0.751
0.50 1
0.25 1
0.00F -------- === ------oo oo SRe oo ey
Jul

1.001
0.75 1

S 0.50 1

(0]

= 0.251

0.00 1
Sep Oct Dec
1.004
0.751
0.50 1
0.25 1
0.00 4 - -¥- - =——————m - - - r--
OMn ' SMn 'Ol;/ln ' SMn 'OI'VIn I SMn IOMn ' SMn '
4 Mn 12 Mn 4 Mn 12 Mn 4 Mn 12 Mn 4 Mn 12 Mn
Lead time
=—— CRPSS —— MAESS —— CC



Figure S1. Comparison of mean CRPSS, MAESS, and CC values at each lead time across: (a) all catch-
ments and initialisation months, and (b) all catchments for each of 12 initialisation months, January to
December.

Whilst the CRPSS and the MAESS are almost indistinguishable, the CC is systematically higher (lower)
than both for skilful (unskilful) forecasts. For example, at a 1-month lead time, across all catchments
and initialisation months, mean (5™ and 95™ percentile, not shown) CRPSS is 0.18 (0.03, 0.42), MAESS
is 0.18 (0.02, 0.39), and CCis 0.5 (0.18, 0.75). Similar is observed for individual initialisation months. A
comparison of the CRPSS and MAESS shows, however, that it cannot be concluded based simply on a
high (low) CC alone that the ensemble mean is more (less) skilful than the full ensemble. Indeed, it is
possible to have a forecast that is highly correlated with the observations, but with sufficiently severe
bias that it has no practical use (Wilks, 2019). It is also worth noting that the choice of metric does not

change our conclusions regarding the spatiotemporal distribution of ESP skill.

In light of the above, we would prefer to omit the CC from our analysis for the following reasons. First,
it does not reveal anything about forecast performance, temporally or spatially, that is not already
evident from the other verification metrics employed. Second, we would like to avoid potential mise-
valuation of forecast skill arising from differences in magnitude between the CRPSS and CC. Finally, an
unbiased CC analysis would require us to detrend all of our time series. We are unsure what effect, if

any, this would have on the results from persistence-based forecasting methods such as ESP.

As indicated, we prefer not to include the correlation coefficient in our paper. We have added analysis
on forecast reliability using the PIT score as requested by R#2. This has extended our manuscript and
we feel that adding the CC would increase the complexity of our work which we believe has been

significantly improved by the review process.

R#1-2. Why do you divide the 46 catchments into 8 regions? The Figure 5 also can be plotted as the

Figure 10, or the Figure 10 can be arranged as the Figure 5?

We divide the 46 catchments into 7 regions (‘IE’ in Fig. 5 is the whole of Ireland and included only for
comparison purposes) to facilitate spatial analysis and aid in the interpretation of the results. A key
research aim (p. 4, L#88) was to identify where ESP was skilful, at both regional and catchment scales;
however, we also wanted to investigate if performance differed between regions with contrasting
hydroclimate characteristics. This latter point is not explicitly stated and will be made clear in the final
version of the manuscript. We used the European Union’s NUTS lll regions both for consistency with
Foran Quinn et al. (2021), who employed the same designation in their evaluation of persistence fore-
casts for Ireland, but also because no work has been done to create clearly defined Irish hydroclimate

regions. Whilst the NUTS Il regions do not inherently lend themselves to hydrological analysis, we



note that grouping the catchments in this way did yield regions that were diverse in terms of their
hydrological and climatological characteristics. This is clear from Table 2, but we propose amending

Sect. 2.1 to make this more apparent by including summary statistics directly in the text.

We would prefer to keep Fig. 5 and Fig. 10 as they currently are. The purpose of Fig. 5 is to provide a
broad overview of regional skill. Hence, we plot only regional averages for a selection of key lead times
commonly used in seasonal forecasting. Redrawing Fig. 5 with all catchments and/or lead times would
create an unnecessarily complex figure not suitable for what we are trying to convey in this section.
Furthermore, the spatial distribution of skill at the individual catchment scale is already covered in Fig.
6 for specific lead times and initialisation months. Figure 10 supports a key conclusion of the paper:
that NAO-conditioned ESP extends the lead time over which skilful forecasts of low and high flows can
be made and is thus a useful tool for predicting anomalously wet or dry winters. We feel rearranging

Fig. 10 to be similar to Fig. 5 would downplay how significant these improvements are.

We have revised the manuscript to clarify our decision to divide the catchments into different regions

(L#108-14).

R#1-3. You should explain the conditioned ESP in more details to ensure reproducibility. For example,
you didn’t explain that what the ‘17’ is in the Line 193. In your work, the conditioned ESP is able to
improve the skill significantly over many catchments in Ireland. In addition to conditioned ESP, the
post-ESP is another prediction method, which involves the information from initial hydrological con-
dition and internal climate variability as well (Yuan & Zhu, 2018). You can compare the impacts of

these two methods on the improving of prediction skill.

