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Abstract. Many recent studies have sought to characterize variations of the annual maximum flood discharge

series over time and across space in Europe, including some that have elucidated different process controls on

different statistical properties of these series. To further support these studies, we conduct a pan-European
assessment of process controls on key properties of this series, including Fhis-paperanalyses-the-spatial-patterns
and-proeess-controls-ef-the mean annual flood (MAF), coefficient of variation (CV) and skewness (CS) of flood
discharges—in—Eurepe. These data—consist—of-maximum—annual_maximum flood discharge series_consist of

{instantaneous peaks and daily means} witheutstrong-human-medifications-observed in 2370 catchments in Europe
without strong human modifications covering the period 1960-2010. We explore how tFhe estimated moments

MAF, CV and CS vary due to catchment size, climate and other controls_across Europe, where their averages
across-Europe-are 0.17 m3s* km, 0.52 and 1.28, respectively.

The results indicate that MAF is largest along the Atlantic coast, the high--rainfall areas of the Mediterranean coast
and in mountainous regions, while it is smallest in the sheltered parts of the East European plain. The CV is largest
in southern and eastern Europe, while it is smallest in the regions subject to strong Atlantic influence. The pattern
of CS is similar, albeit more erratic, in line with the greater sampling variability of CS. In the Mediterranean, MAF,
CV and CS decrease strongly with catchment area, suggesting that floods in small catchments are relatively very

large, while in Eastern Europe this dependence is much weaker mainly due to more synchronized timing of the

effect-ef-snow melt over large areas.

The process controls on the flood moments in five predetermined hydroclimatic regions are identified through

correlation and multiple linear regression analyses with a range of covariates and the interpretation is aided by a

seasonality analysis. Precipitation-related covariates are found to be the main controls of the spatial patterns of

MAF in most of Europe except for regions in which snowmelt contributes to MAF, where air temperature is more
important. The Aridity Index is, by far, the most important control on the spatial pattern of CV in all of Europe.
Overall, the findings suggest that, at the continental scale, climate variables dominate over land surface

characteristics, such as land use and soil type, in controlling the spatial patterns of flood moments.
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Finally, to provide a performance baseline for more local studies, we assess the estimation accuracy of regional
multiple linear regression models for estimating flood moments in ungauged basins-basins-is-presented-providing

1. Introduction
Understanding the spatial distribution of statistical flood characteristics is important from both practical and
scientific perspectives, assisting in estimating design floods in gauged and ungauged catchments, and shedding

light on the regional processes of flood generation from a probabilistic perspective (Rosbjerg et al., 2013).

Much research has been conducted on identifying process variables and mechanisms controlling the magnitudes
of flood characteristics. Catchment area is usually the main control on the specific mean annual flood (MAF) as
smaller basins tend to have larger specific MAFs than larger ones (Rosbjerg et al., 2013) because a large basin is
less likely to be fully covered by a storm than a small basin. This tends to reduce the variance of extreme catchment-
average precipitation and thus the MAF (Viglione et al., 2010). Additionally, there is an important space-time
effect that explains the attenuation of specific floods as catchment areas increase. Event-scale catchment response
times tend to increase with area (Gaal et al., 2012), which leads to a greater attenuation of the flood peaks.
Convective events, limited in duration and spatial extent, are most relevant for producing floods in small
catchments with fast response times (Gaal et al., 2015), whereas long duration stratiform precipitation becomes
more relevant as catchment size increases (Merz and Bldschl, 2009). Meanwhile the effect of catchment area on
the CV (the ratio of standard deviation and annual means) tends to be more complex. For example, Smith (1992),
based on data in the Appalachian region, found an increase in CV with catchment area up to about 100 kmz, and
subsequently a decrease, which he attributed to the spatial organisation of precipitation and downstream changes
in the floodplain system. Bloschl and Sivapalan (1997) suggested that space-time scale interactions may be the
main reason for this scale dependence, while Merz and Bléschl (2003) noted that the strength of the dependence
of CV on area will differ between regions with different prevailing flood generation types-mechanisms such as
floods from synoptic-scale precipitation events (e.g. frontal weather systems) and snowmelt-driven floods. Based
on an analysis of flood data in Slovakia, Austria and Italy, Salinas et al. (2014) found both CV and CS to decrease
with catchment area which they interpreted as the result of aggregation effects of the spatial heterogeneity of

rainfall and the interaction between the spatial and temporal scales of rainfall and catchment size.

Runoff generation and thus flood moments are also controlled by soil characteristics, geology and land-use. While

USGS regional flood frequency studies based on observed data have revealed non-climatic controls (Parrett et al.

2011, Paretti et al., 2014, England et al., 2019), most knowledge on these effects comes from process-based

simulation studies. For example, Gioia et al. (2012) demonstrated that infiltration and soil storage strongly affect
the flood moments, and Brath et al. (2006) performed a similar analysis on land use. The role of these variables
can to some extent be inferred from their use as covariates in flood frequency regionalisation_models (see, e.g.

Zaman et al., 2012; Rosbjerg et al., 2013; Miller and Brewer, 2018) ., including nonstationary ones. However, the

type of soil, geology and land-use data available at the regional scale is often not consistent with the level of detail
required for attributing runoff generation processes, and therefore correlations with flood characteristics tend to
be low (Weingartner et al., 2003).
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Another important control is climate. Mechanistically, one would expect extreme precipitation_over timescales
(e.g. 1 day) to represent flood characteristics as it is usually the main driver at the event scale (Viglione et al.,
2009). However, many studies have shown that mean annual precipitation (MAP) is a better predictor of MAF
(e.g. Madsen et al., 1997; Reed et al., 1999; Merz and Bléschl, 2009) for which a number of reasons have been
suggested: MAP is an important control of antecedent soil moisture on a seasonal scale (e.g. Grillakis et al., 2016)

and is usually highly correlated with event precipitation.; ard-Moreover climate, vegetation, soils and land forms

may co-evolve with MAP, thus exerting a longer-term influence which may increase or decrease floods (Gaal et
al., 2012, Perdigdo and Bléschl, 2014). Based on data from around the world, Farquharson et al. (1992) found CV

of annual peak flows (variability between years) to increase with the Aridity Index (the ratio of potential

evaporation and MAP). This dependency may be the result of at least two processes. On the one hand, the lower
and_more variable runoff coefficients_of arid regions tend to increase the flood CV far beyond that of rainfall
(Viglione et al., 2009). On the other hand, the CV of rainfall {variabiity-between-years)-is also sometimes larger
in arid regions than in more humid regions (Fatichi et al., 2012). Merz and Bldschl (2009) found potential
evaporation to be an excellent predictor of both MAF and CV in the lowlands of Austria (the greater the PET, the
higher the CV), which they interpreted in terms of the increasing non-linearity of the rainfall-runoff process with

aridity. lacobellis et al. (2002), found that CV behaviour is controlled mainly by the long-term climate and the

infiltration characteristics at the catchment scale. Specificaly—they—suggest—that-in—arid—and—impermeable

Climate controls, including rainfall, soil moisture and snowmelt are usually subject to strong seasonality. An

analysis of the seasonality of floods (Bayliss and Jones, 1993; Merz and Bldschl, 2003) has therefore been an
efficient way to shed light on the interaction of these processes. For example, based on the seasonality of 4262
catchments in Europe, Bloschl et al. (2017) identified extreme winter precipitation in northwestern Europe,
snowmelt in northeastern and eastern Europe and summer precipitation and snowmelt in the Alpine regions of
Europe to be important flood drivers. Using their data set, Berghuijs et al. (2019) found that soil moisture excess
to-explainexplained flood seasonality better than other hydroclimatic variables, such as extreme precipitation,
particularly in the western part of Europe, in line with a similar study in the United States (Berghuijs et al., 2016).

While substantial understanding of regional flood controls has been achieved in the past, few studies have analysed
large, consistent data sets of flood discharges in terms of their statistical moments. Large data sets provide the
opportunity to obtain more robust and generalisable findings than studies containing a smaller number of
catchments. The aim of this paper is therefore to identify patterns of flood moments and their controls across
Europe. We use a data set of flood discharges of 2370 catchments across Europe for the period 1960-2010 and

apply correlation and regression analyses to identify climatic and catchment process controls on the moments.



2. Data and Methodology
110 2.1 Data

This study uses a subset of the data set of European flood discharges of Bldschl, Hall et al. (2019), for which ean

which-stricter selection criteria were applied than for their entire data set (see their section on datasets and their

supplementary material for the data). It consists of 2370 annual maximum discharge series from 33 countries

115 derived from instantaneous peak flows and daily mean flows for each calender year. Catchment areas range from
5 to 100000 km?, with a median of 383 km2. The observation period is 1960 to 2010, and record lengths range

from 30 to 51 years with a median of 51 years. The time series were manually checked for strong human
modifications such as reservoirs (Bldschl, Hall et al., 2019 and Hall et al., 2015) and include both rainfall-generated

floods and snowmelt-generated floods (Kemter et al., 2020). Arnual-maximum-discharges-were-derivedfrom
120 i i "

tr-erdertTo analyse process controls, a range of catchment attributes and climatic indicators are used. In addition
to catchment area (A), we used catchment-averaged climate indicators, including long-term mean annual
precipitation (MAP), long-term mean potential evaporation (PET) and the aridity index (Al), PET/MAP. Extreme
precipitation is quantified by the daily rainfall rate that is not exceeded in 95% of the days of the year (P95), and
125  the long-term mean of the maximum 2-day precipitation of each year (Pmax). While the duration of event
precipitation to examine varies with catchment size and characteristics due to differences in response times (Gaél
et al, 2012) we chose a constant value of two days here for consistency. As a proxy for snowmelt we used the
mean air temperature in spring (Tspr) and winter (Twin). Soil moisture (SM) was taken from the CPC Soil moisture
database, which contains model-calculated soil moisture values. Fan and Van Den Dool (2004) discuss any-some
130 biases of the soil moisture data set, which may distort some of the findings here. We used the mean of the annual
maximum monthly values over the observation period. Topographical indicators include the mean catchment
elevation (Elev) and the mean topographical slope (Slope) of each catchment. Land use was quantified as a
percentage of total catchment area and includes forest areas (LUF) and water bodies (LUW). Soil characteristics

were quantified in terms of five soil-texture categories (Stex). The data used are summarised in Table 1.

