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Interactive comment on “The benefit of using an ensemble of seasonal 

streamflow forecasts in water allocation decisions” 

Alexander Kaune et al. 

a.kaune@futurewater.nl 

 5 

Reply to Anonymous Referee #1 

 
We thank the reviewer for taking the time to review the manuscript and for the helpful comments and suggestions. Here we 

provide answers to the specific comments as well as indicating how we propose to improve the manuscript to address the 

issues raised by the reviewer. 10 

 

General comments 

Streamflow forecasts can substantially contribute to the efficiency of water resources system. Yet, the efficiency improvements 

are influenced by multiple factors, such as the quality of forecasts, the characteristics of the system, and the 

optimization/simulation models for system operation. This paper has conducted an investigation of the use of ensemble 15 

seasonal streamflow forecasts in water allocation decision-making. The forecasts are generated by the FoGSS model; the 

water allocation is through a simulation model (Figure 3 on Page 23); and the case study is for the Murrumbidgee basinin 

Australia. In general, the paper is interesting with the results and methods clearly presented. There are a few comments for 

further improvements of the paper.  

 20 

1. First of all, is it possible to conduct the system operation using perfect forecasts? If so, the performance under perfect 

forecasts would serve a benchmark, i.e., upper bound, in the analysis. Specifically, it would illustrate the maximum 

benefit from the use of forecasts. In the analysis, the paper has analyzed the performance under climatology. 

Conceptually, it shows the lower bound of the system performance when no forecasts are available. The gap between 

the lower and upper bounds would highlight the potential benefit due to the use of streamflow forecasts.  25 

 

Reply: We agree that using the perfect forecast serves as an upper bound benchmark for assessing the performance of forecast 

information, with the performance under climatology soften used as a lower bound benchmark. We would like to underline 

that we have indeed used observed inflows into the reservoirs as perfect information forecasts. This is clearly outlined in the 

methodology (starting line 30 on page 10): “Water allocation decisions for General Security (GS) were emulated for the 1982-30 

2009 period using four datasets of expected 30inflows to the reservoir to determine water availability:(i) observed inflow 
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(considered as perfect information); (ii) the conservative inflow (or reference information as currently used by the decision 

maker); (iii) the FoGSS seasonal forecast based on POAMA, and (iv) the FoGSS seasonal forecast based on ESP+.  

 

As suggested by the reviewer, we also use the perfect forecast information as a benchmark, e.g. in the calculation of Root 

Mean Square Difference (𝑅𝑀𝑆𝐷) statistic, which was used to evaluate the performance of the allocated water obtained with 5 

the expected inflows against the allocated water obtained with the observed inflows (perfect information) for dry and wet 

years. As a lower bound for evaluating the performance of the decision model as informed by the seasonal forecast we use the 

conservative inflow prediction. This is based on climatology and is in our opinion a useful benchmark as it is used in the 

current policy. For the evaluation of the seasonal inflow predictions provided by FoGSS we do apply a lower bound reference 

based on climatology, as explained on page 10, line 8. 10 

 

 

2. Secondly, the system is operated by a simulation model. According to Figure 3 on Page 23, the model involves a 

number of thresholds that are quite empirical. How are the thresholds determined for the case study? How is the 

sensitivity of the system performance to the thresholds? Are the values of the thresholds optimal (or sub-optimal)? 15 

Details on the setting of the simulation model, in particular the empirical thresholds, ought to be provided.  

 

Reply: In the water allocation model that we develop we have used parameters and thresholds based on established water 

allocation policy and that is used in the basin to establish water allocation decisions (e.g. volume of water allocated to the 

environment or estimated to be lost in conveyance). We agree that the sensitivity of these thresholds can be evaluated, as these 20 

will influence the allocation to general security users, which is the focus of this study. However, our objective is to evaluate 

the benefit of using the ensemble of seasonal streamflow forecasts to inform decision made within the context of the established 

water policy and regulations. Changing these parameters and thresholds would constitute a change to the policy. Further 

research could explore how changing water policy and regulations through changing thresholds influences the allocation 

decisions and what may be optimal values. As our intent is to explore the benefit of seasonal forecasts in informing decisions 25 

made in the context of the current policy, we apply the thresholds as defined in the existing policy. To clarify the origin of the 

thresholds, we propose to include the comment: “Note that decision thresholds are derived from the existing water allocation 

policy and regulations”.  

 

3. Thirdly, according to Figure 4, the actual water storage tends to be higher than the simulated storage. On Page 9, 30 

the difference is related to that “a constant factor is used (78%) to simulate the carry-over between water years”. 

This result highlights that the empirical thresholds can considerably influence the water allocation decisions and the 
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performance of the water resources system. Is it possible to test the optimality (or rationale) of this critical threshold 

(and also other thresholds) of the simulation model?  

 

Reply: We agree that this factor has an important influence on water allocation decisions as it determines the fraction of the 

amount of water allocated to farmers that they actually use. The constant factor value of 78% was obtained based on a 5 

performance evaluation between simulated carryover volumes and observed carryover volumes for the 2011-2016 period (this 

period was selected as prior to that a different water allocation policy was in place). Figure 4 clearly shows how in some years 

the carryover volume is overestimated (year 2013, 2014, and 2016) and in others it is underestimated (year 2012 and year 

2015) leading to an overall balance in the evaluated period. The bias in carryover volume for the 2011-2016 period is close to 

zero given a constant factor value of 78%. It is important to underline that the decisions of farmers to use less water than they 10 

are allocated within their entitlement is complex and depends on a range of factors that include not only water availability, but 

also economic factors and personal preferences. We agree that it would be interesting to extend this study by explicitly 

including the decisions of farmers and how this feeds back to the basin level allocation decisions. This goes beyond traditional 

optimisation of the threshold, as it would require for example developing agent-based models to incorporate farmers behaviour. 

We propose to extend the discussion in section 4.2 (also in response to the second reviewer) by adding the following paragraph: 15 

 

Allocation decisions made depend not only on the available water in reservoirs and the expected inflows, but also on 

the actual demand from the crops planted by farmers. In our study demand is taken as the sum of the entitlements of 

farmers, reduced by the use reduction factor we introduce. Given the water allocated to meet their entitlement, farmers 

will make their decisions on the crops they plant for the season. In the Murrumbidgee basin, farmers may, however, 20 

also trade the water they are entitled to; or store part of their allocation for use in the next season by deciding to leave 

it in the upstream reservoirs as carry-over (Horne, 2016). As a result, there are quite complex feedbacks as the decision 

to carry water allocated over to the next season will influence the allocation decisions at the basin level in that next 

season. Decisions made by the farmers on what and how much to crop are complex and depend on a range of factors 

that include the available water through allocation, but also economic factors and personal preferences. The 25 

allocation-use reduction factor we introduce to consider these decisions made by farmers, and we find a value an 

average use of 78% of water entitled to best emulate actual decisions made, on average. While this factor could be 

optimised mathematically, a detailed understanding of how farmers make decisions is then required. Línes et al (2018) 

develop a decision model based on interviews of farmers in the Ebro basin in Spain, showing that decisions of what 

to crop depends on their perception of water availability and will differ between seasons considered wet and seasons 30 

considered dry, as well as their aversity to risk and technological capacities. They find that the availability of 

information on available water as the season develops, such as provided through a seasonal forecast will influence 

perceptions of water availability and consequently cropping decisions. Further research into how farmers in the 
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Murrumbidgee basin make decisions using for example agent-based models (Wens et al., 2019) could shed more light 

on the influence on water allocations decisions made at the basin levels. 

 

Wens M., Johnson JM, Zagaria C. Veldkamp T. 2019. Integrating human behavior dynamics into drought risk 

assessment—A sociohydrologic, agent‐based approach. WIREs Water. https://doi.org/10.1002/wat2.1345  5 

 

 

4. Fourthly, stochastic optimization models are usually set up for reservoir operations using streamflow forecasts. For 

some examples, please refer to Labadie (2004, https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93)),Celeste 

and Billib (2009,https://doi.org/10.1016/j.advwatres.2009.06.008),Zhaoet al.(2012, 10 

https://doi.org/10.1029/2011WR010623), Turner et al.(2017,https://doi.org/10.5194/hess-21-4841-2017),and 

Anghilerietal.(2019,https://doi.org/10.1029/2019WR025280). One remarkable advantage of stochastic optimization 

models is the explicit handling of forecast uncertainty. Also, the system performance can be optimized, instead of 

being simulated. For the case study, is it possible to set up an optimization model? 

 15 

Reply: We thank the reviewer for this interesting comment. As indicated, and also demonstrated in the work cited and in the 

review of Labadie (2004), stochastic optimization can be applied in optimising water allocation with explicit consideration of 

uncertainty. To develop such a stochastic optimisation model would require establishing a (complex) objective function for 

water allocation and water utilisation in the basin. The results of such a study would be very useful to review the current water 

allocation policy and regulations. However, we believe that this is beyond the scope of our work as the optimisation of the 20 

policy itself is not the priority of our simulations. The focus of our research is to explore how water allocations could benefit 

through informing the existing policy and regulations using seasonal forecasts, rather than changing or optimising the policy. 

