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This paper tests the ability of three different automatically built flood inundation mapping methods to predict flood
extent and high water marks recorded during three extensive flash floods events in French catchments. It differs from
much other work in this area that seeks to benchmark inundation modelling methods by virtue of the large spatial
scale over which comparisons are undertaken, the large volume of comparison data (which comprises many thousands
of high water marks) and the even treatment of the different methods. Studies in this area can sometimes be
undertaken in only localised areas using limited data which cannot discriminate well between competing approaches
and papers can also suffer from a kind of ‘unconscious bias’ towards the researcher’s own model. All these pitfalls are
avoided in this paper, and the resulting study is therefore a serious one. The research is well executed and mostly very
well presented, and | think could be published in HESS with the correction of the following points.

1. I think there should be a bit more discussion of the limitations of using a steady state approximation to model flash
floods. | guess this works ok because the automatic model build splits each catchment into small reaches where it is
much more plausible to assume steady state conditions, but it would be nice to hear the justification from the authors.
Indeed the limitations of using a steady-state assumption were mentioned but insufficiently developed in the initial
version of the manuscript. We therefore added the following development in section 3.3: “The simulations are all run
in steady state regime based on estimated flood peak discharges for each river reach. The steady state assumption
may lead to an overestimation of the inundation extent and depths if the volume of the flood wave is limited in
comparison with the storage capacity of the floodplain. This assumption is considered here as reasonable since the
widths of the floodplains do not exceed several hundred meters, and therefore the corresponding floodplain storage
capacities should remain limited. The computation based on flood peak discharges may also lead to an overestimation
of backwater effects at confluences, because of the underlying assumption that maximum peak discharges occur
simultaneously for all river branches at a confluence. Lastly, the variations of peak discharges along each river reach
are not represented, but these variations are limited since the delineated river reaches have a limited length”

2. Somewhere in the paper there needs to be a discussion about the limitations of using flood extent as a validation
metric in narrow valleys and headwater catchments, especially during catastrophic floods events which are very likely
to be valley-filling. In these circumstances it may be easy for models to replicate inundation extent and this metric may
not be able to effectively discriminate between competing approaches. | have a suspicion that this effect may explain
quite a lot about why the performance of the HAND method varies markedly in space.

We fully agree with this. A sentence has been added in section 3.4.1 to remind this important point: “A possible
drawback of this metric is that observations of actual flood extents are generally gathered for major floods events,
with the objective to establish historical references as support of flood risk management policies. These flood events
are likely to be valley-filling, which is clearly the case for the three events considered here. This makes the retrieval of
the flood extent much easier to achieve with modeling tools, and may mask the differences of performance between
the different competing approaches”.

A sentence has also been added in section 3.4.2 to mention that the metric based on water levels helps to compensate
this limitation of the Critical Success Index: “In situations where the geomorphologic floodplain is entirely filled, this
metric may help to identify some differences between the modeling approaches even if the flood extent is similarly
retrieved.”

3. Line 29. Methods are now starting being developed to estimate unknown bathymetry in large catchments which
might be worth mentioning here e.g. Gleason, C. J., & Smith, L. C. (2014). Toward global mapping of river discharge
using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences,
111(13), 4788-4791. https://www.pnas.org/content/pnas/111/13/4788.full.pdf Grimaldi, S., Li, Y., Walker, J. P., &
Pauwels, V. R. N. (2018). Effective Representation of River Geometry in Hydraulic Flood Forecast Models. Water
Resources Research, 54(2), 1031-1057. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021765.
Neal, J. C., Odoni, N. A,, Trigg, M. A., Freer, J. E., Garcia-Pintado, J., Mason, D. C., et al. (2015). Efficient incorporation
of channel cross-section geometry uncertainty into regional and global scale flood inundation models. Journal of
Hydrology, 529, 169-183. Bréda, J. P. L. F., Paiva, R. C. D., Bravo, J. M., Passaia, O. A., & Moreira, D. M. (2019).
Assimilation of Satellite Altimetry Data for Effective River Bathymetry. Water Resources Research, 55(9), 7441-7463.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024010
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We added a sentence in this section to mention these recent advances in unknown river bathymetry estimation: “Even
if information on bathymetry is still rarely available, recent advances have been achieved in estimating
unknown bathymetry or river channel geometry based on remote sensing or local at-site surveyed data
(Gleason et al., 2014; Neal et al., 2015; Grimaldi et al., 2018; Bréda et al, 2019)”

4. Line 51. The key point about the paper by Savage et al quoted here is that they found that below particular grid
scales the model precision became spurious ‘given other uncertainties’. Might be worth editing to include this idea.
The sentence has been reformulated to better reflect this idea: “For instance, Savage et al. (2016) consider that
resolutions finer that 50 m offer a limited gain due to other sources of uncertainties, while resulting in a large increase
of computational expense;..”