135

Table 1: Data used in this study including quantiles of the variables and source information. Sources:
!Data Base on European Floods: https:/github.com/tuwhydro/europe_floods
2CCM River and Catchment Database. Vogt et a., 2017. https://data.europa.eu/
SE-OBS gridded dataset (v18.0e), 0.1 deg. Cornes at al., 2018. https://www.ecad.eu/
140 4Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database V2. Trabucco and Zomer, 2019
https://figshare.com/articles/Global_Aridity Index_and_Potential Evapotranspiration_ ETO_ Climate Database v2/7504448/
3
SCPC Soil Moisture (V2), NOAA Climate Prediction Center. Fan and Dool, 2004. https://www.cpc.ncep.noaa.gov/
6Global Multi-resolution Terrain Elevation Data GMTED2010, 7.5 arc-seconds. https://www.usgs.gov/
145 "Corine Land Cover (CLC) 2000, Version 20b2, https://land.copernicus.eu/
8European Soil DataBase (ESDB), Soil Geographical DataBase (SGDB), TEXT_SRF_DOM, 10x10km. Panagos et al., 2012.
https://esdac.jrc.ec.europa.eu

Variable Symbol Data Description Units  25-/50-/75%- 50%- 75%- Source

group guantiles quantile  guantile

Flood MAF Mean annual specific flood m3s? 0.06/0-11/0.22 0.11 0.22 Data base on
Moments km- European floods*


https://github.com/tuwhydro/europe_floods
https://data.europa.eu/
https://www.ecad.eu/
https://figshare.com/articles/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448/3
https://figshare.com/articles/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448/3
https://www.cpc.ncep.noaa.gov/
https://www.usgs.gov/
https://land.copernicus.eu/
https://esdac.jrc.ec.europa.eu/
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Catchment
Area

Precipitation

Air
temperature

Soil moisture

Evaporation

Avridity

Topography

Land use

Soils

2.2 Hydroclimatic regions

MAF,

Ccv

CS

A

MAP

P95

Pmax

Tspr

Twin

PET

Al

Elev

Slope

LUF

LUW

Stex

Mean annual specific flood
normalized to catchment
area of oo =100km?
Coefficient of variation of
annual maximum flood
peaks

Coefficient of skewness of
annual maximum flood
peaks

Catchment area

Long-term mean annual
precipitation

Daily precipitation rate,
that is higher than what is
observed on 95% of days
in the observed period
Mean of maximum of 2-
day precipitation of each
year

Mean daily temperature in
MAM (Celsius)

Mean daily temperature in
DJF (Celsius)

Mean of annual maximum
monthly soil moisture
Long-term mean potential
evapotranspiration

Avridity index (PET/MAP)

Mean catchment elevations

Mean topographic slope
(mean of tangent of angle
of slope)

Fraction of catchment area
covered by forest and
seminatural areas

Fraction of catchment area
covered by water bodies
Dominant surface textural
class of the STU (Soil
Typological Unit), mean
value of categories
(1=coarse, 5=fine)

m3 st
km-2

km?2

mm yr?

mm d?

mm d?

°C
°C
mm

mm yr?

unitless

m a.s.l.

unitless

%

%

class

0.08/0-16/0-28
0.36/0-46/0-61
0.62/1.09/169

135.90/382.80/
1264-80

621.28/798-69/
105776
8.40/10-54/43-
45

18.00/22.45/28
51

5.03/-15/842

-3.35/-116/4-0
5
368.38/424.93/
50720
749.02/817-73/
89798

0.72/1-06/1-25

199.04/472.58/
foe2
0.03/0-08/0-18

31.66/54-59/79

£2

QcoEictr

1.77/2:00/2:25

0.16 0.28
0.46 0.61
1.09 1.69
382.80 1264.80
798.69 1057.76
10.54 13.45
22.45 28.51
115 8.42
-1.16 1.05
424.93 507.20
817.73 897.98
1.00 125
472.58 833.12
0.08 0.18
54.59 79.62
0.05 0.57
2.00 2.25

Data base on
European floods*

Data base on
European floods?

Data base on
European floods*

CCM River and
Catchment
Database?
EOBS?®

EOBS?

EOBS?

EOBS®
EOBS®

CPC Soil Moisture
(V2)°

Global Aridity Index
and Potential Evapo-
Transpiration (ETO)
Climate Database
V24

Global Aridity Index
and Potential Evapo-
Transpiration (ETO)
Climate Database
V24

GMTED2010°¢

GMTED20108

CORINE’

CORINE’

ESDB?

For the statistical analyses, Europe was subdivided into five regions based on a-the eleven biogeographic regions

of Roekaerts (2002) and guided by the flood seasonalities of Bloschl et al. (2017). The aim of the partitioning was

to represent a small number of contiguous regions that are to some extent hydro-climatologically homogeneous,

without considering their effect on predicting flood moments. In the Northeastern region, floods are mainly due to

5
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snowmelt during spring and early summer. The Atlantic region is characterised by mild, wet winters and cool,
humid summers; floods mainly occur in winter following rain events. The Central-Eastern region has a continental
climate with cold winters and warm summers and floods mainly occur in spring with snow-melt contributions

(resulting in a mixture of rainfall and snowmelt). The Alpine region comprises the Alps and the Carpathians, where

floods mainly occur in summer due to summer storms and/or snow melt. The Mediterranean region is characterised
by hot, dry summers and mild, wet winters; floods occur in autumn and winter. For simplicity, each catchment
was allocated to one of the regions according to the location of its stream gauge. The latter is usually representative
of the entire catchment, as only for 65 catchments the difference between stream gauge elevation and mean
catchment elevation is more than 1000m.

Figure 1: Location of the 2370 hydrometric stations analyzed. Colours of dots indicate five hydro-climatic regions
(Northeastern, Atlantic, Central-Eastern, Alpine, Mediterranean). Background colour is elevation (m a.s.l.).

2.3 Analysis method

The statistical flood moments, the specific mean annual flood (MAF), the coefficient of variation (CV) and the
coefficient of skewness (CS), were estimated from the annual maximum peak discharges series by:

MAF = -3, Q; ()
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(n-1)(n-2)s3
where Q; is the annual maximum peak discharge (m?s) of a record in year i, divided by the catchment area (km?).
While in some cases log-transformed variables are used in flood frequency analysis (Griffis and Stedinger, 2007),
here we analyze real space moments of flood series, in line with European practice (e.g. Merz and Bléschl, 2009).
Estimation uncertainty of the statistical flood moments decreases with record length and increases with the moment
order. While the estimation uncertainty of the mean is small, the uncertainty and bias of the estimators of CV and
CS (equations 3 and 4) can be substantial. Ye et al. (2020) illustrate the uncertainty and bias in the estimation of

CV. The bias in the estimation of CV is relatively small for ranges of CV and CS as in this study (using their

equation 2: the bias is at most 0.065 in absolute value, in the case of CV ranging from 0.25 to 0.97 and CS ranging

from 0.09 to 3.18, which encompasses 90% of the observed values in this study) making it reasonable to use the

common product moment estimator of the CV. For-arecord-length-of 50-yrears—and-a-series-with-the-average
estimated-moments-of the-entire-dataset (MAF=017m3 s+ km?-CV/=0.52,-CS=1.28)Meanwhile the standard

error and bias of the CS estimate are about 0.56 and 0.22 (based on a simulation study), respectively, for a record

length of 50 years and a series with the average estimated moments of the entire dataset (MAF=0.17 m3s-1 km-2,

CV=0.52, CS=1.28), which is about half and one sixth of the underlying population moment (assuming a GEV-

distribution as the data-generating process). The bias and uncertainty for the estimation of skewness are well
documented in Wallis et al. (1974), Bobee and Robitaile (1975) and Carney (2016), for example. -The estimation
uncertainties need to be accounted for when interpreting the process controls on the flood moments. Additionally,
combining regional with local information can help reduce the estimation uncertainty of statistical moments of
flood series, as demonstrated by the weighted skewness approaches of Griffis and Stedinger (2009) and the flood
frequency hydrology approach of Viglione et al. (2013), but this is beyond the scope of this paper. In interpreting
the results, we do not account for any non-stationarities of the flood moments, as the focus is on the aggregated
behaviour during the observation period. Any autocorrelation that may be present will increase the uncertainty of
the estimates, although they are usually small in annual flood data, and are therefore rarely considered in flood

frequency estimation (Hosking and Wallis, 2005).

Since the specific mean annual flood is often strongly controlled by catchment area, which may mask other controls
that vary regionally, we also considered the specific mean annual flood, MAF,, normalised to a catchment area of
a=100km?

MAF, = MAF - A~BmAF . o BmaF ®)

MAF, and By 4r Were found by ordinary least squares regression in the logarithmic space.

Our analysis encompasses the following steps:

1. First—Wwe estimated what fraction of the spatial variability of the estimated flood moments can be
explained by subdividing Europe into five regions (Figure 1), using a simple one-way analysis of variance

(ANOVA). This can be interpreted as a simple regression model, where the dependent variables are the

7
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estimated flood moments and the only explanatory variables are indicators corresponding to the regional
partition. The coefficient of determination of this model corresponds to the fraction of variance explained
by the partition over the total variance in estimates of the flood moments.