We believe this is important. The existing policy and regulations have in our understanding been established through careful 

consultation with the multiple stakeholders in the basin. It is our belief that research in how accepted and currently operational 

policies and regulations can benefit from the use of seasonal forecast information can encourage the uptake of seasonal 25 

forecasts being adopted in practice. 
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Interactive comment on “The benefit of using an ensemble of seasonal 

streamflow forecasts in water allocation decisions” 

Alexander Kaune et al. 

a.kaune@futurewater.nl 

 5 

Reply to Anonymous Referee #2 

 
We thank the reviewer for taking the time to review the manuscript and for the helpful comments and suggestions. Here we 

provide answers to the specific comments and indications of how we propose to improve the manuscript to address the issues 

raised by the reviewer. 10 

 

General comments 

This manuscript presents the benefit of using an ensemble of seasonal streamflow forecasts in water allocation decisions with 

an emphasis on those decisions in dry seasons and dry years. This is very important for farmers to choose which crop to plant 

and to decide on the area to be cropped. And also, the manuscript described the development of new approaches for the 15 

reservoir inflow estimates to replace the fixed inflow with the forecasted inflows, decision model to emulate the feedback loop 

between simulated reservoir storage and water allocation to irrigated crops, inflow forecasts, etc. The authors have briefly 

evaluated the approaches and identified effectively, and find that there is a quite much higher inconsistency and lower accuracy 

in estimating water available for allocation during dry seasons and dry years. This is a good and new insight of present 

manuscript to enhance our understanding of the water allocation for the farmers. The subject is relevant to the journal, the 20 

manuscript is well written and structured.  

 

1. However, at present, the focus of manuscript is not particularly strong and it seems that the authors are not entirely 

sure about the key message they wish to convey. There are some aspects are suspected as follows: Firstly, the 

equations (on pages 6-8) to determine the available water for allocation needs more variables related to complicated 25 

relationships among the water demands and feedback loop among the reservoirs.  

 

 

 

 30 
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Reply: We appreciate the comment of the reviewer on the clarity of the message we would like to convey. To strengthen that 

message, we propose to revise the last sentence of the abstract as follows: 5 

“Our results show that seasonal streamflow forecasts can provide benefit in informing water allocation policies, particularly 

through earlier establishing final water allocations to farmers in the irrigation season. This allows them to plan better and use 

water allocated more efficiently”. 

 

We also propose to make the three key messages accompanying the paper clearer: 10 

 

1. The existing water allocation policy in a highly regulated basin is emulated in a decision model, and subsequently 

extended to inform allocation decisions with a seasonal streamflow forecast. 

2. Using the FoGSS seasonal forecast to inform allocation decisions is shown to allow final annual allocations to 

farmers to be established one and a half months earlier than under the current policy. This is important as it helps 15 

farmers plan better and use allocated water more efficiently. 

3. FoGSS forecasts derived from the POAMA GCM data perform marginally better than those derived from 

resampled climatology (ESP+); though forecast uncertainty requires a trade-off between better estimates of available 

water and the cost of downward revisions of water allocations to farmers. 

 20 

Regarding the equations to determine the available water for allocation, these have been established to include several variables 

such (in order of priority); water allocated to meet environmental needs; town water allocations; high security allocation; 

irrigation, conveyance losses, and finally general security allocation, which is allocation that is the focus of this research. Note 

that the water available for allocation is the total volume in the (two) reservoirs, plus the expected inflow which is derived 

from the streamflow forecast. While we agree that there quite complex interactions, we have established these equations based 25 

on the current water policy and regulations in the basin. In doing so we have purposefully kept the equations as simple as 

possible while staying true to the policy. Through comparison with recorded allocation decisions made under the existing 

policy we demonstrate that these decisions are reasonably well emulated.  

 

2. Secondly, it is necessary to discuss the nonlinear processes of higher water demands and tradeoffs among the water 30 

users and reservoirs behind dams in the study area in dry seasons and dry years. These processes are suggested to 

presented more in detail in the context “4.2 To what degree does the seasonal forecast help in the decision process?”. 
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Reply: We agree that the interaction between water demand and availability, and tradoffs made is highly complex. We propose 

to extend the discussion in section 4.2 to include these interactions. The following paragraph will be added to Section 4.2. 

 

Allocation decisions made depend not only on the available water in reservoirs and the expected inflows, but also on 

the actual demand from the crops planted by farmers. In our study demand is taken as the sum of the entitlements of 5 

farmers, reduced by the use reduction factor we introduce. Given the water allocated to meet their entitlement, farmers 

will make their decisions on the crops they plant for the season. In the Murrumbidgee basin, farmers may, however, 

also trade the water they are entitled to; or store part of their allocation for use in the next season by deciding to leave 

it in the upstream reservoirs as carry-over (Horne, 2016). As a result, there are quite complex feedbacks as the decision 

to carry water allocated over to the next season will influence the allocation decisions at the basin level in that next 10 

season. Decisions made by the farmers on what and how much to crop are complex and depend on a range of factors 

that include the available water through allocation, but also economic factors and personal preferences. The 

allocation-use reduction factor we introduce to consider these decisions made by farmers, and we find a value an 

average use of 78% of water entitled to best emulate actual decisions made, on average. While this factor could be 

optimised mathematically, a detailed understanding of how farmers make decisions is then required. Línes et al (2018) 15 

develop a decision model based on interviews of farmers in the Ebro basin in Spain, showing that decisions of what 

to crop depends on their perception of water availability and will differ between seasons considered wet and seasons 

considered dry, as well as their aversity to risk and technological capacities. They find that the availability of 

information on available water as the season develops, such as provided through a seasonal forecast will influence 

perceptions of water availability and consequently cropping decisions. Further research into how farmers in the 20 

Murrumbidgee basin make decisions using for example agent-based models (Wens et al., 2019) could shed more light 

on the influence on water allocations decisions made at the basin levels. 

 

Wens M., Johnson JM, Zagaria C. Veldkamp T. 2019. Integrating human behavior dynamics into drought risk 

assessment—A sociohydrologic, agent‐based approach. WIREs Water. https://doi.org/10.1002/wat2.1345  25 

 

 

3. Thirdly, the better quality of figures in the text and supplementary materials are suggested to provide. 

Reply: We will make sure quality of the figures will be improved and will include these to a higher resolution. 

 30 
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Correspondence to: Alexander Kaune (a.kaune@futurewater.nl) 

Abstract. The area to be cropped in irrigation districts needs to be planned according to the allocated water, which in turn is 

a function of the available water resource. Initially conservative estimates of future (in) flows in rivers and reservoirs may lead 

to unnecessary reduction of the water allocated. Though water allocations may be revised as the season progresses, 

inconsistency in allocation is undesirable to farmers as they may then not be able to use that water, leading to an opportunity 15 

cost in agricultural production. We assess the benefit of using reservoir inflow estimates derived from seasonal forecast datasets 

to improve water allocation decisions. A decision model is developed to emulate the feedback loop between simulated reservoir 

storage and water allocations to irrigated crops, and is evaluated using inflow forecasts generated with the Forecast Guided 

Stochastic Scenarios (FoGSS) model, a 12-month ensemble streamflow forecasting system. Two forcings are used to generate 

the forecasts: ESP (historical rainfall) and POAMA (calibrated rainfall forecasts from the POAMA climate prediction system). 20 

We evaluate the approach in the Murrumbidgee basin in Australia, comparing water allocations obtained with an expected 

reservoir inflow from FoGSS against the allocations obtained with the currently used conservative estimate based on 

climatology, as well as against allocations obtained using observed inflows (perfect information). The inconsistency in 

allocated water is evaluated by determining the total changes in allocated water made every 15 days from the initial allocation 

at the start of the water year to the end of the irrigation season, including both downward and upward revisions of allocations. 25 

Results show that the inconsistency due to upward revisions in allocated water is lower when using the forecast datasets 

(POAMA and ESP) compared to the conservative inflow estimates (reference) which is beneficial to the planning of cropping 

areas by farmers. Overconfidence can, however, lead to an increase in undesirable downward revisions. This is more evident 

for dry years than for wet years. Over the 28 years for which allocation decisions are evaluated, we find that the accuracy of 

the available water estimates using the forecast ensemble improves progressively during the water year; especially one and a 30 

half months before the start of the cropping season in November. This is significant as it provides farmers additional time to 

make key decision on planting. Our results show that seasonal streamflow forecasts can provide benefit in informing water 
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allocation policies, particularly through earlier establishing final water allocations to farmers in the irrigation season. This 

allows them to plan better and use water allocated more efficiently. 

Keywords: Hydrological information, water scarcity, medium term planning decisions, irrigated agriculture. 

1 Introduction 

Allocating water is the process of sharing the available water among claimants over a period of time (Hellegers and Leflaive, 5 

2015; Le Quesne et al., 2007). Basin authorities are responsible to allocate water among different users; including agriculture, 

cities, industry and the environment. The available water in rivers and reservoirs, and the demand placed on it, may vary over 

time and space due to climate variability, climate change and population growth. Hence, allocating the available water poses 

a challenge for decision makers, especially in increasing drought and water scarcity conditions. 

