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Abstract. A common parameter in hydrological modeling frameworks is root-zone water storage capacity (SR[L]), which

mediates plant-water availability during dry periods and the partitioning of rainfall between runoff and evapotranspiration.

Recently, a simple flux-tracking based approach was introduced to estimate the value of SR (Wang-Erlandsson et al., 2016).

Here, we build upon this original method, which we argue may overestimate SR in snow-dominated catchments due to snow

melt and evaporation processes. We propose a simple extension to the method presented by Wang-Erlandsson et al. (2016),5

and show that the approach provides a lower estimate of SR in snow-dominated watersheds. This SR dataset is available at 1

km resolution for the continental United States, along with the full analysis code, on Google Colaboratory and Earth Engine

platforms. We highlight differences between the original and new methods across the rain-snow transition in the Southern Sierra

Nevada, California, USA. As climate warms and precipitation increasingly arrives as rain instead of snow, the subsurface may

be an increasingly important reservoir for storing plant-available water between wet and dry seasons; improved estimates of10

SR will therefore better clarify the future role of the subsurface as a storage reservoir that can sustain forests during seasonal

dry periods and episodic drought.

1 Introduction

Root-zone water storage capacity (SR[L]) quantifies the maximum amount of subsurface water that can be stored for use

by vegetation. This ecohydrological parameter plays a central role in the determination of plant community composition and15

drought resilience (Hahm et al., 2019a, b), runoff generation mechanisms (Botter et al., 2007; Salve et al., 2012), landslide

triggering (Montgomery and Dietrich, 1994), landscape evolution (Deal et al., 2018), and the partitioning of precipitation into

evapotranspiration and runoff (Porporato et al., 2004). Practically, in situ measurement of SR at large spatial scales is infeasi-

ble, leading to the development of various methods for estimating SR using remote sensing and model inversion approaches

(de Boer-Euser et al., 2016; Gao et al., 2014; Wang-Erlandsson et al., 2016; Dralle et al., 2020). Although high-resolution maps20

of soil plant-available water storage capacity exist (Reynolds et al., 2000), such maps incompletely describe the water used by

plants. This may be because plants are unable to access the full reported depth of the soil column, or because plants access
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water stored at depths below soil (Dawson et al., 2020; Schwinning, 2010). For example, roots can extend into and draw water

from the bedrock vadose zone (rock moisture, sensu Rempe and Dietrich, 2018; Hahm et al., 2020) or groundwater (Miller

et al., 2010; Lewis and Burgy, 1964). Within seasonally dry environments in particular, a significant volume of water accessed25

during the growing season can be derived from depths below mapped soils (Rose et al., 2003; Jones and Graham, 1993; Arkley,

1981). We emphasize that an accurate representation of SR therefore should include not only moisture available within the soil,

but also plant-accessible water below the soil, which may include unsaturated moisture in weathered rock or groundwater.

SR does not, however, include snowpack, which is an above-ground water storage reservoir. Correctly estimating SR in

systems that currently receive a significant proportion of their precipitation as snow is particularly important given the ongo-30

ing shift from snow to rain under a warming climate (e.g. Knowles et al., 2006), and the attendant heightened significance

of subsurface water storage dynamics to plant ecosystems and streams. An existing, widely-used method for estimating SR

(Wang-Erlandsson et al., 2016) does not account for snowpack, which we show may result in overestimation of SR. Here,

we present an extension to the original method to account for snow in calculating SR. We describe the method details and

highlight results from a rain-snow transition transect in the Southern Sierra Nevada, California, USA. We also provide a35

geotiff raster map of SR across the continental United States at the 1 km pixel scale. Finally, we link to a Google Earth En-

gine (https://earthengine.google.com/) script written in Python (https://www.python.org/) within the Colab coding environment

(https://colab.research.google.com/) to document application of the method, and to facilitate comparative analyses using other

widely available and spatially distributed precipitation, snowcover, and actual evapotranspiration datasets.