Seeond-Wwe evaluated the role of catchment area, since it is almost always the main control on the mean
annual flood when examining a sample of catchments varying by orders of magnitude, and it reflects the
aggregation behaviour of the floods and their climatic and catchment controls. Specifically, we estimated
the dependence of MAF, CV and CS on catchment area from equation (5) and analogous equations for
CV and CS, transforming all variables logarithmically.

Third;w\We conducted a seasonality analysis to assist in the process interpretations. We represented the

date of occurrence, D, of the maximum annual flood as a number from 1 to 365 (Julian dates) in polar
coordinates on a unit circle with angle 8 = D % For a flood series, the direction 8 of the average vector

from the origin indicates the mean date of occurrence of the flood events around the year. The length of
the vector from the origin k is a measure of the variability of the date of occurrence, ranging from 0
(uniformly distributed across the year) to 1 (all events on the same day). It is calculated as the Euclidean
distance between the origin and the mean flood date (mean of the sine and cosine of flood dates in polar

coordinates), see e.g. Burn (1997). In the spirit of Bloschl et al. (2017) we used the seasonality of floods

to identify dominant flood-generating mechanisms, e.g. spring snowmelt vs winter storms which to some

extent explain variations in the flood moments (Merz and Bldschl, 2003).
In-a-fourth-step—weWe analysed the effects of individual hydro-climatic controls (see Table 1) on the
spatial distribution of the flood moments. To assist in the interpretation, we first evaluated the Spearman

rank correlation coefficients between the attributes, followed by an analysis of the Spearman rank
correlation coefficients between the flood moments and the attributes. We used Spearman’s rank
correlation coefficients, as non-linear associations between variables are possible. The corresponding
significance tests for the estimates of Spearman’s rho are employed with the assumption of an asymptotic
t-distribution under the null hypotheses (Gibbons and Chakraborti, 2010). The correlations were
evaluated for all of Europe and the five regions separately.

In—a-fifth-step-Wwe evaluated the effect of multiple controls on the flood moments. Multiple linear
regression models were fit to the estimated moments. Since Fthe emphasis was on obtaining parsimonious
models, therefore-the number of selected explanatory variables for a regression equation was limited to

four. Both predictor and response variables were log-transformed when they had skewed distributions.

MAF, CV, A and P95 were log-transformed, as their distributions were skewed. We use the logarithm of
the real-space moments for the regression models. The attributes were selected accerding—tousing a

stepwise selection procedure (Weisberg, 2005). The criterion for model comparison was Mallow’s Cp

RSS.
Cp =6—2p+2p—n

—(6)
where p refers to the number of coefficients in the current model including the intercept and n to the

number of observations. RSS,, is the residual sum of squares of the model being considered with p

covariates and 67 is the residual error variance of the model including all possible covariates. For the
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comparisons of information criteria such as C,,, a complete set of observations of explanatory variables is

required, therefore 22 catchments, where some observations of covariates were not available, were

excluded from this part of the analysis (see Table S1 in the supplementary materials).

In order to assess which of the covariates in each regression provided the most explanatory power, a
dominance analysis was conducted (Azen and Budescu, 2003). We used the measure for general
dominance, which summarizes the average increase in the measure for the goodness of fit, when a given
covariate is included in a regression model, for all possible model subsets for a fixed set of predictors.
The sum of all measures for general dominance of each variable results in the R? of the full regression.
The general dominance measure (average contributions) provides a ranking of the variables in terms of
their contributions to the fit of the models (R?). However, this is only valid in the context of the model
and the selected variables. These contributions can and most likely will change when variables are added
to or subtracted from the regressions. To facilitate the interpretation of results, in section 3.5 we present
the general dominance measure of individual covariates, divided by the R? of the regression, and refer to

this as the normalised general dominance measure. This does not affect the ranking of the variables.

6. tra-sixth-step-tThe predictive accuracy of the fitted regression models was assessed in a leave-one-out
cross-validation. The errors are evaluated on the scale of the data, instead of the scale of the regression
models (i.e. log scale) and normalized, e.g. in the case of the MAF:

_ |MAF-MAF

ANEyar = MAF |
—(7)

ANE stands for absolute normalized error. MAF are the predictions of the regression models and MAF
are the at-site estimates. The analegeus-heldsANE for CV are computed in the same way.

In addition, ordinary kriging was used for interpolating the at-site estimates of flood moments (Cressie,
1993) and the interpolated values were contrasted with the predictions of regional regression models.

3. Results

3.1 Characteristics of flood moments

Table 2 shows the characteristics of the estimated flood moments for the five hydroclimatic regions and the entire
data set. On average over the entire data set, the mean specific annual flood is 0.17 m3 s** km, while the mean
specific annual flood normalised to a catchment area of 100 km2 (MAF,) is 0.21 m3 st km2. The latter is somewhat
larger, as 100 km2 is smaller than the median catchment size of 383 kmz2. On average over the entire data set, the
CV and CS are 0.52 and 1.28, respectively. The regions differ in terms of the moments. The largest average MAF,
occurs in the Alpine region and in the Mediterranean (0.30 m3 st km-2). The smallest average MAF, (0.05 m3 s
km2) occurs in the Central Eastern region, but this is also the region where the average CV and CS are largest
(0.69 and 1.59, respectively). On the other hand, the Northeastern region has the smallest average CV and CS and
below average MAF (0.39, and-0.82_and 0.13, respectively). The regional coefficients of variation in Table 2

(every other column) reflect the within-region variability of the observed flood moments. They are generally higher
for MAF and MAF, than for CV, both within individual regions and for all of Europe.
9
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The coefficient of determination R? of the one-way ANOVA is an indicator of how much of the spatial variability
is explained by the partitioning into the five regions. The partitioning explains 17% of the spatial variance of
MAF,, but only 9% and 5% of the spatial variance of CV, CS, respectively. This means that the spatial variability
of CV and CS within each region is almost as great as the spatial variability similarte-that-over all of Europe. Part

While some of that variability may be-arise from sampling uncertainty, but Figure 2 indicates that, at least for
MAF, and CV, there are clear spatial patterns that are not aligned with the regions, i.e. much of the variability lies
within the regions and not between them. As the regions have not been chosen to reflect flood magnitudes but

rather a range of hydro-climatic processes, this is not surprising.

The largest MAF, occur in wet, mountainous regions, including the Alps, the Appenines (ltaly), the Carpathian
Flysch Belt, adjacent to the Ligurian and Adriatic Seas, the Languedoc, and the western coasts of Great Britain
and Norway. The lowest MAF, occurs in much flatter regions, such as the North and East European Plains, Dnieper
Lowland, Finnish Lakeland and southern Sweden and south-eastern England (Fig. 2c). MAF, exhibits slightly
more homogeneous spatial patterns across Europe than MAF, as the effect of catchment size has been removed.
The spatial distribution of CV is, to some degree, a mirror image of that of MAF,, as CV and MAF, are slightly
negatively correlated with a Spearman correlation coefficient of r=-0.12 (-0.06 for CV vs MAF). However, there
are deviations from this general pattern. Along the Mediterranean coast between Genoa, Italy and Valencia. CVs
are rather large even though MAF, are large as well, partly because of flashy mountainous catchments with high
rainfall. The spatial coherence of CS is less apparent (which can also be seen from the low R? in Table 2), as
roughly half the spatial variability is likely attributable to sampling variability (the standard error of the CS estimate
for average parameters is o.5 = 0.56). However, there seems to exist a general pattern of larger than average CS
along the Mediterranean coast and the mountainous areas of Europe, and smaller than average CS in Scandinavia
and northern Russia. There is a strong positive Spearman correlation between CS and CV (r=0.63) which points
towards non-linear runoff generation processes affecting both CS and CV (Rogger et al., 2013), although, again
the correlation may be partly due to the sampling variability resulting in correlations between the estimators of CV
and CS (see chapter 10 in Kendall and Stuart, 1969).

Table 2: Regional mean (m) and regional coefficient of variation (cv) of the mean annual specific flood (MAF, (m2 s km-2)),
mean annual specific flood normalised to catchment area of 100km? (MAF,, (m? s km2)), coefficient of variation (CV) and
coefficient of skewness (CS) for the entire data set and the five regions. n is the number of stations per region. R? is the fraction
of the spatial variance explained by the partitioning into the five regions.

Central-

Europe Northeastern Atlantic Eastern Alpine Mediterrane- R
(n=2370) (n=288) (n=875) (n=622) an (n=349)
(n=236)
m cv m cv m cv m cv m cv m cv

MAF 0171 1.114 0.126 0.939 0.137 0.981 0.037 1.095 0.264 0.816 0.222 1.223 0.140
MAF, 0.211 0.961 0.176 0.655 0.166 0.875 0.047 0.942 0.304 0.728 0.304 0.938 0.173
cv 0.518 0.492 0.386 0.347 0.494 0.435 0.695 0.583 0.516 0.381 0.571 0.529 0.090
CS 1.278 0.773 0.821 0.779 1.216 0.882 159 0.727 1.466 0.565 1.263 0.785 0.047
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Figure 2: Mean specific flood (MAF (m2 s km-2)) (a), Coefficient of variation (CV) (b), Mean specific flood normalised to a
catchment area of 100km? (MAF. (m3 s km2)) (c), and Coefficient of skewness (CS) (d). Colours represent the estimate
315 partitioned into eight classes of equal frequency.