Basin authorities can allocate water following a demand-based approach. This consists of reviewing the expected water 10 

demand in the basin at the start of each water year and allocating the required volume (Linés et al., 2018). Over the water year 

the initial allocation may, however, be revised depending on how the availability of water in reservoirs and from upstream 

catchments evolves. In other basins the water availability is initially reviewed before allocating water. Allocation of water to 

meet the entitlements of the license holders is based on the estimate of the available water, which is made using the observed 

stock in the reservoirs at the time of making the decision, as well as the expected inflow. 15 

In Australia, the water allocation process is governed by clear water policy and regulations at basin level, such as defined in 

the Murray-Darling Basin Plan (Australian government, 2008). The Murray-Darling river system is highly regulated, 

especially in the basins in New South Wales (Ribbons, 2009). Predicting the inflow into the reservoirs is key to adequately 

allocate water, especially for allocation to irrigated agriculture. However, conservatively low estimates of the expected inflow 

based on climatology are currently used at the beginning of the water year to estimate the available water for the coming 20 

season. As the irrigation season progresses, the estimate of available water may be revised. Given the conservative initial 

estimate the revision is typically upwards, with consequent upward revisions in the water allocated during the year. For most 

years the allocated water is set too low at the beginning and is then progressively increased until the ‘real’ estimate of available 

water is reached and the ‘real’ allocation can be established. Ideally, water users would like to know their ‘real’ water allocation 

at the beginning of the water year. This is especially so for irrigators that depend on accurate and timely water allocation to 25 

choose which crop to plant and to decide on the area to be cropped, allowing them to maximise the benefit of the water that 

their license entitles them to. 

The use of seasonal forecasts of reservoir inflows may be beneficial to support water allocation decisions through providing 

better and earlier estimates of the available water. The potential for farmers to benefit from seasonal forecasts will, however, 

depend on i) how well the climate can be predicted, ii) how much this information helps in the actual decision process and iii) 30 

how much it contributes to reducing negative impacts (Hansen, 2002). Most studies focus on evaluating the benefit of forecasts 

by determining the skill, often based on forecast results, observed data and a benchmark prediction (Pappenberger et al., 2015). 
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Though this provides insight to the (relative) quality of forecast, it may say little of the benefit to users through improved 

decisions. The use of seasonal forecasts to support decisions has been addressed in several settings. Winsemius et al. (2014) 

assess the predictability of meteorological indicators in a changing climate and show how skilful forecasts can support rain-

fed agriculture. Shukla et al. (2014) developed and implemented a seasonal agricultural drought forecast system for East Africa 

which shows to perform well in drought years. Crochemore et al. (2016) assessed the performance of seasonal streamflow 5 

forecasts to a reservoir with standard indicators of forecast skill such as reliability, sharpness, and accuracy. Anghileri et al. 

(2016) evaluate the performance of Ensemble Streamflow Prediction (ESP) forecasts based on climatology and perfect 

forecasts. Turner et al. (2017), in addition to the usual forecast skill assessment, included the performance gain in reservoir 

operation, benchmarking penalty costs when using forecast against using perfect and actual information. Boucher et al. (2012) 

applied an ensemble streamflow forecast for determining its value in supporting hydropower generation. However, the 10 

potential enhancement to water allocation decisions in irrigated agriculture that are informed by seasonal forecasts has been 

little studied. A complete assessment of the added value of seasonal forecasts can allow basin authorities to explore the 

opportunities seasonal forecasts provide to improve their operational decisions, and reduce potential losses to agricultural by 

improving water allocation estimates. 

In this study, we develop and test a water allocation framework to assess the value of using seasonal forecasts of inflow into 15 

reservoirs in the regulated Murrumbidgee basin in Australia. We hypothesise that water allocation decisions can be improved 

when informed by skilful and reliable seasonal forecasts of reservoir inflows. The inconsistency in water allocation decisions 

during the water year is introduced as a measure of the value of using the forecast in the allocation process under the assumption 

that if water allocated to farmers changes little during the season that they can then make maximum benefit of their allocation. 

If the inconsistency in water allocation decisions using the forecast is lower than when using the currently used conservative 20 

estimate of water availability, then there is value in using the forecast. In addition to the water allocation estimated at the start 

of the water year, key decision dates for the cropping season are evaluated to determine the benefit to the farmers in supporting 

the decisions they need to make as the season progresses. 

2 Methods 

2.1 Water allocation process in the Murrumbidgee basin, Australia 25 

The regulated Murrumbidgee River basin (84000 km²) was selected to evaluate the benefit of using forecasted reservoir inflow 

(Figure 1). In this basin, two major water storages, the Burrinjuck and Blowering reservoirs, provide the required resource for 

the water allocation process. The New South Wales Office of Water announces the water allocation for different users in the 

basin starting July 1st of each year based on the available water in storage, the expected reservoir inflows for the next 12 

months, and water requirements downstream. The inflow to the Blowering reservoir depends on both the discharge release 30 

from an upstream hydropower system (Snowy Hydro Scheme) and the natural runoff, while the inflow to the Burrinjuck 
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reservoir depends mainly on natural runoff. Currently, a conservative estimate of the total inflow to the storages of 

2.33 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 (based on climatology) is used to determine the expected reservoir inflow for the next 12 months. 

In the Murrumbidgee basin, the water year runs from July 1st through to June 30th of the next calendar year, while the cropping 

season for annual (irrigated) crops is between November 1st and the end of February. Each water user (e.g. irrigation, urban 

and environment) holds a water entitlement (water share), which is a license to extract water from the basin. Depending on the 5 

available water, the basin authority announces a fraction of the total volume of that entitlement that will be met in a year, which 

is defined as the water allocation (Green, 2011). Water is allocated to different water users according to established priorities. 

In water abundant conditions each user gets their agreed full entitlement. When water shortage occurs, the highest priority is 

to satisfy human water consumption and the lowest priority is to satisfy the irrigation demand of annual crops. This is reflected 

in the type of license users pay for, with irrigators holding a High Security license having a higher priority to water than 10 

irrigators holding a General Security license. Normally, irrigators growing annual crops hold a General Security license, though 

it is the annual crops that require the highest volume of water. Once the water has been allocated, users can decide how they 

would like to employ the resources available to them. A maximum of 30% of the volume entitlement can be carried over from 

one year to another. This provides flexibility to the water users as they can hold a certain volume of their allocation in the 

storages and make it available for the next year. 15 

During the water year the basin authority may revise the initial water allocation and announce a new allocation for each user 

depending on the then available water storage volume and the estimate of the remaining inflow to the end of the water year. 

In the currently established regulations the water allocation cannot be decreased, but only maintained or increased, unless 

exceptional circumstances dictate. This process generates expectations among the irrigators about the amount of water volume 

they are going to get, especially for the General Security (GS) license holders. To illustrate the process, Figure 2 shows the 20 

recorded water allocation decisions made in the 2016-2017 water year. On July 1st 2016, the initial water allocation for General 

Security (GS) license holders was established at 40%. Two weeks later, the water allocation was increased from 40% to 52%. 

Successive revisions over the next four months resulted in a final water allocation of 100% at the start of the cropping season 

(November), which was subsequently maintained until the end of the season. 

Certainly, irrigators are aware that the allocated water can be higher in the announcements made closer to the start of the 25 

cropping season. This means that farmers may well act on the expectation that the allocation is typically revised upwards, 

taking the risk of a certain water volume finally being allocated. We argue that this risk affects decision making among the 

farmers and their ability to correctly plan the area to be cropped. Farmers more averse to risk may tend towards cropping 

according to the conservative water allocation, leading to potential losses (opportunity cost), while less risk averse farmers 

may face losses in yield if the final allocation they expect is not met. Ideally, water users would like to be informed about the 30 

true water allocation as early as possible to better plan their activities. This means that the ideal allocation scenario is when 

the water allocation is set at the start, and then remains constant during the water year. 
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2.2 Data and information 

Data and information from the Murrumbidgee basin was collected from the online repositories of the New South Wales Office 

of Water and the Australian Bureau of Meteorology (BoM). Actual water allocation for the different users (e.g. General 

Security) and the observed daily inflow into the reservoirs were obtained for the period 2011 to 2016 (www.water.nsw.gov.au). 

The current water allocation policy was introduced in 2011, with allocations prior to that date following a different policy. For 5 

the 1982-2009 period, actual daily inflow into the two reservoirs was back-calculated using observed daily outflows and 

observed storage. Discharge data from gauging station 410008 (Murrumbidgee river downstream of Burrinjuck dam) and 

gauging station 410073 (Tumut river at Oddys bridge) were used to obtain the daily outflow from Burrinjuck and Blowering 

reservoirs, respectively. Daily reservoir storage volumes were obtained for each reservoir from station 410131 (Murrumbidgee 

river at Burrinjuck dam – storage gauge) and station 410102 (Tumut river at Blowering dam – storage gauge) (see Figure 1). 10 

The forecasted datasets for determining the expected reservoir inflow were obtained from an experimental streamflow 

forecasting system called Forecast Guided Stochastic Scenarios (FoGSS), available for the time period 1982-2009 (Bennett et 

al., 2018). Two different datasets from FoGSS were used. One dataset is generated from precipitation and sea-surface 

temperature (SST) predictions from the POAMA M2.4 seasonal climate forecasting system (Hudson et al., 2013; Marshall et 

al., 2014). The other dataset is generated with historical precipitation, similar to Extended Streamflow Prediction (ESP) (Day, 15 

1985). A more detailed description of FoGSS is provided in section 2.3. 