5. Line 2014-5. the sentence starting “A conventional Dinf . . .” could do with just a bit more explanation to be
understood by a more general audience not familiar with these terms.

We reformulated and added a reference for detailed explanations on the Dinf approach: “A conventional approach
based on Dinf flow directions (Tarbotton, 1997) is used here instead of ..”

Tarboton, D. G., (1997), A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital
Elevation Models, Water Resources Research, 33(2): 309-319.

6. Line 110. There needs to be a bit more discussion about the limitations of HAND. My understanding of the method
is that it assumes that: (i) the water level is uniform over the reach and (ii) that all cells with elevation lower than the
water level are inundated even if there is no flowpath connection to the channel. See Figure 1 in this paper
https://nhess.copernicus.org/articles/19/2405/2019/nhess-19-2405-2019.pdf. Extended cross section 1D methods
can also suffer from the second of these issues. Both assumptions are obviously very different to how floods behave
in reality and will explain some of the misprediction with HAND and the 1D model. 2D approaches automatically avoid
both issues.

The sentence describing the main limitations of the HAND approach has been developed in the following way:
“However it is based on several important assumptions. First, the cross-sectional geometry and water level are
averaged and supposed to be uniform for each river reach. Therefore, backwater effects due to longitudinal slope and
cross section shape variations along one river reach, and/or due to downstream limit conditions, are not represented.
Second, longitudinal discharge variations along each river reach cannot be accounted for. Third, the inundation depth
at each point of the floodplain depends only on its relative elevation above its nearest downstream drainage point (i.e.
the HAND raster value), independently of the real hydraulic connections. This may result in discontinuities : neighbour
pixels having similar elevations may be related to different drainage points and hence be attributed different hand
values. This is particularly true in the case of flat and wide floodplains and at confluences where neighbour pixels may
be connected to different river reaches. In this latter case, the water levels considered for the inundation mapping will
also be different for the two neighbour points. ”

7. Line 117. There are now a few papers on the importance of cross section spacing in 1D models which you should
probably cite here. Would also be worth a sentence discussing how your model build dealt with this issue. See for
example: Anuar Md Ali, Giuliano Di Baldassarre & Dimitri P. Solomatine (2015) Testing different cross-section spacing
in 1D hydraulic modelling: a case study on Johor River, Malaysia, Hydrological Sciences Journal, 60:2, 351-360, DOI:
10.1080/02626667.2014.889297.

The spacing between cross sections is optimized in caRtino to limit as far as possible the distance between cross
sections and avoid in the same time cross section overlapping. The following sentences have been added to explain
how it is achieved: “Since the distances between cross-sections may have a significant impact on 1D hydraulic
simulation results (Ali et al., 2014), the cross-sections are positioned with the double objective to limit their spacing
and avoid overlapping. This is achieved in the following way: i) a constant distance between cross-sections is first used
(50 meters in this application) ; ii) a first hydraulic run is conducted to estimate the width of the floodplain ; iii) the
distance between cross-sections is then set to a proportion of the floodplain width (here 30%), and the cross-sections
are reoriented if crossing each other.”

8. Line 141. | think this statement needs a reference.

The comparison with LISFLOOD is presented in Davy et al. (2017), but according to the authors this comparison should
not be considered as a benchmark. This has been more explicitly mentioned: “Davy et al. (2017) indicate the CPU time
changes approximately linearly with the number of pixels of the computation domain. They compared Floodos with
the widely used 2D LISFLOOD-FP model (Bates et al., 2010). They obtained similar results and faster computation times
with Floodos, although they mention this comparison should not be considered as a benchmark.”



9. Section 3.1. This section needs to include a more extensive discussion of the uncertainties in the observed data. This
then needs to be picked up in the discussion to determine whether the models can match the observed data to within
error or not. You already discuss the terrain data error in the paper, but don’t really say much about errors