3.2 Seasonality and flood moments

As an indicator of flood processes, the average direction of seasonality 8 and the strength of seasonality k are
plotted in Figure 3 for each catchment (see Figure 3 in Bldschl et al., 2017, for the spatial distribution). The closer

320 the points are to the edge of the circle, the stronger the seasonality. Additionally, the magnitudes of MAF,, CV
and CS are indicated as colours as in Figure 3. The red circles in Figure 3 highlight geographic regions that are
roughly homogeneous with respect to seasonality and the magnitude of the estimated flood moments, which were
identified by examining seasonality maps (Bloschl et al., 2017).

In Northeastern Europe floods mainly occur in spring and early summer with a strong seasonality reflecting the

325 role of snowmelt. MAF, are in a medium range (green in Fig. 3) with the exception of the Norwegian coast (circle
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1) where MAF, are much larger but with little seasonality because there is a mix of spring snow melt floods and
winter rain floods (Kemter et al., 2020). The CVs of these catchments are small. On the other hand, floods in
western Russia almost always occur in April with large CV (circle 3). The June floods further in the North, adjacent
to the White Sea, have much smaller CV because of a more consistent snow melt influence (Kemter et al., 2020,

circle 2).

In the northwestern part of the Atlantic region (Ireland, west coast of the UK), floods tend to occur in December
and the estimates of MAF, are large (circle 4). East of the Atlantic region (Southern Germany, Czech Republic,

circle 5) the average occurrence of floods is in late spring, although the seasonality is weak but CVs are large.

In the Central-Eastern region (Poland, Ukraine, circle 6) where floods usually occur in spring, the MAF, are

generally low and the CVs are large.

The catchments in the Alpine region with summer floods (circle 9) show high MAF, due to rainfall enhancement
of the Alps. The catchments with autumn floods in Southern Austria and Slovenia (circle 7) exhibit very high
MAF, due to the stronger influence of the Mediterranean Sea. This region also contains the Carpathians and
adjacent midlands (circle 8) where floods tend to occur in spring with lower MAF but rather high CV, likely

because of a mix of snow, rain-on-snow and rainfall floods.

The Mediterranean region contains catchments with mostly winter floods with rather high MAF,. The autumn
flood catchments in Slovenia have particularly high MAF, (circle 10) and low CV while the catchments with

spring floods on the Balkans (circle 11) possess medium MAF, and CV.

12
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Alpine Central-Eastern Atlantic Northeastern

Mediterranean

MAF, CV CS
246 / 3.25 / 6.75

0.28 / 0.61 / 1.69
0.16 / 0.46 / 1.09
0.08 / 0.36 / 0.62
0.01 / 0.08 / -1.02

1 Okt 1 Apr

Figure 3: Seasonality of annual flood peaks. Position in circle indicates mean date of occurrence (angle) and variability of the
date (inverse of distance from centre). Each point represents one catchment. Colours of the points indicate flood moments as
in Figure 2. Small red circles highlight subregions referred to in the text (1: Norwegian coast, 2: Northwestern Russia, 3:
Western Russia, 4: Western UK and Southwestern Norway, 5: Southern Germany and North of Czech Republic, 6: Parts of
Poland and Ukraine, 7: Southern Austria and Northern Slovenia, 8: Alpine and Carpathian midlands, 9: Alpine region, 10:
Slovenia and Southern France, 11: Balkans)
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3.3 Scaling of flood moments with catchment area

The first control on the flood moments examined here is catchment area, as it is often the dominant and best
understood control (Table 3, Fig. 4). The highest decrease in the mean annual flood (MAF) with catchment area
occurs in the Mediterranean and the Alpine region with Suar =-0.255 and -0.208, respectively, while the smallest
decreases occur in the Northeastern and Central Eastern regions (fSuar =-0.163 and -0.108) where snow melt is
important. The coefficient of variation (CV) of the flood records decreases with catchment area in most regions.
Again, the strongest decrease occurs in the Mediterranean while in the Northeastern and Central Eastern_regions
there is no significant relationship. There are few small catchments in the Central-Eastern region, which may make
the regression with area less robust. Overall, there is a tendency for CS to decrease with catchment area and the
strongest decrease occurs again in the Mediterranean.

Table 3: Dependence of the flood moments with catchment area in a double logarithmic relationship Eq. (5) and analogous
equations for CV; and a semi logarithmic relationship for CS, i.e. €S =1logA fs. Last lines show the 5% and 95%
quantiles of catchment area (km?). * indicates statistical significance (two-sided t-test) at the 5% level.

Europe Northeastern Atlantic ~ Central-Eastern Alpine Mediterranean
Puar -0.245* -0.163* -0.184* -0.108* -0.208* -0.255*
Pev -0.030* -0.015 -0.042* 0.025 -0.020* -0.072*
Pcs -0.133* -0.054 -0.124* 0.280* -0.177* -0.232*
0, 0, i
5% /95% quantiles  a5)11500 28118010  37/5331  142/32509  26/4212 47127251

of area (km?)
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Figure 4: Mean annual specific flood (MAF), normalised mean annual specific flood (MAF.), coefficient of variation (CV) and
coefficient of skewness (CS) plotted against catchment area (km2). Colours indicate region. Lines are regression lines for each
of the regions.

3.4 Individual controls on flood moments

When interpreting the association of climate and catchment attributes with flood characteristics, it is important to
account for the correlation between the attributes themselves, which may mask causal relationships. Spearman
correlation coefficients have therefore been estimated among all explanatory variables (Figure 5). The largest
correlations occur among the precipitation characteristics, all of which are at least r=0.86. The correlation between
long-term mean precipitation (MAP) and daily precipitation not exceeded 95% of the time (P95) is even-0.96,
indicating that the spatial patterns of these two variables in Europe are almost identical. The correlation between
soil moisture (SM) and the precipitation variables is at least 0.78, and the correlation between the aridity index
(Al) and the precipitation variables varies between -0.63 and -0.84. The latter may be partly related to the fact that
Al is the ratio of potential evaporation (PET) and MAP. PET is related to spring temperature (r=0.73). Elevation
and slope are closely related to each other (r=0.88) and they are also closely related to the precipitation variables
with r of at least 0.56, reflecting orographic influences on precipitation. Forest cover (LUF) is related to elevation
and slope (r= 0.67 and 0.72, respectively) reflecting the presence of forest in mountain areas. The positive
correlation between lake area fraction (LUW) and catchment area (r=0.45) results from a tendency for large
catchments to contain lowlands where lakes are more frequent than in the mountains, and the positive correlation
between soil type (Stex) and spring temperature (Tspr) (r=0.37) is due to coarse soils prevailing in the (colder)

north of Europe. Fig. 5 also shows 2d histograms of the variables as well as their kernel density estimates.
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Elev -0.18 056 062 064 -0.31 -0.17 052 0.17 -0.42
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Figure 5: Correlation between explanatory variables as in Table 1. For each variable the data consist of n=2370 values, i.e. the
number of catchments. Lower triangle: Spearman correlation coefficients. They are shown if they are statistically significant
(0=0.05). Blue and red indicate positive and negative relationships, respectively. Upper triangle: 2d-histograms with colours
indicating the frequency of observations in the bins (dark: few; bright: many, separate scale for each panel). Diagonal: kernel
density estimate. All scales are linear.

Figure 6 gives the Spearman correlations of the flood moments MAF, and CV with catchment attributes. We
mainly examine MAF, instead of MAF in-erderto minimise the effect of spatial differences in the catchment area
on the correlations with the flood moments that may mask the direct effects of other variables. The correlations
for CS are often weaker and more difficult to interpret, at least partly due to estimation uncertainty. The

corresponding correlations for MAF and CS with catchment attributes are given in Table A.1.5 in the Appendix.

While the correlations between MAF, and catchment area are inherently small in all regions (Fable-4Figure 6),
the correlations between MAF and catchment area (Table A.1.5, appendix) are significant in all regions ranging
between 0.31 and 0.48, with the exception of central Eastern where it is only 0.23, which may be related to the
more important role of snowmelt there, given that snowmelt floods tend to occur at the same time over large areas,
so one would expect a smaller reduction of flood peaks due to spatial averaging than for rain floods. Overall, in
Europe, the relative large explanatory power of catchment area points to an important role of scale effects,

although, in most regions, it is not the variable with the largest correlation.

MAF, is significantly positively correlated with MAP in all regions (Figure 6) and its correlations with P95 and

Pmax are similar. These high correlations may reflect the effect of not only event rainfalls, but also soil moisture
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as well as landscape evolution (Perdigdo and Bldschl, 2014), as all rainfall variables as well as soil moisture are
highly inter-correlated (Figure 5). The correlations between MAF, and precipitation (both MAP and P95) are
largest in the Atlantic region, reflecting the dominant role of precipitation in explaining the spatial variability of
MAF, in this part of Europe. CV is significantly negatively correlated with MAP, P95 and Pmax, for almost all
regions. The strongest relationship is observed in the Alpine and Mediterranean region. In drier catchments, the
occurrence of floods is more irregular (large CV, e.g. in Spain) as opposed to wetter catchments where every year
rather large floods occur (small CV e.g. in Norway).

One-weuldAs expected, the strongest correlations between flood moments and temperature are in the regions with
important snow melt contributions (Northeastern, Central-Eastern regions);-and-this-is-actually-the-case (Figure 6).
Spring (March-May) and winter (December-February) temperature are negatively correlated with MAF, and

positively correlated with CV.

The correlations between the flood moments and mean annual maximum monthly soil moisture (SM) are very
similar to those with MAP as the two covariates are correlated with r=0.89. There are high positive correlations of
MAF,, especially in the Atlantic and the Mediterranean, but strongly negative correlations between CV and soil
moisture. On the other hand, there is a small negative correlation between MAF, and the mean annual potential
evapotranspiration (PET) in all regions, as a higher PET generally reduces the antecedent wetness conditions of
floods and hence the flood discharges. More striking are the CVs that are strongly positively correlated with PET
in most regions with r ranging between 0.1 and 0.7. Since the aridity index (Al), defined as the ratio of PET and
MAP, it has correlations ranging around those of PET and/or the inverse of MAP. The highest values of Al are

observed in the Mediterranean region, where strong negative correlations are observed for all flood moments.