To determine the expected reservoir inflows, FoGSS forecasts for the 10304 km² upstream basin of the Burrinjuck reservoir 

are considered. Inflows to the Blowering reservoir are dominated by releases from the upstream Snowy Hydro Scheme, which 

includes various inter-basin transfers and unknown operating rules. Inflows into the Blowering reservoir from the Snowy 

Hydro scheme are therefore taken as observed and not subject to the forecast, with the observed releases from Snowy Hydro 20 

discharge obtained through back-calculating from observed outflows gauged at Oddy’s Bridge just downstream of the dam 

and observed storage data of the Blowering reservoir (1982-2009). Forecasts for the Goobarragandra River at Lacmalac gauge, 

a main tributary of the Tumut River between the Blowering Reservoir and its confluence with the main Murrumbidgee, with 

an influence basin area of 668 km² (Figure 1) are considered. This means that the water available for allocation is determined 

as the available storage in the Burrinjuck and Blowering reservoirs; the observed inflows to the Blowering reservoir from the 25 

Snowy Mountain Scheme; and the FoGSS forecast flows for the Goobarragandra River and for the Murrumbidgee River 

upstream of the Burrinjuck reservoir. 

2.3 Forecast Guided Stochastic Scenarios (FoGSS) 

Forecast Guided Stochastic Scenarios (FoGSS) is an experimental ensemble streamflow forecasting system, which has been 

developed and tested for the Australian continent (Bennett et al., 2016, 2017; Turner et al., 2017). FoGSS produces forecasts 30 

in the form of monthly time series for a 12-month forecast horizon. As forecast skill declines with lead time, FoGSS is designed 

to nudge forecasts towards climatology. To produce streamflow forecasts, FoGSS forces a monthly hydrological model with 

http://www.water.nsw.gov.au/
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reliable ensemble rainfall forecasts. Hydrological uncertainty is then quantified and propagated through the forecast with a 

staged error model, ensuring reliable ensembles. FoGSS combines skill available from rainfall forecasts and initial 

hydrological conditions to produce streamflow forecasts that are at least as skilful as climatology. In this study we make use 

of two different rainfall forcings to generate FoGSS forecasts, termed ESP+ and POAMA. ESP+ forecasts are generated with 

an ensemble of historical rainfall sequences to force the hydrological model. This is similar to well-established ESP methods 5 

(e.g. Day (1985)), with the difference that streamflow forecasts are also processed with the FoGSS error model to produce 

reliable ensembles (hence denoted as ESP+). The FoGSS error model allows the generation of large ensembles, and each 

‘ESP+’ forecast is made up of 1000 ensemble members. The POAMA forecasts are generated with post-processed SST and 

rainfall forecasts from the POAMA M2.4 seasonal climate prediction system. These forecasts are processed with the method 

of calibration, bridging and merging (Schepen and Wang, 2014) to correct biases, remove noise and ensure reliable rainfall 10 

forecast ensembles. POAMA forecasts combine skill from seasonal climate prediction with skill from initial hydrological 

conditions, while ESP+ forecasts rely on skill only from initial hydrological conditions. As with the ESP+ forecasts, the 

POAMA-driven inflow forecasts each have an ensemble of 1000 members. Various configurations of FoGSS have been trialled 

by Bennett et al. (2017): they found that the GR2M monthly hydrological model (Mouelhi et al., 2006) and the use of a 

Bayesian prior in the error model generally produced the best performance, and this is the configuration used in this paper. 15 

Full details of FoGSS can be obtained in Bennett et al. (2016, 2017). 

2.4 Developing the water allocation decision model 

The water allocation decision making process developed in the Murrumbidgee basin consists of a feedback loop between the 

simulated available water resource and the emulated water allocation decision for the different users. Figure 3 schematically 

shows the decision model to establish the resource available to the different users. All time dependent variables are from day 20 

t to the end of the water season. Users include, in order of priority; Environmental Water (EW=0.60 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), Towns 

(TD=0.85 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), High Security (HS=3.60 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), Irrigation Conveyance (IC=3.76 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), 

and General Security (GS=18.9 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟). 

The available water is determined at a daily time step and the water allocation decision is emulated for selected announcement 

dates. The available water is determined considering the storage volume in the reservoirs; expected reservoir inflow (1982-25 

2009 average 31.5 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟); storage reserves, and water losses. The expected inflow into reservoirs is the input 

variable, which feeds into the established water balance to determine the available water for allocation. Water allocation 

decisions are emulated for the different users from which the water allocation for GS is derived. As water is released from the 

reservoirs due to the water allocation process, a new water availability estimate is determined for the next time step. 

2.4.1 Determining the available water for water allocation 30 

The available water for allocation on the first day (𝑡 = 1) of the water years is defined as (Equation 1): 
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𝐴𝑊(1) = 𝑆 + 𝐼𝑎 − 𝐿𝑎 − 𝑅         (1) 

where 𝑆 is the water storage in the reservoirs using the observed storage for the first day, 𝐼𝑎 is the expected annual inflow into 

the reservoirs, 𝐿𝑎 is the expected annual water loss (7.71 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), 𝑅 is the annual reserve of water storage with a 

fixed value of 𝑅=1.52 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 including the storage reserve, dead storage, and unusable inflow). 

The expected annual inflow into the reservoirs is based on the regulated inflow from the Snowy Hydro scheme, and a natural 5 

inflow. In the current operating policy, the natural inflow into both reservoirs is established at 2.33 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟, which is 

a conservative inflow estimate, corresponding to the 3% non-exceedance probability of the annual inflow distribution from 

climatological data. In our approach we replace this fixed inflow with the forecasted inflows derived from the FoGSS 

ensemble. The actual inflow volume considered in the allocation decision is established using selected non-exceedence 

percentiles of the summed 12 month inflow prediction of FoGSS. 10 

The available water for allocation, 𝐴𝑊 starting on the second day (𝑡 ≥ 2) includes the water used due to allocation 𝑈 (Equation 

2): 

𝐴𝑊(𝑡) = 𝑆(𝑡) + 𝐼𝑒(𝑡) − 𝐿𝑒(𝑡) − 𝑅 + 𝑈𝑐(𝑡)        (2) 

where 𝑆(𝑡) is the simulated storage obtained with 𝑆′ = 𝑆(𝑡 − 1) +△ 𝑆 and the capacity of the reservoirs 𝐶. If 𝑆′ < 𝐶 then 

𝑆(𝑡) = 𝑆′, but if 𝑆′ ≥ 𝐶 then 𝑆(𝑡) = 𝐶 with a spill 𝑠𝑝 = 𝑆′ − 𝐶. The storage change is defined as  △ 𝑆 = 𝐼𝑜(𝑡 − 1) −15 

𝑈𝑑(𝑡 − 1) − 𝐿𝑑(𝑡 − 1) where 𝐼𝑜 is the observed daily inflow, 𝐿𝑑 is the daily expected loss determined from the expected 

annual loss distributed equally for each day, and 𝑈𝑑 is the daily expected allocation for the different water users. The daily 

expected allocation for General Security, Irrigation Conveyance and High Security and Towns is determined with a daily 

release ratio multiplied by the water allocation for each user. For General Security, Irrigation Conveyance and High Security 

the daily release ratio is based on the monthly irrigation requirements (Table 1), while for towns the water allocation is 20 

distributed equally for each day. The water allocation for each user is obtained based on the daily available water from the 

water balance and the allocation rules explained in detail in the next paragraph. 𝐼𝑒(𝑡) is the expected inflow for the remaining 

days of the water year defined as 𝐼𝑒(𝑡) = 𝐼𝑒(𝑡 − 1) − 𝐼𝑑(𝑡 − 1), where 𝐼𝑑 is the daily expected inflow determined from an 

established daily inflow fraction of the average annual observed inflow on day 𝑡 − 1. 𝐿𝑒(𝑡) is the expected loss for the 

remaining days of the water year defined as 𝐿𝑒(𝑡) = 𝐿𝑒(𝑡 − 1) − 𝐿𝑑(𝑡 − 1), where 𝐿𝑑 is the daily expected loss to the previous 25 

day. 𝑈𝑐(𝑡) is the cumulative water use due to allocation defined as 𝑈𝑐(𝑡) = 𝑈𝑐(𝑡 − 1) + 𝑈𝑑(𝑡 − 1), where 𝑈𝑑 is the daily 

expected allocation for the different water users obtained with the daily release ratio and the emulated water allocation decision. 

The water allocation decision is emulated each day, but the final allocated water is presented only for announcement dates; 

starting on July 1st and then for each 15 days to the end of the season. In order to emulate the water allocation decision the 

framework includes the available water, the agreed entitlement for each water user and the priority rules. The volume is 30 

established stepwise for each user following the priority of water use. The allocated water for Towns, stock, domestic and 

basic right (TD) was set at 100% of the entitlement. Only if the difference between the available water for allocation and the 

environmental water is lower than 0.85 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 (the entitlement of TD), then the allocated water for TD is the 
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difference of AW and EW. The procedure for allocating water to High Security (HS) is presented in Figure 3. It includes the 

use of the available water AW and the allocated water for TD and EW to obtain three possible outcomes for the allocated water 

for HS. Depending on availability, water allocation for HS can be 100% or 95% of the entitlement, or the difference of the 

AW, TD and EW. The allocated water for General Security is determined by using the remaining water volume left after the 

High Security procedure, subtracting the amount lost to Irrigation Conveyance (3.76 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟). If that difference is 5 

lower than the General Security entitlement, then the allocated water for GS is lower than 100%. 