To condition the ESP method, we begin with a 51-member ensemble of raw NAO predictions from
GloSea5. These predictions consist of monthly NAO values for each winter (DJF) period between
1993/94 and 2015/16. To remove the signal-to-noise discrepancy found in the raw ensemble, the pre-
dictions are adjusted following the method of Stringer et al. (2020). The adjusted monthly values are
used to select 10 non-sequential DJF analogues (e.g., December 2007, January 1980, February 2011)
where the mean observed seasonal NAO approximates the mean adjusted seasonal NAO hindcast.
This yields a 510-member ensemble of analogue date sequences which are then used to sample ob-
served precipitation and potential evaporation for input to the hydrological model. We believe this is
adequately explained in the text; however, we will make it clear that readers should refer to Stringer
et al. (2020) for a more detailed description of the adjustment procedure and the selection of ana-

logue dates.



The 51-member GloSea5 ensemble is a lagged ensemble created by combining three separate initial-
isations each of which has 17 ensemble members. This is what the ‘17’ on L#193 refers to. For clarity,
we will change L#192-3 to the following: “For each DJF period between 1993-2015, we combined
GloSea5 hindcasts initialised on 1, 9, and 17 November, each with 17 ensemble members, to create a

51-member lagged ensemble of raw NAO predictions.”

We thank the referee for suggesting a comparison of NAO-conditioned ESP, as we present it in this
manuscript, and a post-processed ESP similar to that used by Yuan and Zhu (2018). This is an important
area of research and such comparisons contribute much needed understanding as to the most effec-
tive methods for incorporating seasonal climate information into hydrological forecasts. However, we
believe it is ultimately outside the scope of this paper and should instead be addressed in future work.
Nevertheless, we would like to acknowledge Yuan and Zhu (2018) in our manuscript. Whilst differ-
ences in study design do not allow for a direct comparison of results, we will include a reference to
this paper in our introduction (p. 3, para. 3) as an additional example of how climate information can
be used to improve ESP forecasts. We will also edit Sect. 4.5 to highlight this avenue for further re-

search suggested by the referee.

We have revised the manuscript to clarify that we are using a lagged ensemble (L#206-8) and we now
direct interested readers to Stringer et al. (2020) for more details on the hindcast adjustment proce-
dure and the selection of analogue dates (L#217-18). We have added a reference to Yuan and Zhu
(2018) in our introduction (L#77-8) and updated Sect. 4.4 to note post-processed ESP as an alternative

to the conditioning approach we used here (L#509-13).

R#1-4. Your work represents the skill of conditioned ESP performs better than the ESP over many
catchments. However, the information of NAO reduces the skill in a few regions where the ESP is
skillful, especially at 3-month lead, such as the three catchments in East region. This is an interesting

phenomenon, you should discuss it.

We agree that this is an interesting phenomenon. Reductions in skill from NAO-conditioned ESP are
observed for 12 catchments in total, and only at a 3-month lead time. We feel it is important to note,
however, that these reductions are very minor and that the performance of both historical and con-
ditioned ESP at this lead time can be defined within the limits of what Bennett et al. (2017) refer to as
‘neutral skill’ (+0.05 CRPSS). Thus, despite some degradation in the CRPSS, the NAO-conditioned ESP
does not perform considerably worse than the historical ESP overall. We observe that skill decreases
with lead time in these catchments, whereas skill was shown to increase with lead time in others. We
believe this is due to differences in the relative contribution of initial hydrological conditions and me-

teorological forcing to ESP skill. Of the 12 catchments considered here, the majority of them are
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characterised by high baseflow contribution (BFI > 0.5) and long recession times. Hence, hydrological
response is controlled predominately by the slow release of water from reservoirs and initial condi-
tions act as the primary source of skill. The combination of initial conditions and subsampled climate
information grants modest improvements in skill up to a 1-month lead time. However, at longer lead
times, improved atmospheric representation alone cannot compensate for divergences from the ini-
tial state. Skill deteriorates as a result, eventually becoming negative. We see the opposite in flashy
catchments with low storage capacity, where rainfall events propagate to streamflow at a much faster
rate and memory of initial conditions is lost quickly. Knowledge of meteorological forcing plays a more
important role and the greatest benefits from conditioning the ESP method emerge at longer lead
times when the NAO signal is less obscured by noise. It would be possible to confirm this by quantifying
the contribution of each source of skill using an ESP and reverse ESP approach (e.g., Wood and Let-
tenmaier, 2008), but that is outside of the scope of the present study. We will include this additional

discussion in Sect. 3.6 in the final version of the manuscript.