Mean catchment elevation (Elev) and mean topographic slope (Slope) are highly correlated with each other (r=
0.88) and therefore have similar correlations with the flood moments in most regions. MAF, is highly positively
correlated with both elevation and slope across all regions of Europe just as it is with the rainfall variables, which
points to an indirect effect of topography on mean floods through precipitation. This is consistent with high

correlations of elevation and slope to the precipitation variables (around 0.6 and 0.7, respectively, Fig. 5).

MAF, is positively correlated with the fraction of area covered by forest (LUF) in all regions and negatively
correlated with the fraction of area covered by water bodies, i.e. lakes and reservoirs, (LUW) in most regions,
including in the region with the largest fraction of water bodies (the Northeastern region where the median LUW
is 5.7%). The positive correlation between MAF, and LUF is most likely due to an indirect relationship, as areas
with high forest cover tend to be high-elevation regions such as mountains, where precipitation is augmented
through orographic effects, implying that the positive correlation cannot be interpreted as deforestation reducing

floods.

While there is little correlation between MAF, and soil texture, there is a clear effect of soil texture on CV with

finer soils (Stex=5) being associated with higher CVs than coarse soils (Stex=1).
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Figure 6: Spearman-Correlation between statistical moments of flood series (mean specific discharge normalized to a catchment
area MAF, of a=100km? and the coefficient of variation CV) and catchment attributes. Correlations are shown if they are
statistically significant (¢=0.05). Blue and red indicate positive and negative relationships, respectively. The correlations for
mean specific discharge MAF and coefficient of skewness CS with catchment attributes are given in Table A.1.5.
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3.5 Multiple controls on the flood moments

While Figure 6 examines the relationships between flood moments and single covariates using Spearman
correlation coefficients, in this section we test the relationship between flood moments and multiple covariates
with regression models applied for each of the regions separately. Thus the covariates with the largest contributions
are those that explain most of the R2 of the spatial variability of the flood moments within each of the regions. We
used MAF, rather than MAF,, in order to avoid prior assumptions regarding the role of catchment area. Given that
CS was correlated with fewer covariates than the other flood moments we focused here on MAF and CV (Table
A.1.5). We represent each of four most important groups of covariates (area, precipitation, temperatures and water
balance (i.e. SM, PET and Al)) by one covariate. The contributions to explaining the spatial variability of MAF in
terms of the normalised general dominance measure (nGDM) are shown in Figure 7 and Table A.1.3 and are

discussed below by region.

In Northeastern Europe, like in all regions, catchment area is an important predictor of MAF. Additionally, P95
and Al play an important role representing an East-West gradient with the largest MAF, largest P95 and the lowest

Al in Norway.

In the Atlantic region, P95 is by far the most relevant covariate (nGDM= 0.8) as one would expect in a region
where floods are rainfall driven and soil moisture tends to be high in the flood season (winter) (Bldschl, Hall et
al., 2019; Kemter et al., 2020).

In the Central-Eastern region MAF is generally low with little spatial variability. The corresponding R? is small
(0.33, Table A.1.1), as it is harder to explain the small spatial contrast. The largest contribution is winter
temperature and P95. Negative coefficients for winter temperature suggest that lower temperatures driving deeper

snow packs and, in turn, higher floods.

In the Alpine region area is most important and in fact relatively more important than in any other region. However,
the R2 of the model in the Alpine region is low (0.27), which may be a reflection of the hydrological heterogeneity

of the area, involving snow melt, rain-on-snow and rain driven floods (Merz and Bldschl, 2003).

In the Mediterranean catchment area is important (nGDM= 0.43), which is due to the small coastal catchments
exhibiting much larger specific floods than the larger catchments that extend further in-land, e.g. in Catalonia

(Spain), Liguria (Italy), and Slovenia (e.g. Gaume et al., 2009). Additionally, P95 plays a relevant role.

20



485

490

|Og10 A |Og10 P95

.ﬁ“o
e,
T 8 D
&
L -
F oo
R
* o8 e

TWin Al

A o

log1g MAF: Normalized avg contributions : : -
0.0 0.2 0.4 0.6 0.8

Figure 7: Results of dominance analysis for regional regression models for MAF. Panels depict the average contributions
(normalised general dominance measure, nGDM) of the covariates included in the regressions (log of catchment area, log of
extreme precipitation index P95, mean winter temperature and aridity index). Plus- and Minus-signs indicate sign of the
regression coefficients.

For CV (Figure 8, Table A.1.4), in the Northeastern region the Aridity index (Al) is the most important covariate

by far. This is due to Scandinavia being much wetter than northwestern Russia translating into lower CVs.

In the Atlantic region Al is the most important variable for explaining the spatial variability of CV although the
overall explanatory power of the regional model is rather low (R? of 0.27, Table A.1.2). The smaller CVs closer

to the ocean in the Atlantic region are partly aligned with higher winter temperatures.
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In the Central-Eastern region Al dominates again with higher CV in the Ukraine correlated with higher aridity
than further in the West, both due to higher PET and lower MAP.

The Alpine region is an exception in that P95 explains more of the spatial variability of CV than Al (hnGDM of
0.54 and 0.35, respectively). This is because PET is negatively related to elevation but the flood magnitudes are
controlled by the higher orographic rainfall on the windward (NW) side of the Alps.

In the Mediterranean both aridity and P95 are important predictors. For example, low aridity (because of high
MAP) in Croatia and Slovenia is associated with low CV, and high P95 in Southern France is associated with
moderately low CV.

|Og10 A |Og10 P95

TWin Al :..'-\
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Figure 8: Results of dominance analysis for regional regression models for CV. Panels depict the average contributions
(normalised general dominance measure, NnGDM) of the covariates included in the regressions (log of catchment area, log of
extreme precipitation index P95, mean winter temperature and aridity index). Plus- and Minus-signs indicate sign of the
regression coefficients.

3.6 Estimating flood moments from multiple controls

In this section we analyse how well the regression models of the previous section (where A, P95, TWin and Al
were used as covariates) are able to predict the moments at any location using a leave-one-out-cross-validation
(Figures 9 and 10). Overall, there is a tendency for MAF to be overestimated in those areas where the observed
values of MAF are small (e.g. Hungary and Denmark), and underestimated where they are large (e.g. Carpathians,
Northern Italy) reflecting the tendency of spatial estimators to underestimate spatial extremes. The overestimation
in Finland may also be due to lake retention not being captured adequately in the model. To some degree CV is
also overestimated in areas of low CV (e.g. southern Norway and Denmark) and underestimated in areas of high
CV (e.g. Ukraine, Ore mountains) although there are also large CV areas it is overestimated (e.g. Southern Spain).
The errors are smallest in Russia, Central Germany, British Isles and France where the spatial gradients in CV are
relatively smooth.

The median absolute normalized error of MAF and CV, throughout Europe, is 0.37 and 0.18, respectively, with
25%-quantiles of 0.17 and 0.09 and 75%-quantiles of 0.63 and 0.32. This means that the absolute normalized error
of CV is about half that of MAF, which seems to be related to the relatively smaller spatial variability of CV as
compared to MAF (spatial cvs of 1.11 and 0.49, respectively, Table 2).
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Figure 9: Absolute normalised errors ANEmar and ANEcv of the predictions of the regional regression models for MAF and
CV. Errors are evaluated on scale of data (not logarithmised). Colours refer to binned classes of equal frequency. Triangles
facing upwards indicate gauges where the model overestimates the moments, triangles facing downwards where the model
underestimates.

Figure 10 depicts the predicted (leave-one-out) MAF and CV using the regressions (Circles in Figure 10, Tables
A.1.1 and A.1.2) and the predicted MAF and CV by spatial proximity through kriging of the observed moments

(background colour). Predictions are shown on the scale of the data (not logarithmised) using the colour scale from
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figure 2. Notwithstanding the relatively large ANE (Fig. 9), the overall patterns of the moments are very similar
to the observed ones (Figure 2). Overall, the patterns of the moments are consistent with the process reasoning put

forward in this paper.

The intention of Figure 10 is to offer a visual comparison between the two regionalization approaches. Before the
use of ordinary kriging estimates for applications in ungauged basins, additional cross-validations would be useful
in the spirit of Rosbjerg et al. (2013).
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Figure 10: Predicted values of regional regression models and ordinary kriging for MAF (m3 st km?) and CV. Circles refer to
predictions of regression models, background refers to predictions of kriging. Colours refer to binned classes of equal frequency
for original data (estimated statistical moments) as in Figure 2.

4. Discussion and Conclusions
4.1 Patterns of flood moments in Europe
Overall, there are clear patterns ef-thein flood moments across Europe. As expected, MAF shows the clearest

patterns while they are less clear for CV and particularly CS, at least partly because of sampling variability.

In the Atlantic region, where floods mainly occur in winter as a result of moisture influx from the ocean, MAF, is
very high (above 0.5 m3/s/km? along the western coasts of Norway, Scotland and Galicia, Fig. 2). The CVs, on the
other hand, are small (typically around 0.3 at the Norwegian coast and in Scotland and 0.5 in Galicia) as the
atmospheric moisture influx tends to be consistent between years (Giorgi et al., 2004). As one moves towards the
continent from the west coast of the British Isles, the MAF tends to decrease and the CV increases because of the
decreasing and more variable moisture availability and floods tend to occur later in the winter (i.e. Jan instead of
Dec., Fig. 3).