The decision model is tested against the recorded allocation decisions for the years from 2011 to 2016 as the current water 

allocation policy was introduced in 2004 (Horne, 2016). 

2.4.2 Evaluating water allocation decisions 

To evaluate the water allocation decisions made during the water year a metric to quantify the inconsistency in allocated water 10 

is introduced. The inconsistency (𝐼) can occur due to either upward or downward revisions of the allocated water volume 

during the water year. An upward revision is when the allocated water at time step 𝑡 (𝑊𝐴𝑡) is larger than the allocated water 

at time step 𝑡 − 1 (𝑊𝐴𝑡−1). Hence, the inconsistency in allocated water due to upward revisions (𝐼+) is the sum of the 

difference between allocated water at time step 𝑡 (𝑊𝐴𝑡) and the allocated water at time step 𝑡 − 1 (𝑊𝐴𝑡−1) with that condition: 

∀ 𝑊𝐴𝑡 > 𝑊𝐴𝑡−1 ⇒ 𝐼+ = ∑ 𝑊𝐴𝑡 − 𝑊𝐴𝑡−1
𝑛
𝑡=1        (3) 15 

A downward revision occurs when the allocated water at time step 𝑡 (𝑊𝐴𝑡) is lower than the allocated water at time step 𝑡 −

1 (𝑊𝐴𝑡−1), and the inconsistency in allocated water due to downward revisions (𝐼−) is thus the sum of the absolute difference 

between allocated water at time step 𝑡 (𝑊𝐴𝑡) and the allocated water at time step 𝑡 − 1 (𝑊𝐴𝑡−1) with that condition: 

∀ 𝑊𝐴𝑡 < 𝑊𝐴𝑡−1 ⇒ 𝐼− = ∑ |𝑊𝐴𝑡 − 𝑊𝐴𝑡−1|𝑛
𝑡=1        (4) 

A constant water allocation from the beginning until the end of the water year implies zero inconsistency. This would imply 20 

that the expected inflow estimates are perfect, and the total water allocation is correctly determined at the start of the season. 

This water allocation 𝑊𝐴𝑝 was derived by applying the observed inflows in the decision model.We separate dry and wet years 

according to the allocated water obtained with the observed inflow. Years where the allocated water is equal to 100% of the 

entitlement are considered as wet years, while years where the allocated water is lower than 100% of the full entitlement are 

considered dry years. Average water allocation decisions for dry and wet years were obtained at each time step. A second 25 

metric, the Root Mean Square Difference(𝑅𝑀𝑆𝐷) was used to evaluate the allocated water obtained with the expected inflows 

𝑊𝐴𝑖 against the allocated water obtained with the observed inflows (perfect information) 𝑊𝐴𝑝 at each time step 𝑡 for selected 

years 𝑦 (dry or wet years) (Equation 5). 

𝑅𝑀𝑆𝐷 = √
∑ (𝑊𝐴𝑖−𝑊𝐴𝑝)

𝑦

2𝑚
𝑦=1

𝑚
         (5) 
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3 Results 

3.1 Emulating historical water allocation decisions 

A preliminary calibration of the allocation framework was developed for the 2011-2016 water years using the conservative 

inflow estimate (2.33 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), and the recorded allocation decisions. The main calibration parameter is the allocation 

use reduction factor, which determines the percentage of the water allocated to them that users decide to use, with the remainder 5 

being reserved for carry-over to the next year. In reality, this factor varies between users as well as between years, and may be 

influenced by a variety of factors, including many that do not depend on water availability. We simplify this by considering a 

bulk allocation use reduction factor across all General Security users and also consider this to be equal across years. The 

allocation use reduction factor derived for the 2011-2016 period is then assumed to also hold for evaluating the FoGSS datasets 

for the 1982-2009 water years, for which recorded allocation decisions are not available as a different policy for the allocation 10 

of water to the different users was then in place. The allocation use reduction factor was established as 78%, for which similar 

simulated and actual carry over volumes are obtained, as well as the simulated storage in the reservoirs at the end of each water 

year (itself a function of the carry-over volume which remains in the reservoir). Figure 4 shows the simulated water storage in 

the reservoirs, as well as the observed and simulated carry-over volumes. For the years 2011 to 2016, the emulated water 

allocation decisions for General Security (GS) are shown in Figure 5, and compared to the actual allocation decisions recorded 15 

in those years. Two simulations are shown. In the first, the initial storage condition of the reservoirs (day 1 of the 2011 water 

year) was set equal to the actual water storage followed by an open loop simulation as in equation 2 for the full six year period. 

In the second, the water level in the reservoirs is reset to be equal to the observed reservoir level at the start of each year 

(Simulated Nudged). These simulations show that across the six years volume differences range from 1% to 30% of the actual 

water storage at the start of each of the water years. Derived emulated water allocation decisions for GS show an 20 

underestimation of the allocation compared to the actual volume for most years, especially for the 2014water year. These 

differences occur because a constant factor is used (78%) to simulate the carry-over between water years. Results from the 

Simulated Nudged show how the daily water storage simulations and the water allocation for GS would behave using the 

actual water storage information (including the actual carryover volume), by nudging the simulated storage levels to the 

observed at the start of each water year (Figure 5). The daily water storage simulations and water allocation to GS are now 25 

closer to the actual values, especially for the 2014water year. However, for both simulations, the emulated decisions show a 

similar trend when compared to the actual decisions. Upward revisions as well as where the water allocation remains constant 

(no revisions) occur at the corresponding announcement dates, and although results are slightly biased in volume, the emulation 

of allocated water decisions does follow the pattern of the actual decisions. 

We apply the water allocation framework to simulate the water storage continuously over the 1982-2009 water years, assuming 30 

a constant allocation -use reduction factor of 0.78 for all water years. The framework is applied to compare water allocation 
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decisions using different estimates of available water for allocation informed by seasonal forecasts of reservoir inflow, 

including the seasonal forecast datasets (FoGSS). 

3.2 Performance of seasonal predictions of available water 

Prior to applying the FoGSS forecasts to emulating the water allocation decisions, the reliability of the seasonal predictions of 

available water is evaluated. In Figure 6 and Figure 7 rank histograms are shown for both the POAMA and ESP+ datasets for 5 

the forecast ensemble of 1000 members (FoGSS) of the expected inflows into the Burrinjuck reservoir. The expected inflow 

shown is the total inflow from the forecast month through to the end of the water year, which is the information on the available 

water that is required to inform the water allocation decision. Rank histograms for expected flows for the Goobarragandra 

River at Lacmalac show a similar pattern and are available in the supplementary material (Figure S12 and Figure S13). The 

rank histogram shows the frequency of the rank of the observed in the ensemble, with a well calibrated ensemble exhibiting a 10 

uniform distribution (Wilks, 2011). For easier interpretation, the ensemble is pooled into five classes. The light grey bar shows 

the frequency of the observed rank being higher (or lower) than the highest (lowest) forecast value in the ensemble.  

The rank histograms of the expected inflows to end of season for forecasts made in the months from July until January show 

that the ensemble is under-dispersed as the distribution is increasingly U-shaped, with the POAMA dataset exhibiting better 

performance than the ESP+ dataset. The first three of these months (July to September) are the wetter season. As this recedes, 15 

the under-dispersion increases until December, after which the performance again improves, with the expected inflows in 

February showing a near uniform distribution, though reliability of the forecast again decreases as the accumulation period 

becomes shorter. 

We additionally measure the accuracy of water year forecasts at each issue time with the continuous ranked probability skill 

score (CRPSS, (Hersbach, 2000), with a climatology reference forecast generated by drawing random samples from a log-sinh 20 

transformed normal distribution (Wang et al., 2012) fitted to observations using the Bayesian Joint Probability model (Wang 

and Robertson, 2011). Positive CRPSS values indicate that FoGSS is more accurate, on average, than the climatology forecasts. 

Results show that skill is quite consistent for the forecasts flows of the Goobarragandra River, while the inflows of Burrinjuck 

Reservoir are only skilful for forecasts issued for July-September. In general, POAMA does have slightly better skill for 

forecasts issued earlier in the water year (See Supplementary material, Figure S11). 25 

In summary, the reliability of the forecast ensembles is better between February and June compared to July and January, while 

forecast skill is better for the beginning of the water year (considering that the inflows to Burrinjuck are larger than the 

Goobarragandra River flows). In our study we are primarily interested in the predictions of the expected inflows from July to 

February to support water allocation decisions for the cropping season, which are made from November to February. For this 

period, the forecast ensemble is shown to be somewhat overconfident, especially for forecasts issued for December. In addition, 30 

the ESP forecasts are slightly negatively biased for Aug-Oct (i.e., they tend to underestimate inflow). How this affects the 

water allocation decisions, and if using the forecast ensemble leads to better estimates of available water compared to the 
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currently used conservative estimate based on climatology, is evaluated using both the ESP+ and the POAMA forecasts to 

inform the water allocation decisions. 