2 Method40

To estimate SR, Wang-Erlandsson et al. (2016) compute a running root-zone storage deficit (more positive means larger ca-

pacity in the subsurface for moisture storage) using differences between fluxes exiting (Fout) and entering (Fin) the root zone

during a given time interval (typically equal to the sampling period of the remotely sensed evapotranspiration dataset). Typi-

cally, Fin and Fout are set equal to precipitation (P ) and evapotranspiration (ET ), respectively. However, to obtain a robust

lower bound estimate of SR, it is important to make sure that Fin is not underestimated (when in doubt, assume all precipi-45

tation enters the rooting zone), and that Fout is not overestimated (when in doubt on the amount of Fout that contributes to

increases in the root zone storage deficit, simply set Fout = 0). This is a general strategy also employed by Wang-Erlandsson

et al. (2016). In particular, the method occasionally enforces zero values for Fout and Fin to ensure that deficit calculations

are not over-estimated in light of uncertainty in the timing or magnitude of fluxes; this is not equivalent to assuming that these

fluxes are zero. For example, Wang-Erlandsson et al. (2016) set runoff/leakage fluxes from the root zone to zero, not because50

runoff/leakage do not occur, but because the magnitude and timing of these fluxes are difficult to estimate with remotely sensed

data products.
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The original storage deficit tracking (and subsequent estimation of SR) procedure presented by Wang-Erlandsson et al.

(2016) is achieved through two steps. First, over a given time interval tn to tn+1, the accumulated difference (Atn→tn+1
)

between Fout and Fin is calculated as:55

Atn→tn+1
=

tn+1∫
tn

Fout−Findt. (1)

Here, since the root-zone storage deficit is being calculated (and not actual storage), the incoming and outgoing fluxes have

opposite signs from a conventional mass balance (outgoing fluxes minus incoming fluxes for deficit calculations, as opposed

to incoming fluxes minus outgoing fluxes for storage). A lower bound on the root-zone storage deficit at each time interval can

then be calculated as the maximum value of 0 and the running sum of these accumulated differences:60

D(tn+1) = max
(
0,D(tn)+Atn→tn+1

)
(2)

Finally, SR is estimated as the maximum observed value of D.

The potential inaccuracies introduced by this original method that we explore here are that, during periods when snowpack

is present within the pixel, Fin may be non-zero due to melting snow entering the rooting zone, for example, or Fout from

the root zone may be overestimated (due to attribution of sublimation/evaporation from the snow surface to a flux from the65

subsurface). As discussed above, both of these possibilities may lead to overestimation of SR.

In the absence of spatially and temporally resolved information about snowmelt and sublimation dynamics, a simple way

to correct for these potential errors is to continue to decrease the storage deficit as incoming precipitation arrives, and to set

Fout = 0 during periods when snow cover (C, the fraction of the pixel covered in snow, which is reliably measured at large

spatial scales via satellites) is present, thereby not counting evapotranspiration towards increasing the storage deficit during70

snowy periods. We therefore introduce a correction term for the outgoing flux in the calculation of the accumulated difference

between outgoing and incoming fluxes during each time interval:

Atn→tn+1 =

tn+1∫
tn

(1−dC −C0e) ·Fout−Fin dt (3)

where C0 is some threshold below which it is assumed that snow cover is negligible, and d·e is the ceiling operator (rounding

up to the nearest integer), returning a 1 if C > C0 and 0 if C ≤ C0. The expression therefore effectively sets Fout = 0 whenever75

snow is present (or deemed not-negligible) in the pixel, providing a lower-bound estimate of SR in the running storage deficit

calculation.
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2.1 Algorithm implementation and datasets

We implement the original and snow-corrected algorithm developed here using Google Earth Engine, accessed via a Google

Colab notebook and the Python programming language’s Earth Engine application programming interface. This readily en-80

ables i) access to distributed timeseries of hydrological products (i.e., snowcover, evapotranspiration, and precipitation); ii)

computation in the cloud and iii) a shareable script that can be quickly modified and executed by new users (see link at end of

manuscript).

The algorithm requires precipitation and evapotranspiration datasets to compute Fin and Fout, and a snow cover dataset to

implement the proposed snow-correction step. We use Oregon State’s PRISM daily precipitation product (https://developers.85

google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d) (Daly et al., 2008, 2015), available at 2.5 arc

minute resolution. For evapotranspiration, we use the cloud-corrected Penman-Monteith-Leuning Evapotranspiration V2 prod-

uct (https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2)(Zhang et al., 2019; Gan et al., 2018),

available at an 8 day timestep and 500 m resolution, and sum the vegetation transpiration, interception, and soil evaporation

bands to calculate total evapotranspiration. For the snowcover dataset, we use the Normalized Difference Snow Index (NDSI)90

snow cover band from the 500m MODIS/Terra data product (https://developers.google.com/earth-engine/datasets/catalog/

MODIS_006_MOD10A1) (Hall et al., 2016), and set C0 = 0.1 (snow cover is assumed negligible at less than C0 = 10%

pixel coverage; in this case, C0 = 10% is also the minimum non-zero value of the underlying snow cover dataset). We restrict

our analysis to the temporal intersection of these three datasets (the root zone storage deficit is tracked continuously from

the 2003 to the 2017 water year), reproject into WGS84 (EPSG:4326), and resample pixels using nearest-neighbor to a 32.3495

arc-second pixel scale (approximately 1 km).