Further inland, the—various mountain ranges (Pyrenees, Massif Central, Alps Apennines, Ore mountains,
Carpathians, Balkan mountains) stand out with higher MAF than the surrounding areas (mostly above 0.3
m?3/s/lkm?) and summer as the dominant flood season due to their effects of enhancing rainfall and probably

shallower soils as well as steeper slopes and smaller watersheds. On the other hand, there are clear differences
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between the CVs of these mountain ranges. While CVs in the Alps and the southern Slovenian mountains are low,
they are high in the Ore mountains and some of the other mountain ranges, which reflects the stronger influence
of Mediterranean storm tracks with high variability of extreme precipitation (Hofstétter et al., 2018) perhaps along

with non-linear runoff generation (Viglione et al., 2009).

As one moves inland in northern Europe from the Norwegian coasts towards the North European plain, MAF
decreases to values around MAF,=0.1 m3/s/km? due to a decrease in the Atlantic influence and increase of snow
processes resulting in late spring events with pronounced seasonality. As one moves southward from the Northeast,
CV increases and flood seasonality decreases in line with the increased influence of rain-on-snow and rain floods,
which tend to be more irregular than snowmelt floods alone.

Some of the continental regions of Europe (Hungary, Poland, Ukraine) are particularly sheltered by mountain
chains, resulting in low precipitation, both at the annual scale and for extreme events which translates into low
MAF and mostly high CV due to the more non-linear runoff generation as compared to wetter regions_(Novaaky
1991, Didovets et al., 2017, Ries et al., 2017).

In the Mediterranean, where floods tend to occur in autumn and winter, MAF is generally high, particularly in
Southern France, Slovenia and Croatia, Liguria (NW Italy), and parts of northern Italy, due to heavy autumn storms

stemming from the warm sea-surface temperatures. In most regions adjacent to the Mediterranean where these

storms predominate, annual floods also have high CV due to the interannual variability of these storms. this-alse

resulis-in-a-high-C\—altheugh-However, this is not the case in Slovenia and Croatia, due to the consistency of
these storms between years (Xoplaki et al., 2004, Salinas et al., 2014).

4.2 Interpretation of controls of flood moments

The degree to which the moments change with catchment area is a fingerprint of the spatial variability of the-flood
producing processes (Merz et al., 2003, Sivapalan et al., 2005, Merz and Bldschl, 2009, Viglione et al., 2010)
(Table 3, Figure 4). As expected, there is a strong scaling effect of MAF with area. The strongest decrease of MAF
with area is observed for the Mediterranean region, which points to the important role of small scale, convective
storms, patchy runoff generation processes, and more generally flash floods there (Gaume et al., 2009; Marchi et
al., 2010; Amponsah et al., 2018). On the other hand, the smallest decrease with area is found in the Central-
Eastern and Northeastern regions, where snowmelt is a dominant flood driver. Snowmelt tends to occur over larger
regions simultaneously, which results in a smaller reduction of MAF with catchment scale—Fhis-is-censistentwith
(Bloschl and Sivapalan-et-al., {1997); and-Merz and Bloschl, {2003). The relatively weak decrease in the Atlantic
regions suggests an important role of large-scale precipitation from large frontal systems as would be expected
(Kemter et al., 2020).

CV decreases with area in most of the regions. Again, the strongest decrease is observed for the Mediterranean
region, which can be interpreted in terms of similar aggregation processes as in the case of MAF. Additionally,
the degree of non-linearity in runoff generation may decrease with catchment size (Sivapalan, 2003) as threshold
processes associated with Hortonian runoff generation or soil storage homogeneity may be more relevant in small
catchments while in large catchments these threshold effects may be smoothed out, and spatiotemporal aggregation

may introduce additional scale effects (Penna et al., 2011; Rogger et al. 2012). On the other hand, the smallest
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decrease occurs in the Northeastern region and in the Central Eastern region, where the estimated regression
coefficient is even positive. While both relationships are not significant, they do point towards the larger scale of
snowmelt processes relative to other flood generation processes along with more linear runoff generation processes

and the larger role of baseflow there (Bl6schl and Sivaplan, 1997, Grillakis et al., 2016).

The strongest Spearman correlation (in absolute value) for MAF (in—absolute—value)-is observed for the
Mediterranean region, while the weakest is observed in the Central-Eastern region (Table A.1.5), in line with the

difference in the scale dependence between these two regions (Table 3). For CV (Figure 6) the spatial differences
of the correlations between the regions are also consistent with the scaling regressions of Table 3 but, overall, they
are smaller than those of MAF. This may be related to possible non-monotonous relationships between CV and
area as suggested by Smith (1992), and more complex aggregation effects (Bloschl and Sivapalan 1997), although
more research is needed on the transferability of this finding.. The weakest relationships are found in Central-

Eastern Europe, where snow is important, and in the Alpine region where the spatial variability of other controls

is particularly large (r=0.09 and -0.03, respectively).

As compared to the other controls on the flood moments, area plays an important role for MAF but less so for CV
(Table A.1.5, Figures 7 and 8). In the Alpine region the Spearman correlations between MAF and area are larger
than those between area and other covariates (Table A.1.5) and it has the large contributions to the fit of the
regional model (Figure 7). However, this may not be because of the high explanatory power of area but of the
lower explanatory power of the other covariates likely related to the complex topography. For CV, area has some
explanatory power in the Atlantic and Mediterranean regions (Figure 6) and is used in most regional regression
models, but the role of climate variables such as precipitation and aridity is always much higher than that of area
(Figure 6, Figure 8) suggesting that aggregation effects are relatively less important at the European scale than at
the regional scale. This finding is likely related to the larger spatial variability of climate variables within Europe

than within a region.

Precipitation characteristics are represented by three variables, which are strongly correlated among themselves
(Figure 5). The Spearman correlations between MAF and the precipitation characteristics are positive for Europe
and in individual regions while for CV and precipitation they are negative (Figure 6). MAP is a surrogate for the

combined effects of event precipitation, antecedent soil moisture and the geomorphological processes of landscape

evolution that affect runoff generation and routing, whereas P95 and Pmax are more representative of

characteristics of event precipitation alone. Pmax is representative of a more extreme part of the daily precipitation

distribution than P95. The correlations of MAP and P95 with MAF,, are similar, but generally larger than that of

Pmax which may be due to annual maxima precipitation events with low antecedent soil moisture storage. Pmax

capturing-antecedent-sotbmoisture-less—While regional studies have suggested that MAP is a better predictor of
MAF than other precipitation variables (Mimikou and Gordios, 1989; Merz and Bldschl, 2009) this does not seem

to be the case at the European scale (see e.q. Figure 6).

On the other hand, CV is always a-better correlated with MAP than with P95 and Pmax, reflecting the decreasing

degree with which antecedent soil moisture is captured as one moves from MAP to P95 and Pmax, since MAP

better captures soil moisture conditions. Drier catchments can produce larger CVs because the antecedent soil

moisture conditions tend to vary more than they do in humid catchments_with consistently high soil moisture
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storage. ;-seConsequently, some of the events in drier catchments may be a combination of both large precipitation

and wet initial conditions such producing much larger floods than usual (Farquharson et al., 1992, Viglione et al .,
2009; Kemter et a., 2020). This effect is also represented in the negative correlations between CS and MAP (r=-
0.35) and CS and P95 (r=-0.34) (Table A.1.5) in the Mediterranean, indicating a decrease in skewness for

comparatively wetter catchments, which is related to a particularly large potential for this contrast in initial

conditions.

In the context of multiple controls, rainfall (in this case only P95 was considered) is always among the important
variables for explaining MAF (Figure 7). However, in the case of CV, aridity is vastly more important, as the
combination of evaporation and precipitation better captures the typical initial condition state of the catchments
before floods. Also, arid regions tend to have greater interannual precipitation variability (Fatichi et al., 2012), but
if a region becomes drier its interannual precipitation variability will not necessarily increase (Pendergrass et al.,
2017). On the other hand, drying of a region may imply more non-linear runoff generation processes and thus
enhance the CV of floods (Viglione et al., 2009).

Mean spring and winter temperature were used in the analysis to capture snow processes because of the better data

availability. Chaoimh (1998) and Bednorz (2003) identified correlations between spring and winter temperature

with snowpack-depth and days with snow-cover, and more generally air temperature is often used as an indicator

of snowmelt (Ohmura, 2001). Future work could enrich the analysis by using snow data directly, although remote

sensing products may have some limitations related to the duration (see e.g. Parajka and Bldschl, 2012). As would

be expected, the Spearman correlations between temperature and MAF, and CV are comparatively high in the

Northeastern and Central-Eastern region_(higher for spring temperature), where snow-processes are important for

floods. Temperatures are negatively correlated with MAF, and positively correlated with CV. The colder it is, the
more precipitation is stored as snowpack in winter, leading to, on average bigger snowmelt floods in spring/early
summer, but they are less variable (smaller CV) which may be related to the smaller interannual variability of air
temperature as compared to that of precipitation (Giorgi et al. 2004). Snowmelt floods are physically limited by
the amount of water stored as snow and solar radiation. This upper limit also contributes to less extreme and more
regular floods (Merz and Bloschl, 2003). In these cold regions, temperatures are better correlated with MAF, and
CV than with the precipitation variables and almost as well as with aridity, although this depends on the moment

and the region.

Winter temperatures add explanatory power to the regional regression models of MAF in the Central-Eastern
region, but a rather small contribution for the other regions (Figure 7). For CV, temperatures explain some of the
spatial variability in the Central-Eastern and the Atlantic region, but generally its contribution is low (Figure 8).
On the one hand, winter temperature may not be a perfect proxy for the spatial distribution of flood-relevant
snowmelt,- On-the-other-handwhereas; the other variables may more directly capture runoff generation processes.