3.3 Water allocation using the seasonal forecast datasets 

Water allocation decisions for General Security (GS) were emulated for the 1982-2009 period using four datasets of expected 

inflows to the reservoir to determine water availability: (i) observed inflow (considered as perfect information); (ii) the 5 

conservative inflow (or reference information as currently used by the decision maker); (iii) the FoGSS seasonal forecast based 

on POAMA, and (iv) the FoGSS seasonal forecast based on ESP+. Water allocations using the perfect information and the 

reference information provide the benchmark against which the decisions informed by the ensemble forecasts are compared. 

For each of the two ensemble forecasts, two setups were tested. In the first, the inflow prediction at the beginning of the water 

year is obtained from the ensemble forecast made on July 1st, and this is then maintained for the next 12 months (non-updating 10 

FoGSS set up). This means that the forecast of the available water that is established on July 1st is not updated by newer 

forecasts as the water year progresses. This was done to mimic the current procedure used by the basin authority when using 

the conservative inflow estimate based on climatology, where the expected inflow is established at the beginning of the water 

year and then maintained to the end of the water year. In the second set-up that was tested, the full potential of the ensemble 

forecast is explored. The water availability estimate to the end of season is now updated each month using the FoGSS 15 

forecasted inflows determined from the seasonal forecast made at the start of that month. In determining the expected water 

availability from the FoGSS forecasted inflows for both set-ups, different non-exceedance percentiles of the forecast ensemble 

are selected to provide the expected availability of water for allocation, starting with the 1st non-exceedance percentile 

(commensurate with a very conservative estimate of water availability), and increasing this to the 50th non-exceedance 

percentile (commensurate with the ensemble median). 20 

3.3.1 Using one prediction at the beginning of the water year. 

In this first setup, water allocation decisions were emulated using the inflow prediction obtained from the seasonal forecast at 

the beginning of the water year, and then not updated for the next 12 months (non-updating FoGSS set up). Figure 8 shows  

the water allocation decisions to General Security (GS) for a selected wet year (1998) and a selected dry year (2006) using the 

1st, 5th, 10th, 25th and 50th non-exceedance percentile of the ESP+ and POAMA ensemble forecast datasets. The blue line shows 25 

the allocation decisions made using the reference conservative inflow estimate, while the red line shows the allocation 

established using perfect information. 

For the dry year of 2006, the results show that the allocation decisions using the forecast ensemble are similar to the decisions 

obtained with the conservative inflow for the 1st percentile. This makes sense as the water allocation using the lowest 

percentiles is the water allocation that matches best with the water allocation based on the conservative inflow. It is interesting 30 

to note that the water allocation based on perfect information is even lower than when using either the conservative inflow or 
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the 1st percentile. This is due to 2006 being the driest year on record (Dreverman, 2013), with observed inflows below the 1st 

percentile. For the water allocations obtained with the 1st percentile, as well as with the conservative inflow there are no 

downwards revisions during the water year. However, for increasing percentiles, the number of downward revisions increases 

as the initial estimate of available water at the start of the year becomes increasingly over confident. For this dry year, the 

POAMA and ESP forecasts exhibit broadly similar behaviour. 5 

In the wet year (1998), the initial allocation based on the 1st percentile is higher than that using the conservative estimate, 

particularly for the POAMA dataset. For increasing percentiles, the water allocation decision approach those using perfect 

information. For 1998, the observed water availability was well above the requirement to fulfil 100% of the allocation to 

General Security. No downward revisions are found, even for the higher percentiles. 

These results provide an initial comparison between using the conservative inflow and forecasted inflow for determining the 10 

available water for allocation. However, for the full potential of the seasonal forecast to be evaluated, inflow predictions are 

updated monthly during the water year as new FoGSS forecasts become available. 

3.3.2 Updating the inflow prediction every month 

In Figure 9 and Figure 10, the water allocation decisions are shown using the 1st, 5th, 10th, 25th and 50th non-exceedance 

percentiles of the ESP+ and POAMA forecast datasets. This uses the second setup, where the inflow predictions are updated 15 

every month with the most recent forecast information. Results for the dry years are shown in Figure 9, with those for wet 

years shown in Figure 10. Of the 28 years evaluated, 13 are considered as dry (1982, 1994, 1997 and 1999-2009, the latter 

period constituting the millennium drought) and 15 as wet (1983-1996 and 1998). Wet years are taken to be those years when 

the final water allocation to the General Security attains 100% of the concession by the end of the season. For the dry years 

we show results for three years (1982, 2003, and 2006), with the results for the remaining years provided in the supplementary 20 

material (Figure S1 to Figure S9). The selected three years have different levels of water allocation based on perfect allocation 

(70%, 55%, and 10% of the full concession), reflecting increasingly severe drought conditions. The reference water allocation 

based on the conservative climatological estimate is again shown in red. For the wet years we show results for three selected 

years (1988, 1995, and 1998), again for increasingly dry conditions. Results for the remaining years are again provided in the 

supplementary material. 25 

For both dry and wet years, results found with POAMA and ESP+ differ only slightly in magnitude, and follow a similar trend 

during the water year, though the median POAMA forecast predicting full allocation months earlier than ESP+. For most 

years, results using the forecast ensembles show that the derived water allocation decisions tend towards those established with 

the perfect water allocation. For all wet years and many of the dry years, the water allocations using the forecast ensemble are 

generally closer to those made using the perfect water allocation compared to those made with the reference water allocation. 30 

In the wet years results closest to the perfect forecast are obtained with the higher forecast percentile (less conservative 

estimate), while for the dry years the lower percentiles provide the best results. 
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For some of the dry years, particularly for 1982 and 2006 (Figure 9), the water allocation using the conservative inflow initially 

overestimates the “real” water allocation based on perfect information, and is then revised downwards as the season progresses. 

In 2006, the water allocation based on the conservative inflow is 10% higher than the perfect water allocation during the entire 

year. Observed inflows for the 2006 water year were the lowest on record (Dreverman, 2013), and thus lower than the 

conservative estimate. Similar behaviour is found in 2007 and 2008, though the initial storages at the start of these dry years 5 

was already so low that allocations never exceeded 0%. The overestimation at the start of the season may well be attributed to 

a wet bias in the forecast for these dry years, with the more conservative forecasts (1% - 10%) thus providing the best estimate 

of actual inflows.  In the less extreme dry years, the water allocation using the conservative inflow is lower than the perfect 

water allocation at the beginning of the water year and progressively increases (e.g.1982 and 2003). Using the forecast 

ensemble shows better water allocation results compared to when using the conservative inflow. For many of the dry years 10 

(see Figure 9 and supplementary material), downward revisions of the water allocation do, however, occur during the water 

year for all percentiles of the forecast ensemble. As expected, selecting a higher forecast percentile to establish the expected 

inflow leads to a higher water allocation at the beginning of the water year, and consequently to larger downward revisions, 

though the difference in water allocations between forecast percentiles converges as the year progresses. In some years (e.g. 

2003 and 2006) the magnitude of water allocation using the forecast ensemble is similar to that of the perfect water allocation, 15 

though this depends on which date the water allocation is estimated and which forecast percentile is used. For example, in the 

dry year of 2006 the initial water allocation (July 1st) using the forecast ensemble is overestimated (at 15% for the 1st percentile 

of ESP+), but as of September 14th the predicted water allocation tends towards the perfect water allocation at 9%. A similar 

trend happens for the dry year of 2003, but in this case the initial water allocation using the forecast ensemble is low (at 40% 

for the 1st percentile of ESP+) and then trends towards the perfect allocation at 54%. For the dry year of 1982 the water 20 

allocation using the forecast ensemble does not tend towards the perfect water allocation, at least not for the 1st percentile. 

Using the 50th percentile the water allocation initially tends towards the perfect water allocation on September 14th, but the 

water allocation is subsequently underestimated, leading to continuous downward revisions. For those wet years (Figure 10) 

where the initial water estimate is below 100% (e.g. 1995 & 1998), there are primarily upward revisions of the allocation (with 

only sporadic downward revisions) for all percentiles of the forecast ensemble. Water allocation results using the forecast 25 

ensemble are generally equal to the perfect water allocation after the September 14th decision date for all non-exceedance 

percentiles and remain so until the end of the cropping season. For several wet years, the water allocation decision based on 

the conservative inflow are lower than for the perfect water allocation at the beginning of the water year and then progressively 

increase (e.g.1982 and 2003). These may be up to 55% lower than the perfect water allocation of 100% (e.g. 1998). For all 

years where this occurs, using the forecast ensemble shows better water allocation, even for the lowest forecast percentiles, 30 

which are closest to the conservative forecast. For many of the wet years, the initial allocation using both the perfect 

information, as well as the conservative inflow is already at 100%, as are allocations based on all forecast percentiles. 

Figure 11 shows the inconsistency indices for all 28 years tested, using the configuration with the POAMA forecast, where the 

forecast data is updated each month as a new forecast becomes available. In the supplementary material in Figure S10 the 
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inconsistency indices using the ESP+ forecast is shown. The years are ranked in order of the observed inflow volume, with 

2008 having the lowest inflow volume and 1983 the highest. Years marked in red are considered as dry while those in blue are 

considered wet. The annual inconsistency of the allocation due to upward revisions (positive inconsistency) for the different 

forecast percentiles, as well as for the conservative flow is shown in figure (a), with the downward revisions (negative 

inconsistency) shown in figure (b). The figure shows that using a higher non-exceedance percentile to inform the water 5 

allocation decision leads to less upward revisions (lower positive inconsistency) for all years, and in all cases provides an 

improvement over the allocation based on the conservative inflow estimate. This is seen primarily for the wetter dry years and 

the dryer wet years. For wetter wet years there are no upward revisions as the allocation already starts at 100% of the 

entitlement, while for the more extreme dry years there are also no upward revisions of the water allocation due to the sustained 

lack of water. The reduction in upward revisions does, however, come at the cost of more frequent downward revisions (higher 10 

negative inconsistency) for the drier years, particularly for the more extreme drier years and for the higher percentiles. 