in the observed discharge other than the rainfall-runoff model generally matched the observed discharge to within
10%. However, discharge gauging during extreme floods is fraught with difficulty and you need to consider the likely
error in this, even if this can only be a best estimate made with reference to other studies. The error in the rainfall-
runoff model is somewhat misleading, as most such models usually have enough degrees of freedom to be able to
match ‘observed’ data adequately, even if it has error and is disinformative. | would expect discharge gauging during
flash floods to be have errors of at least +-20%. Similarly, you need to say a lot more about how the high water marks
were collected, what their likely error are and what QA/QC procedures you undertook to clean up these data. I think
for each catchment you should include a plot of HWMs versus thalweg distance and also plot on this the overall valley
slope derived from LiDAR data. This will show if there are obvious outliers as we would expect flood water surface
profiles to decrease slowly and monotonically in a downstream direction. Regions of supercritical flow may be an
exception to this rule of thumb, but, in general, this is the pattern we might expect. Plotting the model water surface
slopes on these graphs would also be very informative. A further quality check is to plot the difference in elevation
between pairs of high water marks and compare this to the valley slope. Figure 3 in this paper might be a useful
template: Fewtrell, T.J., Neal, J.C., Bates, P.D. and Harrison, P.J. (2011). Geometric and structural river channel
complexity and the prediction of urban inundation. Hydrological Processes, 25, 3173-3186. (10.1002/hyp.8035). Lastly,
you need to say a lot more about how the inundation extent was mapped and what were the likely errors in this.

The errors on post flood discharge data have been estimated and are plotted on figure 3, they are indeed mostly close
to a +-20% range, but sometimes higher. The caption of figure 3 has been updated to indicate that error bars are
plotted. The sentence on rainfall runoff simulation results has also been updated to mention more explicitly the
possible remaining errors on simulation results: “Overall, the differences between simulated and observed peak
discharges do not exceed +-20\% (see Fig.3). However, observations are mainly based on post-flood surveys and may
have large uncertainties, as indicated by error bars on Fig.3. Moreover, observations are not available at each branch
of the considered river networks. Therefore, the simulated peak discharges obtained from the rainfall-runoff model
may locally differ significantly from the actual ones.”.

The HWM data was extracted from the french national HWM database (https://www.reperesdecrues.developpement-
durable.gouv.fr). This data is systematically checked before incorporation in the database. Presenting longitudinal
profiles for our case studies is difficult because of the length and large ramifications of the considered river networks.
Additionally, significant contrasts are locally observed between the HWM reported in the floodplain and the HWM in
the main stream at a given location (presence of weirs, waterfalls, ..). The association of HWM to a talweg longitudinal
distance may therefore raise some interpretation difficulties. However the graphs proposed by Fewtrell et al. (2011)
are easier to plot and are presented below (figure 1) for the 3 case studies. The averaged slopes of the river reaches
where HWM are available are also plotted (maximum slope value, and 90% and 50% quantiles for each case study).
According to these figures, some HWM elevation differences may indeed appear as outliers since exceeding the
maximum slope of river reaches. But this is observed only for a limited number of HMW couples (3% for the Aude , 2%
for the Argens, and less than 1% for the Alpes Maritimes case study). And these large elevation differences cannot be
systematically attributed to errors in the data, but also to local phenomena such as bridge blockages, presence of weirs
or waterfalls. Considering the limited number of HWMs concerned we think that the possible presence of errors does
not significantly affect our comparison results.
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Figure 1. Comparison of high water marks elevation differences and river reaches averaged slopes (maximum value,
90% and 50 % quantiles): a) Aude case study, b) Argens case study, c) Alpes Maritimes case study.
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We therefore chose to mention clearly the origin of the data in section 3.1 and the possible presence of remaining
errors in the HWM data: “The HWM data was extracted from the french national HWM database
(https://www.reperesdecrues.developpement-durable.gouv.fr). This data is systematically checked before
incorporation in the database and therefore should not include large errors. However, errors up to 50 cm should be
considered as common considering the accuracy of topographic surveys (HMW location and elevation), and/or possible
inappropriate choice of HWMs locations (increase of water surface elevation in front of obstacles, capillary rise of
moisture in walls, ..). Some larger errors may also remain for a very limited number of HWMs, and may result locally
in large estimated simulation errors. But all these error sources are common to the 3 methods and should not affect
the comparison results.”

We also added a sentence in section 3.1 to mention the origin of inundation extent observed data: “The detailed
mapping of inundation extents, available for the Argens 2010 and Aude 2018 events, was achieved by local authorities
based on field surveys in the weeks following the floods. This data should have a good accuracy even if it may have
been locally interpolated between field observation points.”

10. Section 3.2. It would be good to include a plot of the hydrographs so readers can better appreciate the event
dynamics. Did the events lead to any regions of supercritical flow and, if so, how well do you expect the models to
perform at these locations?

Observed hydrographs are only seldom available for the considered events (see red crosses on fig.3) since a large part
of the gauging stations were destroyed during the floods, particularly for the Argens 2010 and Alpes Maritimes 2015
events. It would be possible to add only one figure to illustrate the (very fast) dynamics of the Aude 2018 flood.