Soil moisture, PET and the aridity index (Al) are related to long-term water balance characteristics and are
significantly correlated with the estimated flood moments for almost all regions. Soil moisture is positively
correlated with MAF, and negatively correlated with CV, whereas the opposite holds for PET and Al. Soil
moisture and MAP are highly correlated, which is related to soil moisture being driven by long term precipitation.

The lower the wetness state, the more room for variations in the runoff coefficients between years, and therefore
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flood peaks and thus high CV (Viglione et al., 2009). For PET and Al, the highest correlations with MAF, are
observed in the Northeastern, the Atlantic and the Mediterranean region. Al is strongly correlated with CV (Figure
6) and a particularly important variable for capturing the spatial variability of CV in regional regression models
(Figure 8). High aridity implies a combination of low precipitation and high evaporation, leading to comparatively
dry antecedent conditions. Al may also capture the non-linearity of runoff-generating mechanisms relevant for CV
(Bloschl and Sivapalan, 1997). Additionally, precipitation tends to be more variable in the arid regions of Europe
(e.g. Giorgi et al., 2004), so there may be both a precipitation and runoff generation effect, the latter being related
to the stronger randomness of the runoff coefficient. The effect of the large variability of runoff coefficients
between years in the arid catchments of Europe (large Al) is also apparent in the positive correlations with CS in

the Mediterranean and Central-Eastern region (r=0.35 and 0.50, respectively) (Table A.1.5)

Topography is included via slope and elevation in the present analysis, but the observed effects of topography on
the flood moments are most likely indirect. Precipitation characteristics are highly correlated with topographical
indices (Figure 5) and their spatial patterns are very similar (not shown), suggesting little unique effect. Faster
routing (flow velocity) due to topography does not seem to be a relevant factor for the spatial patterns of flood
moments at the European scale, given that response times may be more closely related to geology than topography

at the regional scale (Gaal et al., 2012).

The fraction of area covered by forest (LUF) is positively correlated with MAF, which is not consistent with the
usual expectation of higher infiltration capacities and therefore smaller floods peaks for forest soils (Sun et al.,
2018). At the European scale, apparently, this effect is masked by the correlations between forest cover and
precipitation. In high elevation regions of Europe forest cover tends to be high as these areas have not been
deforested for agricultural purposes, and these are also the areas of high rainfall because of topographic effects on
rainfall. Additionally, runoff coefficients may be higher in these high rainfall areas due to shallower soils and

water tables notwithstanding the forest cover (Merz et al., 2006, Rogger et al., 2017).

The fraction of area covered by water bodies reduces both MAF, and CV. The former is consistent with retention
effects while the relationship between CV and water body size may be non-linear (increasing CV up to a water

body threshold and decreasing CV beyond as shown by Wang et al., 2017 _for reservoir effects) which is not

captured by Spearman correlation. However, in comparing natural lakes and reservoirs it should be noted that

reservoirs tend to introduce more non-linearity in flood frequency behaviour because of a threshold effect when

the spillway is activated.

Soil texture, when interpreted in terms of pedotransfer functions (Picciafuoco et al., 2019), is expected to affect
infiltration of event rainfall. Coarse soils (Stex=1) are therefore expected to be associated with smaller MAF, than
fine soils (Stex=5) but the data show no consistent relationship. In a similar vein, the data suggest that coarse soils
tend to be associated with small CV, which contrasts what one would expect by reasoning in terms of runoff
generation processes. For coarse soils one would expect that, for small events, most of the water infiltrates but
when a threshold is exceeded the rainfall starts to run off from the surface, thus leading to larger CV relative to
soils without threshold behaviour (Rogger et al., 2013). One reason for observing the opposite are the correlations
between MAP and Stex within the regions which range between -0.08 and -0.36, i.e., coarse soils would be

associated with high precipitation, which would explain large MAF and small CV. Apparently at the scale of an
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entire continent, the soil characteristics (at least the texture available here) are less important than climate variables.
The rather low explanatory power of soil texture and land use for hydrological response at the regional scale is a
general concern that also affects the estimation of other variables in the context of predictions in ungauged basins
(Bléschl et al., 2003).

While here we examined monotonic relationships and linear relationships, it would also be worth to explore non-
monotonic relationships between flood moments and covariates (see e.g. Bldschl and Sivapalan, 1997; Smith,
1992; Pallard et al., 2009). Possible approaches for modelling non-monotonic relationships include generalized
additive models (Rahman et al., 2018, Umlauf and Kneib, 2018) and Random forest regression (Desai et al., 2021).

The properties of the estimators of the investigated correlations and linear regressions depend on assumptions
which are only partly met in this analysis. Tables A.1 and A.2 in the appendix report the maximum Variance
inflation factors [VIF] for each regional regression model from section 3.5, as well as p-values of hypothesis tests
for the homoscedasticity and normality of the residuals. While the VIFs are generally low (indicating a low degree
of multicollinearity), the assumption of homoscedasticity and normality of the residuals are generally not met for
many models, which may be related to the large number of catchments. Additional diagnostic plots for the regional
regression models can be found in the supplementary material. The OLS-estimator still remains unbiased and
consistent under these conditions (Hayashi, 2000), but no inferences such as significance tests of individual

coefficients should be made from standard properties of the OLS-estimator. In Tables A.1 and A.2 we report the

standard errors of the coefficient estimators, which should be interpreted with care and are thus not used for

hypothesis tests. The inclusion of additional covariates could help to reduce heteroscedasticity, but would lead to
less parsimonious models. Alternatively, hHeteroscedasticity could be reduced by considering different regional

partitions of Europe.

4.3 Implications

Even though the main objective of this paper is to investigate why-process controls on spatial patterns of flood

moments eceurin Europe, the results in Section 3.6 may be considered as a benchmark for flood moment estimation
in ungauged basins at the European scale. The median absolute normalized error (ANE) of MAF and CV is 0.37
and 0.18, respectively. This is relatively large as compared to similar -but-smater-scale;-studies at smaller spatial
scales in the literature ef-on flood regionalization, that-which typically give-yield ANE of 0.35 for the 100-yr

specific flood and smaller values for the MAF (Salinas et al., 2013; Rosbjerg et al., 2013). The fit of the regional

models ehanges-varies between the regions, which reflects_differences in the relative importance of the flood-

generating processes changes-between the regions. For the case of MAF, R2 is largest in the Atlantic and
Mediterranean regions (Table A.1.1) and for CV it is largest in Eastern and Mediterranean regions. Clearly, there
is no model applicable to all regions of Europe. The regions here were derived based on previous climatic partitions
of Europe and guided by flood seasonalityies rather than optimal predictive performance of the regional models.
The results depend on the regional partitioning of Europe and will look different for different regionspartitioning
schemes. If the aim of the study was optimal predictive performance of the regional models, the partitioning could
be derived based on the data, for example via cluster analysis or regression trees (see e.g. Laaha and Bldschl,
2006).
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Overall, the findings of this paper suggest that, at the continental scale, climate variables dominate over land

surface characteristics as-in their control of the spatial patterns of flood moments. Given the evidence for the

coevolution of landscape and climate (Perdigdo and Bloschl, 2014, Troch et al., 2015) but the general lack of
predictive power of variables related to land use, soil and geology for hydrological quantities that one would expect
to be very relevant at individual sites (Merz and Bléschl, 2009, Rogger et al., 2017), there is a need for new types

of land characteristics,-that-are consistent across countries that can explain spatial differences in flood-generation

processes better. Merz and Bléschl (2009) illustrate this netien-need through by-a comparison of two Austrian
catchments that have strikingly similar geological characteristics in terms of percentage of area of certain
geological types, but vastly different rainfall-runoff response-behaviour. At the plot, hillslope and catchment
scales, runoff generation is strongly controlled by soil properties, including their control infiltration and saturation
capacities (Peschke and Sambale, 1999; Scherrer et al., 2007; Rogger et al., 2012; Picciafuoco et al., 2019). There
have been attempts to relate or upscale local soil characteristics and regional ones (e.g., Schmocker-Fackel et al.,
2007). One successful example is the HOST classification used in the UK (Boorman et al., 1995; Lilly et al., 1998;
Maréchal and Holman, 2005), which has been demonstrated to be able to capture runoff generation processes and
their spatial variability. Of course, scaling becomes important as well, ard-as land-use may have larger explanatory

power in small catchments than in larger ones (Rogger et al., 2017).

The finding that climate is the main control for the spatial variability of the flood moments, within the range of the
variables considered, also has some implications for quantifying the temporal flood variability. If the spatial
patterns of flood behaviour at the continental scale are primarily driven by climatic influences, their temporal
fluctuations might be propagated to floods (Sraj et al., 2016, Bloschl, Hall et al., 2019, Bertola et al., 2020, Kemter
et al., 2020) On the other hand: flood changes of small local streams may be much more controlled by land use

changes, such as urban development and deforestation (Rogger et al., 2017), only a few of which are included in

this study (average catchment size of 2,480km?). One should however be careful in trading space for time in the

context of change, i.e. in assuming that future flood characteristics in one region will be similar to the present ones
in another region because the climate in the former will be similar to the present climate in the latter. This is
because of the space-time asymmetry discussed in Perdigdo and Bléschl (2014), i.e. the fact that, because of the
celerity of coevolution, spatial and temporal statistics are not necessarily the same. For example, based on data in
Austria, Perdigdo and Bloschl (2014) found that a 1% increase in precipitation as one moves in space leads to a
2.3% increase in flood peaks, while the same increase in precipitation as one moves in time leads to an increase of
only 0.6%. Overall, this paper is a step toward a better process-based understanding of the statistical properties of
annual floods in Europe. The process controls identified here can assist in choosing suitable covariates, both for
stationary and nonstationary flood frequency models. A possible extension of the analysis presented here could be

the consideration of non-stationarities in flood moments, for example in the spirit of Serago of Vogel (2018).