Although the annual inconsistency provides information on revisions of the water allocation during the water year, it does not 

allow for easy comparison against the perfect water allocation. Figure 12 shows the Root Mean Squared Difference (RMSD) 

calculated over the 28 years using the difference between the water allocation established using the ensemble and that of the 

perfect forecast for each decision date, both for the dry and wet years, as well as the forecasts using the ESP+ and the POAMA 15 

datasets. The RMSD calculated using the conservative inflow estimates are also shown. An RMSD value of zero would imply 

the perfect allocation. For dry years, the RMSD using the monthly updated forecast ensemble shows lower differences than 

the reference conservative water allocation for all non-exceedance percentiles until the end of October for both ESP+ and 

POAMA, with the latter marginally outperforming the former. This is also the case for the wet years, though using lower 

percentiles for the forecast leads to higher differences in allocation than when considering the conservative inflow forecast. It 20 

is important to note that for allocation decisions informed by either of the forecast datasets, there is a major error reduction 

between August 30th and September 14th. After September 14th the difference remains more or less equal until the end of the 

cropping season. This is significant, as it means that farmers will have clearer information on their allocation several weeks 

earlier than is the case when using the conservative inflow forecast. 

4 Discussion 25 

The water allocation framework developed in this study was applied to assess the benefit of using a seasonal forecast ensemble 

(FoGSS) in estimating the available water for allocation. The potential for farmers to benefit from this seasonal forecast is 

discussed from three perspectives; i) how well climate can be predicted, ii) to what degree this information helps in the actual 

decision process and iii) to what extent it contributes in reducing the negative impacts (Hansen, 2002). 
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4.1 How well can the inflows be predicted? 

FoGSS is an experimental seasonal ensemble streamflow forecast for a 12 month horizon developed for the Australian 

continent (Bennett et al., 2016, 2017) . FoGSS post-processes climate forecasts, either derived from ESP+ or POAMA to force 

a monthly hydrological model. ESP+ is an ensemble of seasonal precipitation forecasts based on climatology, while POAMA 

is an ensemble coupled ocean-atmosphere general circulation model (CGCM). 5 

A long time series (28 years) of climate predictions was used assuming a full representation of climate variability. The time 

period includes extremely dry years between 2001 and 2009 referred to as the Millennium Drought (van Dijk et al., 2013) and 

very wet years, such as 1988 and 1989 (BoM, 2019). 

The derived inflow predictions were transformed into accumulated inflow volume from each prediction month until the end 

of the water year (June). This set up was used to mimic the current water allocation process in which the basin authority uses 10 

a conservative inflow prediction at the beginning of the water year for the next 12 months. In our approach a prediction of the 

inflow to the end of the season is updated each month using the forecast ensemble as a new forecast becomes available. Our 

approach to verifying the FoGSS seasonal forecasts is a novel extension of the traditional forecast skill assessment in that 

inflow predictions evaluated for the next n months until the end of the water year, representing the decision variable used in 

the water allocation framework. In addition, key decision dates for water allocation are evaluated to provide insight into the 15 

reliability of those forecast that have impact on farmers planning and operational decisions, especially for months before and 

during the cropping season. 

As the seasonal forecast is updated each month, with a progressively shorter lead time to the end of season, we would expect 

progressively more accurate forecasts of the water year. This is, however, only partly reflected in the inflow forecast skill 

results. Inflow forecasts to Goobarragandra are skilful year-round, with a slight dip for forecasts issued around December, and 20 

a rise at the end of the water year (May-June) as the accumulation period shortens. FoGSS Forecasts for Burrinjuck tend to be 

less accurate, and skill varies strongly through the year: skill is high for forecasts issued beginning of July and August, but 

decreases every month from July until December, after which it again improves. The accuracy of Burrinjuck forecasts is thus 

clearly a function of season. For predicted forecasts issued in July-September (towards the end of the wetter winter season) 

the accuracy of accumulated volume forecasts is dominated by initial hydrological conditions and information from recent 25 

(high flow) months. Flows are much lower by December, meaning that flow volumes in accumulated inflow forecasts are 

dominated by higher flows late in the water year (April-June). Predicting the rise of the annual hydrograph accurate relies on 

rainfall forecasts, which are usually not skilful at longer lead times. Thus water year forecasts issued for Burrinjuck in the 

driest months (December-February) tend to have the poorest skill. Inflow predictions to Burrinjuck after February do 

progressively improve due to the shorter lead time of the prediction, as the updated climate forecasts compensates the model 30 

uncertainty. 

In both catchments, the use of calibrated POAMA climate forecasts to force FoGSS adds skill to inflow forecasts issued in 

July-September.  Schepen et al. (2014) reported positive skill for calibrated POAMA forecasts from July-October, broadly 
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coinciding with this period. While overall seasonal climate forecasts may not always add skill to inflow forecasts (Arnal et al., 

2018; Bennett et al., 2017), we show that for these catchments seasonal climate predictions offer a small but marked 

improvement in forecast accuracy. The use of calibration to ensure coherent climate predictions – i.e., as skill declines with 

lead time climate forecasts revert to climatology - ensures these gains in skill are not lost through poor climate forecasts at 

longer lead times. 5 

4.2 To what degree does the seasonal forecast help in the decision process? 

Currently, only upward water allocation revisions are made during the water year in river basins in Australia. This is because 

in the current allocation a conservative inflow for the next 12 months based on climatology is used to determine the water 

allocation. Essentially this results in an estimate of available water that is always on the safe side from the point of view of the 

allocation decision. We estimate that the conservative estimate used in the current policy equates to the inflow that is exceeded 10 

97% of years, which would imply that in virtually all years the actual inflow is higher than the initial estimate. Depending on 

the initially available water in the storages, this results in upward revisions of water allocations as the season progresses for 

most years, with the exception of the most extreme dry years (such as 2006). To the farmer, advance knowledge of the ultimate 

allocation is beneficial as it allows for better planning. We show that using information from a seasonal forecast ensemble to 

predict the inflows to the reservoirs and inform the water allocation decision can reduce the upward revisions. Although using 15 

the seasonal forecast ensemble does not reduce the frequency of upward revisions (or positive inconsistency) in all years, it 

does improve the accuracy in estimating water available for allocation. This implies there is benefit to using the seasonal 

forecast ensemble to inform the decision process. However, this comes at a cost. There is a trade-off between obtaining better 

predictions of water available for allocation than the conservative low estimate as it comes at the cost of more downward 

decisions during the water year. This is evident in dry years, particularly where the positive bias in the forecast at the start of 20 

the season results in downward revisions of the water allocation as the year progresses. In wet years upward revisions are 

reduced (compared to the reference water allocation) and only very minor downward revisions occur. Despite this, for both 

dry and wet years the accuracy of the available water for allocation using the forecast ensemble improves during the water 

year. This is most evident on the decision date around September 14th, where the accuracy of the water allocation decision 

informed by the forecast improves significantly and maintains this accuracy until the end of the water year. This is evident 25 

from the results of the root mean square difference (RMSD), which shows the magnitude of the difference in the allocation 

decision through the season when compared to that made with the perfect knowledge of the amount of water available. The 

root mean square difference with the forecast ensemble attains a value more or less equal to the root mean square difference 

obtained with the conservative inflow, but two months before the original decision date (moving forward from about November 

13th to September 14th). This means that for the same accuracy of predicted water allocation, decision makers can rely on the 30 

forecast ensemble information two months in earlier when compared to the conservative inflow information. This may be of 

significant benefit to the farmers as they can then better plan their irrigation season based on the amount of water they would 

expect to be allocated. 
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Whether the basin authority in charge of water allocation announcements would choose to adopt a seasonal forecast system 

such as FoGSS and change the water allocation policy will depend very much on how acceptable downward revisions of 

allocated water are. The current policy has been designed to avoid such downward revisions unless exceptional circumstances 

dictate. Using the full potential of the seasonal forecast (including a monthly update of the expected inflow as new forecasts 

become available) provides more accuracy in water allocation estimates at the cost of downward revisions. Following 5 

maximum utility theory, the acceptability of downward revisions will depend on the impact these have, compared to the benefit 

of the improved and earlier information on the water allocation. The ratio of downward and upward revisions is also influenced 

by the selection of the non-exceedance percentile. For dry years, selecting a lower, more conservative, percentage would appear 

to be the best strategy, while for the wet years a higher percentage should be selected. A non-exceedance percentile of 10% 

appears to provide the best performance on average for both dry and wet years evaluated in this study, but a more dynamic 10 

approach could also be taken depending on the forecast as well as the available storage at the beginning of the water year. It 

would appear that the downward revisions (that occur mainly in the dry years) are primarily due to biases in the inflow forecast. 