Since the river bed slopes remain limited in a large part the considered river networks, supercritical flows should be
observed only very locally.

11. Line 238. This threshold of 65% is arbitrary. | don’t disagree with it, but | think you need to better justify its choice.
The threshold of 65% was proposed by Fleishmann et al. (2019). We modified the formulation in the following way to
better justify this choice: “Since this metric cumulates overestimation (b) and underestimation (c), it may decrease
significantly even for simulation results which appear visually to fit well the observations. Fleishmann et al. (2019)
consider that hydrodynamic models with CSI scores greater than 65% at reach scale show satisfactory results.”

12. Line 241: What did you do about calculating the error at high wate marks where the model did not predict any
inundation?

An explanation has been added on this point: “If the model does not predict any inundation at the position of the high
water mark, it is considered that the predicted water height is 0 m, and thus the computed error corresponds to the
elevation of the high water mark above ground.”

13. Line 250. | tried to download the data but the site did not allow me to do this. Please can you fix this.
We checked this point and the downloading seems to be working properly (the “Direct access to public data” button
must be used to download the data). We suspect that the problem encountered may depend on the navigator used.

14. Section 4: Through this section and the discussion you need to take into account the impact of the observed data
errors on your ability to make inferences and discriminate between the three models. Where do the models match the
data to within error and where do they not?

A discussion has been added on this point in section 4.2: “Considering the possible errors on observed HWMs elevation
(see section 3.1), simulation errors up to 50 cm may be considered as non significant. However, these error sources
are common to the three mapping approaches and should not result in any differences in the results obtained with the
three methods. ”

15. Line 334. Was there any supercritical flow at the bridge blockages?
It is likely that supercritical flow occured due to the section reduction under the bridge, but probably on a limited
section length (longitudinal slopes are not elevated in this area).

16. Line 373. Here you might want to return to the point about the push to finer resolution becoming spurious at
particular scales given other uncertainties. See the excellent paper by my co-reviewer Francesco Dottori that first
identified this issue:Dottori, F., Di Baldassarre, G., and Todini, E. (2013), Detailed data is welcome, but with a pinch of
salt: Accuracy, precision, and uncertainty in flood inundation modeling, Water Resour. Res., 49, 6079— 6085,
doi:10.1002/wrcr.20406.

We mentioned again this issue here: “However, it should be verified that the gains related to input data accuracy are
not masked by other sources of uncertainty (Dottori et al., 2013).”
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17. Line 378. One solution to the Near Real Time prediction problem with 2D models is to pre-compute a library of
inundation simulations at different flow rates which can then be sampled extremely quickly based on the observed or
forecast discharge. The advantage of this approach is that one can sample a range of flows of weight them according
to their likelihood, thereby also accounting either for the uncertainty in the observed data or in the forecast. See the
following paper by David Leedal for some ideas on how to do this: Leedal, D., Neal, J., Beven, K., Younger, P. and Bates,
P. (2010). Visualisation approaches for communicating real-time flood forecasting level and inundation information.
Journal of Flood Risk Management, 3 (2), 140-150. (10.1111/j.1753-318X.2010.01063.x).

The discussion on this important issue of real time forecasts has been developed in the following way: “ Finally, the
methods presented here should be of great help to provide realistic inundation scenarios and develop information
about possible flash-flood impacts as a support of flood risk management policies (Merz et al., 2020; Ritter et al., 2020).
However, further work is still needed to integrate these methods into real-time forecasting chains and assess their
performance in this context. The errors on discharge forecasts may indeed be dominating the other sources of
uncertainties, and the computation times may also be another important limiting factor. Depending on the considered
inundation mapping methods, real time computations may be feasible and may improve the representation of flood-
wave volumes and flood dynamics at confluences, whereas off-line libraries of inundation scenarios can be generated
and sampled in real time (Dottori et al., 2017), which may help representing discharge uncertainties by selecting
multiple scenarios (Leedal et al., 2010). The definition of the best real-time computation strategy is even more complex
in the case of flash-floods, because of their very fast evolution dynamics. The delay necessary to run and provide
forecasts may indeed highly limit the capacity of emergency services to analyse forecasts and adapt their response
strategies by reference to inundation scenarios they are prepared for. Finally, an optimal compromise has probably to
be found in the case of flash floods between the accuracy of inundation forecasts and the rapidity of forecast delivery.”

I hope these comments are useful and | very much look forward to seeing the paper in print.
Paul Bates
University of Bristol