Bloschl, Hall et al. (2019) have found that significant trends do exist in the mean flood of the data set in 28.02%

of the stations. Trends affect the estimation of flood moments. For example the detrended data tend to exhibit

smaller CVs than the raw data, while the effect on the sample mean may be smaller.

-Further mixed-distributions analyses could consider different subpopulations of floods associated with specific

generation mechanisms and yield additional insights regarding spatial patterns of process controls (e.g. Fischer et
al., 2016, Tarasova et al., 2019), e.g. as indicated by their seasonality (Bloschl et al., 2017). An-approach-based-en
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moments-of-mixed-populations-Additionally, we believe that a more comprehensive representation of catchment
functioning that goes beyond soil types has the potential to further improve the-our understanding of process

controls on flood probabilities.

5. Appendix

Table A.1 Regression coefficients (standard errors), model error variance, R? and maximum variance inflation factor (VIF) of
regional regression models for MAF. Last two columns contain p-values for the Breusch-Pagan (BP) and the Shapiro-Wilk test
(SW). Statistically significant results (small p-values) indicate heteroscedasticity and non-normality of the residuals
respectively. All numbers are rounded to two digits. For details on VIF see e.g. Weisberg (2005) and for details on the
hypothesis tests see e.g. Helsel (2020).

Logio MAF  (Intercept) Logio A Logio P95 TWin Al sigma R2 VIF BP SW

Europe  -2.18(0.09) -0.16(001) 161(0.07) -0.02(0.00) -0.04(0.02) 031 047 209 000 0.00
Northeastern -1.76(0.42) -0.14(0.02) 1.22(0.31) -0.05(0.01) -0.33(0.08) 0.4 041 3.89 000 0.00
Atlantic ~ -3.31(0.11) -0.13(0.01) 2.54(0.09)  0.01(0.00) 026 051 1.04 000 0.00
Central-Eastern -4.54(0.62) -0.09(0.03) 3.33(0.59) -0.07(0.01) 0.10(0.07) 025 033 1.61 0.00 0.00
Alpine  -0.68(0.21) -0.18(0.02) 0.47(0.14) -0.16(0.06) 027 0.27 246 0.00 0.2

Mediterranean -1.09(0.26) -0.22(0.02) 0.94(0.19) 0.02(0.01) -0.16(0.04) 0.32 0.47 3.24 0.00 0.09

Table A.2. Regression coefficients (standard errors), model error variance, R? and maximum variance inflation factor (VIF) of
regional regression models for CV. Last two columns contain p-values for the Breusch-Pagan and the Shapiro-Wilk test.
Statistically significant results (small p-values) indicate heteroscedasticity and non-normality of the residuals respectively. All
numbers are rounded to two digits. For details on VIF see e.g. Weisberg (2005) and for details on the hypothesis tests see e.g.
Helsel (2020).

Logi CV (Intercept) Logio A Logio P95 TWin Al sigma R2 VIF BP SW

Europe  -0.49(0.05) -0.05(0.00) 0.06(0.03) 0.00(0.00) 0.22(0.01) 0.15 029 2.09 000 0.00
Northeastern -1.31(0.10) -0.02(0.01)  0.54(0.08) 047(003) 01 048 173 025 014

Atlantic ~ -0.40(0.02) -0.05(0.01) -0.02(0.00) 0.21(0.01) 0.14 028 1.05 001 0.00
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Central-Eastern -2.43(0.29) 1.42(0.29) -0.04(0.00) 0.60(0.04) 013 061 1.37 010 0.06
Alpine 050(0.10) -0.05(0.01) -0.64(0.07) 0.01(0.00) 0.08(0.03) 0.3 0.37 2.76 0.9 0.8

Mediterranean  0.23(0.11) -0.08(0.01) -0.45(0.08) 0.12(0.02) 0.4 055 229 0.00 0.42

810 Table A.3. Measure for general dominance (additional contributions) for MAF — indicating general dominance. For each row:
highest value indicates most important variable in terms of improvement of the model fit for the given regression, second
highest indicates second most important, lowest indicates least important. Summing over measures gives R? of regression.

Logio MAF Logi A Logio P95 TWin Al R2
Europe 0.12 0.25 0.01 0.09 0.47
Northeastern 0.14 0.1 0.03 0.14 0.41
Atlantic 0.08 0.43 0 0.51
Central-
Eastern 0.06 0.13 0.13 0.01 0.33
Alpine 0.15 0.07 0.06 0.27
Mediterranean 0.2 0.15 0.03 0.1 0.47

815

Table A.4. Measure for general dominance (additional contributions) for CV — indicating general dominance. For each row:
highest value indicates most important variable in terms of improvement of the model fit for the given regression, second
highest indicates second most important, lowest indicates least important. Summing over measures gives R? of regression.

Logse CV Logio A L;ggo TWin Al R2
Europe 0.03 0.04 0.01 0.21 0.29
Northeastern 0.02 0.05 0.42 0.48
Atlantic 0.04 0.05 0.19 0.28
Central-
Eastern 0.03 0.14 0.44 0.61
Alpine 0.03 0.2 0.01 0.13 0.37
Mediterranean 0.09 0.2 0.26 0.55

820 Table A.5: Spearman-Correlation between statistical moments of flood series, including mean specific discharge MAF, mean
specific discharge normalized to a catchment area MAF, of a=100km?, the coefficient of variation CV, the coefficient of
skewness CS, and catchment attributes. Statistically significant estimates (at the 5% level) are printed in bold.

Europe Northeastern Atlantic Central-Eastern Alpine Mediterranean

MAF MAF, CV CS MAF MAF, CV CS MAF MAF, CV CS MAF MAF, CV CS MAF MAF, CV CS MAF MAF, CV CS

A -0.44 -0.12 -0.13 -0.13 -0.47 0.01 -0.16 -0.07 -0.31 0.01 -0.19 -0.08 -0.23 -0.01 0.09 0.17 -0.40 0.02 -0.03-0.15 -0.48 0.03 -0.25-0.18
MAP 062 059 -0.33-0.01 0.18 0.15 -0.23 0.15 0.64 0.67 -0.33-0.03 0.25 0.24 -0.49 -0.38 0.34 0.26 -0.61-0.13 0.42 0.48 -0.68 -0.35
P95  0.64 060 -0.22 0.02 0.21 0.02 -0.10 0.17 0.67 0.66 -0.22 0.00 0.39 0.31 -0.19-0.26 0.32 0.24 -0.58 -0.14 0.49 0.52 -0.59 -0.34
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825

830

835

840

845

Pmax
TSpr
TWin
SM
PET
Al
Elev
Slope
LUF
LUW

0.61
-0.22
-0.04
0.58
-0.05
-0.55
0.53
0.63
0.46
-0.30

0.55
-0.22
-0.07
0.57
-0.03
-0.53
0.55
0.65
0.45
-0.16

-0.05 0.12 0.19
0.26 0.00 -0.31
0.04 -0.06 -0.04
-0.31 -0.03 0.17
0.39 0.14 -0.30
0.46 0.07 -0.36
0.08 0.20 0.35
-0.01 0.16 0.34
-0.10 0.06 0.30

-0.27 -0.15 -0.25

-0.04
-0.35
-0.20
0.16
-0.33
-0.36
0.47
0.39
0.28
-0.21

-0.09
0.58 0.23
0.20 0.30
-0.14 0.19
0.60 0.22
0.62 0.12
-0.31 0.06
-0.36 0.04
-0.01 0.05

-0.22 -0.06

-0.29
-0.02
0.52
-0.23
-0.51
0.38
0.58
0.43
-0.19

-0.29
-0.03
0.55
-0.22
-0.53
0.44
0.62
0.45
-0.04

0.02 -0.14 -0.14
-0.23 -0.17 -0.28
-0.29 -0.05 0.28
0.34 0.03 0.02
0.38 0.04 -0.16
0.35 0.22 0.48
0.17 0.19 0.29
0.14 0.14 0.08
-0.20 -0.06 -0.55

0.20 0.53 052 0.14 0.17 030 0.22

-0.11
-0.33
0.28
0.07
-0.12
0.50
0.30
0.01
-0.55

-0.18 -0.23 0.36
0.50 0.41 -0.17
-0.52 -0.31 -0.11
-0.4 -0.33 0.26
0.68 0.45 -0.16
0.63 0.50 -0.39
0.21 0.16 0.19
-0.01 0.02 0.25
-0.39 -0.24 0.27

-0.50 -0.23 -0.16

0.26
-0.14
-0.10
0.22
-0.11
-0.31
0.16
0.24
0.16
0.03

-0.40 -0.09 0.57
0.38 -0.04 -0.09
0.10 -0.12 0.12
-0.56 -0.10 0.45
0.11 -0.10 -0.11
0.50 0.08 -0.37
-0.47 0.00 0.06
-0.40 -0.01 0.33
-0.26 0.03 0.40

-0.19 -0.14 -0.40

0.49
-0.12
-0.04

0.50
-0.21
-0.43

0.02

0.37

0.32
-0.10

-0.06 -0.06 0.29 0.11 -0.12 -0.07 0.37 0.25 -0.06 -0.05 0.17 -0.01 0.29 0.32 0.53 0.31 -0.02 -0.06 0.23 0.01 -0.22

Table A.6: R? of regional regression models of MAF with catchment area in a double logarithmic relationship Eg. (5) and
analogous equations for CV; and a semi logarithmic relationship for CS, i.e. CS = log A Bcs.

Europe Northeastern Atlantic ~ Central-Eastern Alpine Mediterranean
0.188 0.190 0.109 0.066 0.188 0.234
0.015 0.009 0.028 0.007 0.007 0.084
0.010 0.005 0.006 0.029 0.020 0.037
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