Comparing the results of allocation decisions informed by the FoGSS forecasts based on the POAMA dataset to those based 

on the ESP dataset, the number of revisions (both upward and downward) in Figures 11 & S10 indicate that these are marginally 

less for the POAMA based dataset. This would suggest that further improving the seasonal forecast can contribute to reducing 15 

undesirable downward revisions. Additional improvements to the inflow predictions through reducing the uncertainty in the 

hydrological model of the basin will also contribute to reducing the bias of the inflow predictions and improving allocation 

results. 

Allocation decisions made depend not only on the available water in reservoirs and the expected inflows, but also on the actual 

demand from the crops planted by farmers. In our study demand is taken as the sum of the entitlements of farmers, reduced by 20 

the use reduction factor we introduce. Given the water allocated to meet their entitlement, farmers will make their decisions 

on the crops they plant for the season. In the Murrumbidgee basin, farmers may, however, also trade the water they are entitled 

to; or store part of their allocation for use in the next season by deciding to leave it in the upstream reservoirs as carry-over 

(Horne, 2016). As a result, there are quite complex feedbacks as the decision to carry water allocated over to the next season 

will influence the allocation decisions at the basin level in that next season. Decisions made by the farmers on what and how 25 

much to crop are complex and depend on a range of factors that include the available water through allocation, but also 

economic factors and personal preferences. The allocation-use reduction factor we introduce to consider these decisions made 

by farmers, and we find a value an average use of 78% of water entitled to best emulate actual decisions made, on average. 

While this factor could be optimised mathematically, a detailed understanding of how farmers make decisions is then required. 

Linés et al (2018) develop a decision model based on interviews of farmers in the Ebro basin in Spain, showing that decisions 30 

of what to crop depends on their perception of water availability and will differ between seasons considered wet and seasons 

considered dry, as well as their aversity to risk and technological capacities. They find that the availability of information on 

available water as the season develops, such as provided through a seasonal forecast will influence perceptions of water 

availability and consequently cropping decisions. Further research into how farmers in the Murrumbidgee basin make decisions 
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using for example agent-based models (Wens et al., 2019) could shed more light on the influence on water allocations decisions 

made at the basin levels. 

4.3 To what extent does the seasonal forecast contribute to reducing negative impacts? 

The impact in irrigated agriculture of uncertainty in the available water resources has been widely assessed in Australia 

considering climate variability and climate change scenarios (Kirby et al., 2013, 2014a, 2014b, 2015). Adaptation measures, 5 

reallocation strategies and policy reform are currently in discussion to prevent future impacts due to extreme events (Bark et 

al., 2014; van Dijk et al., 2013). In this study we explore the possibility of using a seasonal forecast ensemble to secure the 

right amount of allocated water at the right time during the water year. In the Murrumbidgee basin, farmers decide on the area 

to be cropped for annual crops based on the water allocation announcement for General Security. The water year starts on July 

1st, but the summer cropping season starts on November 1st and ends March 1st. In that sense, the period to decide on the area 10 

to be cropped is between July 1st and November 1st, and the period for operational decisions (e.g. irrigation schedule, weed 

management) is from November 1st to March 1st. While it would seem logical that farmers wait until the last allocation 

announcement before November 1st to decide on the area to be cropped, due to pre-cropping planning activities and investments 

(e.g. buying seeds, maintenance of irrigation assets, or investing in agricultural equipment and machinery) they prefer to take 

decisions earlier, therefore relying on water allocation announcements made at an earlier date. Through using the seasonal 15 

forecast to inform water allocation decisions we show that famers could rely on the water allocation announcement made on 

September 14th, some 1 ½ months earlier. This would allow them to plan their activities better, thus reducing potential negative 

impacts of having to take decisions on the area to be cropped before the actual water allocation on November 1st is established. 

5 Conclusion 

We apply a water allocation framework to assess the benefit of using a seasonal forecast ensemble to inform water allocation 20 

decisions. This water allocation framework uses an estimate of the available water for the irrigation season that is based on the 

balance of the demand to the available water in the reservoirs in a basin and the expected inflows to those reservoirs from the 

decision date until the end of the water year. The water allocation framework emulates current water allocation policy, 

following which the basin authorities make decisions on the allocation of water to meet claims as defined in water concessions. 

Depending on availability, water may be allocated to fully meet these concessions or only to a set percentage. We apply the 25 

framework in the Murrumbidgee basin in Australia. In this basin, conservatively low estimates of the expected inflow based 

on climatology are currently used at the beginning of the water year to estimate water available for allocation. As the water 

year progresses, water allocated to each concession may be revised if expected water availability changes. As the initial 

estimates are conservative, water allocations are mostly conservatively low, and consequently for the majority of years are 

revised upwards as the season progresses. Although upward revision of the allocation is beneficial to irrigators, advance and 30 

consistent information on the water allocated is important to them to help better plan their irrigation season. 
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Instead of the currently used conservative low estimates for inflow predictions we propose using inflow predictions from an 

ensemble seasonal streamflow forecast to inform water allocation decisions. Inflow predictions are obtained from the “Forecast 

Guided Stochastic Scenarios” (FoGSS), an experimental 12-month ensemble streamflow forecasting system using either 

historical rainfall sequences (ESP+, an extension of the Ensemble Streamflow Prediction; ESP approach) or the POAMA M2.4 

seasonal climate forecasting system as climate forcing. Of the two, predicting the inflows using the POAMA datasets were 5 

found to have better skill than using the ESP+ datasets, though both exhibit seasonal bias. Applying the water allocation 

framework to emulate decisions made for 28 years (from 1982 through 2009) shows that the seasonal forecast ensemble helps 

improve the decision process as the water expected to be available for the water year is better predicted when compared to 

using the reference conservative forecast. However, overconfidence in the seasonal forecast may lead to overconfidence in the 

expected availability of water. This may result in downward revisions of water allocation as the season progresses due to too 10 

high an allocation decision earlier in the season. This is more evident for dry years than it is for wet years, with downward 

revisions occurring more frequently than is currently the case. In wet years the number of upward revisions are reduced 

(compared to the reference water allocation), with virtually no downward revisions. Using the FoGSS seasonal forecast that is 

currently available would imply a trade-off to be established between the obtaining of a better estimate of the available water 

and the cost of an increased number of downward revisions during the water year. Comparison of the FoGSS forecast based 15 

on POAMA and that based on ESP+ shows the former to be marginally superior, suggesting that further improvement of the 

seasonal forecast would further help improve allocation decisions. 

For both dry and wet years, the accuracy of the available water estimates using the forecast ensemble improves progressively 

during the water year, with a particular improvement some one and a half months before the start of the cropping season in 

November. This additional time is important to irrigated farmers, as it allows them to better plan the cropping season 20 

(November to February). Using the forecast ensemble thus benefits water allocation decisions established by the basin 

authority, allowing the final allocation to meet concessions to be determined more accurately and earlier in the season, resulting 

in a reduction of agricultural losses as a results of climatic variability. 
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Figure 1. Map of the Murrumbidgee River basin in Australia. Location of the Murrumbidgee Irrigation Area, discharge 

stations (Murrumbidgee River at Burrinjuck Dam, Tumut River at Oddys Bridge, and Goobarragandra River at 

Lacmalac) and storage gauges in the Burrinjuck and Blowering reservoirs. Elevation map is obtained from 

http://srtm.csi.cgiar.org. 
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Figure 2. Actual water allocation for General Security, GS in the Murrumbidgee basin for the water year 2016. Dotted 

lines in the water allocation curve are used to show that the water allocation is an annual water volume, the estimate of 

which changes during the water year. 
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Figure 3. Water allocation framework used to simulate the daily water availability for the rest of the water year and 

emulate the allocated water for different users based on allocation rules in the Murrumbidgee basin. The input variable 

is the expected inflow into the reservoirs. Note that decision thresholds are derived from the existing water allocation 

policy and regulations. 
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Figure 4. Actual and simulated reservoir storage and carry-over volumes in Blowering and Burrinjuck reservoirs (2011-

2016). 
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Figure 5. Actual and emulated water allocation GS for each year (2011-2016) using conservative inflow. Simulated Nudged is the simulated water allocation GS, but using the actual 

storage on July 1st. 
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Figure 6. Rank histogram using ESP datasets from FoGSS (1982-2009) for expected inflow in the next n months (Starting July) in the Burrinjuck reservoir. 
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Figure 7. Rank histogram using Poama datasets from FoGSS (1982-2009) for expected inflow in the next n months (Starting July) in the Burrinjuck reservoir. 
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Figure 8. Water allocation GS for one wet year (1998) and one dry year (2006) using one inflow prediction at the beginning of the water year for the next 12months (Non-updated 

forecasts) 
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Figure 9. Water allocation GS for selected dry years (1982, 2003 and 2006) using new inflow predictions every month 

(Monthly updated forecasts). 
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Figure 10. Water allocation GS for selected wet years (1988, 1995 and 1998) using new inflow predictions every month 

(Monthly updated forecasts). 
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Figure 11. Inconsistency for all 28 years using FoGSS/POAMA forecast updated every month to inform the allocation decision. (a) shows the annual inconsistency due to upward 

revisions (positive inconsistency) and (b) the annual inconsistency due to downward revisions (negative inconsistency). 
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Figure 12. RMSD for all dry years (upper two figures) and wet years (lower two figures) using new inflow predictions every month from ESP (left two figures) and POAMA (right two 

figures). 
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