We mask out pixels from our analysis where we anticipate our method will fail to accurately estimate SR, namely urban areas,

open water, and croplands (which are typically subject to irrigation). To generate this mask, we use the ‘LC_Type1’ band from

the 2001 year of the MODIS MCD12Q1 v6 landcover product (https://developers.google.com/earth-engine/datasets/catalog/

MODIS_006_MCD12Q1) (Friedl and Sulla-Menashe, 2015). In some areas (e.g., deserts), dataset errors or unaccounted-for100

inter-pixel flow result in unrealistic SR estimates, as described by Wang-Erlandsson et al. (2016). In the case that inter-pixel

flow results in a net contribution to the root-zone, estimates of SR in our (and the original) method may not represent true

lower bounds. At present, however, there are few if any methods for reliably measuring such inter-pixel fluxes at large scales,

let alone for determining whether vegetation has access to these fluxes. Wang-Erlandsson et al. (2016) suggest a potential

correction technique for this issue by adding the long term average difference ET −P (where it is positive) to Fin. However,105

we choose to remove these areas entirely from our data product by masking out pixels where cumulative evapotranspiration

over the study period exceeds cumulative precipitation. If needed, this correction method implemented by Wang-Erlandsson

et al. (2016) can easily be added to the code notebook published alongside this manuscript.

Finally, to provide an example of the impact of the method, we focus on the western slope of the Sierra Nevada in Cali-

fornia, United States, where elevations range from approximately 100 m to 4000 m, driving strong gradients in mean annual110

temperature (-1.5 ◦C to 17.5 ◦C, PRISM Climate Group (2017)), mean annual precipitation (120 mm to 1500 mm, PRISM
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Climate Group (2017)), vegetation cover (oak savanna at low elevations to mixed-conifer forest at high elevations) and annual

maximum snow cover (0% to 100%).

3 Results

Figure 1 illustrates three raster data layers in the Sierra Nevada focus region derived from application of the new method.115

Figure 1a plots root-zone storage capacity calculated using the snow-correction method. Values range from near 0 mm over

exposed bedrock outcrops in the High Sierra, to over 900 mm in the dense mid-elevation forests. Figure 1b shows the difference

between SR computed using the original method and the snow-corrected SR. Figure 1c plots average winter (January through

April) snow cover. As expected, the difference in Figure 1b is small in the lower, rain-dominated elevations, and larger in areas

with snow cover. However, some areas with substantial snow cover show small differences between the methods. These are120

likely areas where root-zone storage capacity is small, coinciding with exposed-bedrock locations at high elevations.

Figure 2 illustrates the full timeseries output of the snow-accounting and original methods at two locations, identified by

white points in Figure 1. The location farther west is a ‘low snow’ location, with negligible snowfall (snow present less than

1% of the time) during the winter months, and the location to the east is a ‘high snow’ location, with snowcover present over

50% of the time during the winter months. Gray shading in all subplots indicates that greater than 10% of the pixel is covered125

in snow at that time point, during which evapotranspiration is set to zero in our method (lower panels). The top panels of

Figure 2 plot storage deficits using the original and the snow-accounting methods, clearly demonstrating the divergence of

deficit calculations between the two methods in the region with significant snow cover. In all instances, SR is calculated as the

maximum observed value of the storage deficit. In the high snow location using the original method, this leads to an estimated

value of SR that is approximately 50% larger than that calculated with the snow-accounting method.130

4 Discussion

Our proposed method for estimating SR provides a minimum estimate. Actual SR should generally exceed estimated SR values

presented in our revised method, because some evapotranspiration occurs during times when snow cover is present. The snow-

accounting method and the original method do not account for leakage, surface runoff, and upslope drainage in the calculation

of Fin.135

Drawbacks associated with the general approach are presented in detail in Wang-Erlandsson et al. (2016). In particular, the

results are highly sensitive to the quality of the underlying remote-sensing datasets; by making our code publicly available,

we hope that as improved datasets become available they can be readily incorporated to produce better estimates of SR. As

noted in a similar effort by Dralle et al. (2020), we caution against using evapotranspiration datasets which rely on a soil water

balance that as a model parameter incorporate pre-determined values of SR (e.g., from existing soils databases), as this would140

bias the inferred SR.
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Figure 1. Maps of snow-corrected SR (a), the difference between the original and snow-corrected SR (b), and average winter (January -