We have restructured Sect. 3.7 to address this degradation in performance and more clearly discuss

the relative contribution of initial conditions and meteorological forcing to forecast skill (L#358—84).

R#1-5. Many previous works show that the memory of initial hydrological condition in winter is more
important because the snow cover plays a key role in seasonal streamflow forecast. However, you get

a different conclusion in the work. You should discuss the difference.

Snow is not known to make a substantial contribution to precipitation in Ireland. To illustrate this, we
adopted a simple method from Berghuijs et al. (2014) to calculate the mean fraction of precipitation
falling as snow (Fs) for each catchment between 1992 and 2017. Precipitation on days with an average
temperature below 1°C is considered to be entirely snowfall, whereas on days with an average tem-
perature greater than or equal to 1°C, precipitation is considered to be entirely rainfall. No catchments
were found to have a significant amount of snowfall (FS >0.15), with a median (5" and 95" percentile)
FS of 0.008 (0.004, 0.01) across the sample. We will include this information in the final version of the
manuscript and explicitly state that snow is not a major driver of hydrological response in Ireland.
Snow cover and snow melt therefore do not play a significant role in seasonal streamflow forecasting

in an Irish context.

We have added this information to Sect. 2.1 (L#134—8) and to Table 2 and Table S1. Please note that

the values of F; given in the original response were incorrect due to an error in the calculation. This

has been fixed in the manuscript.



R#1-6. Each panels in your figures should be labeled.
We will ensure all figures are appropriately labelled in the final version of the manuscript.

We have redrawn our figures to improve overall presentation and consistency. We have used faceting

to make clear what is shown in each figure panel.



Response to Anonymous Referee #2

Referee comments are labelled consecutively (e.g., R#2-1 is comment 1) and given in blue text.

This paper has presented an investigation of ensemble streamflow prediction (ESP) for 46 catchments
in Ireland. The GR4J model is employed to formulate the rainfall-runoff relationship and perform
streamflow forecasting. The forecast skill is evaluated and then related to a range of catchment at-
tributes, e.g., base flow index, flashiness index, and runoff ratio. The results show that skillful forecasts
are generated using ESP and that the skill can be attributed to catchment attributes and North Atlantic
Oscillation (NAQ). Overall, the paper is well-written with the methods and results clearly presented.

There are a few comments for further improvements of the paper.

We thank the referee for their constructive review of our manuscript. Please find our point-by-point

response below.

R#2-1. First, reliability is an important feature of ensemble forecasts. Specifically, reliability indicates
the agreement between forecast probability and mean observed frequency. For streamflow forecast-
ing, attention is usually paid to high- and low-flow events. Therefore, it would be meaningful to show
whether ensemble forecasts generated by ESP yield reliable probabilistic forecasts of high- and low-

flow events at different lead times.

We agree that reliability is an important consideration when evaluating ensemble hydrological fore-
casts. To address this, we will include an additional verification metric, the probability integral trans-
form (PIT) diagram (Gneiting et al., 2007) as a means of assessing the reliability of high- and low-flow
forecasts. The PIT diagram is the cumulative distribution of the PIT values, which measure the position
of the observations relative to the forecast distribution. For a perfectly reliable forecast, the observa-
tions will fall uniformly within the forecast distribution and the PIT diagram will correspond to the 1-
to-1 diagonal. Forecasts that systematically under- (over-) predict will have a PIT diagram below
(above) the diagonal, whereas under- (over-) dispersive forecasts will have a transposed S-shaped (S-
shaped) PIT diagram (Arnal et al., 2018). For comparison on large datasets, the area between the PIT
diagram and the 1-to-1 diagonal can be calculated to provide a numerical measure of reliability. This
can further be converted to a skill score for ease of interpretation (Arnal et al., 2018; Crochemore et
al., 2017). We believe incorporating the PIT diagram into our manuscript will complement our use of

the ROC score and help improve our overall analysis.

We have added reliability analysis to our manuscript (Sect. 2.4.2, Sect. 3.5, Sect. 3.7) as requested by

the referee. This has been a useful addition, thanks for the recommendation.



R#2-2. Second, there recently is an interesting paper on the influence of NAO on flooding and drought
over Europe (Changes in North Atlantic atmospheric circulation in a warmer climate favor winter
flooding and summer drought over Europe, E Rousi, F Selten, S Rahmstorf, D Coumou, Journal of Cli-

mate, 2020). This paper can offer some climatological insights when relating forecast skill to NAO.

Thank you for bringing this paper to our attention. We will review its contents and revise our manu-

script accordingly to include any additional insight it may provide.

We would like to thank the referee again for recommending this paper. However, we did not see a
direct relevance beyond the papers already included. It is certainly useful to other research we are

doing.
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