April) percent snow-cover (c) over a region of the Southern Sierra Nevada, California, USA. White points identify rain-dominated (western)

and snowy (eastern) locations highlighted in Fig. 2. Imagery obtained from publicly available data through U. S. Department of Agriculture,

Farm Service Agency’s National Agriculture Imagery Program.
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Figure 2. Storage deficit timeseries for representative ‘high-snow’ and ‘low-snow’ locations in the Sierra Nevada (locations mapped in Fig.

1) from 2013 through 2016, showing the difference between the original and snow-accounting methods. Cumulative water year precipitation

(instantaneous precipitation is Fin) is plotted in dotted blue along the top row, and ET (Fout) is plotted in the bottom row, where the snow-

accounting method takes Fout = 0 during periods of snowcover (grey shading in background). During snow-free periods (white background),

deficits change identically (though there may be a vertical offset). During periods when snow is present, the new method prevents deficit

growth, whereas the deficit may grow during snowy periods using the original method (e.g., Jan of 2015). The plot demonstrates how the

original method may lead to a larger estimate of SR (computed as the maximum value of D) in snow-dominated locations.

Because the method relies on a mass balance approach, estimates of SR will inherently be larger in locations where rates of

plant-water use are high during extended dry periods; for example, in the Mediterranean-type climate of California, where the

long dry summer coincides with the growing season. Consequently, SR estimates will be less representative of the potentially

observable maximum of root-zone water storage capacity in wetter climates because root-zone storage deficits are frequently145

replenished, and therefore never reach large values. In other words, this method is only capable of documenting the root-

zone storage capacity that is accessed by plants, rather than the accessible plant-available water storing capacity that may

exist through the whole rooting zone (sensu Klos et al., 2018); the former provides a minimum estimate of the latter. In energy-

limited environments, or places where seasonal precipitation and energy delivery are in phase, the method is prone to significant

underestimation of plant-accessible water.150

SR in rain-dominated climates has been shown to impact drought resilience (Hahm et al., 2019a), and snow-rain transition

elevations are increasing as the climate warms (Knowles et al., 2006). If precipitation arrives as rain rather than snow, the role

of the subsurface in storing that water for plants will likely be amplified. Mountainous snow-rain transition zones can support

high rates of ET and coincide with forested areas (Goulden et al., 2012; Hahm et al., 2014), underscoring the importance of

accurate estimates of SR for prediction of forest sensitivity to climate variability in the future.155
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Finally, we caution that neither this dataset nor the original dataset calculated by Wang-Erlandsson et al. (2016) has been

validated against direct measurements of root-zone storage capacity. Although Wang-Erlandsson et al. (2016) performed an

implicit validation of SR via hydrological modeling, we advocate for complementary in situ measurements of dynamic water

storage in the critical zone, which will be required for true validation of emerging remote sensing datasets of subsurface water

storage (e.g. Wang-Erlandsson et al., 2016; Enzminger et al., 2019; Swenson et al., 2003, ). Systematic validation of this form160

requires significant new fieldwork efforts that we leave for future work.

5 Conclusions

We argue that an existing method for estimating root-zone water storage capacity (SR) will tend to overestimate SR in snowy

areas due to unaccounted for snow melt, evaporation, and sublimation processes. We provide a correction factor that relies on a

widely available distributed percent snow cover dataset to provide a tighter lower bound estimate on SR. Accurately describing165

SR is important because the role of the subsurface in storing water is likely to be amplified in a warming climate, in which

more precipitation will fall as rain rather than snow.

6 Data and code availability

The Python code used to implement the algorithm described here with the Google Earth Engine is available and executable as

a notebook hosted on Google Colab here: https://colab.research.google.com/drive/1R6WkxaG77-O2Q7hEaiCVMvuE_1oCf_170

6S?usp=sharing. The datasets used to calculate SR are free and publicly accessible via the Earth Engine platform (see the

links above in the Methods section above and the retrieval of the datasets within the code). The output SR raster is available at

Hydroshare: https://www.hydroshare.org/resource/ee45c2f5f13042ca85bcb86bbfc9dd37/.
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