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Abstract. The impacts of climate and land-use changes make the stationary assumption in hydrology obsolete. Moreover, there

is still considerable uncertainty regarding the future evolution of the Earth’s climate and the extent of the alteration of flow

regimes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their

corresponding hydrologic conditions. We propose a calibration/validation protocol based on the differential split-sample test

and numerous, contrasted, climate sequences identified through a Hidden Markov Model (HMM) classification. The proposed5

protocol is tested on the Senegal River in West Africa. Results show that when the time series of river discharges does not

exhibit a clear climate trend, or when it has multiple change points, classical rupture tests are useless and HMM classification

is a viable alternative as long as the climate sub-sequences are long enough.

1 Introduction10

According to some authors, humanity has entered a new geological Epoch, the Anthropocene, characterized by rapid envi-

ronmental changes due to human activities (Falkenmark et al., 2019). Among those activities, the massive release of carbon

dioxide since the industrial revolution is expected to lead to global warming, which in turn will affect the hydrological cycle

(Gleeson et al., 2020). In the past, water engineers were able to design and operate water infrastructure based on the assump-

tion that the climate was stationary, and hence that time series of recorded hydrologic variables such as precipitation and river15

discharge were representative of future hydrologic conditions (Bernier, 1977; Payrastre, 2003; Naghettini, 2017). Now that the

climate is changing, this assumption of stationarity is considered obsolete or even "dead" according to Milly et al. (2008). To

deal with this issue, water planners and managers have devoted significant efforts to the development of new decision analytic

frameworks that explicitly capture the uncertainties attached to climate change and its impacts on water resources (Brown and

Wilby, 2012; Prudhomme et al., 2010).20

There are essentially two categories of decision-analytic frameworks : top-down versus bottom-up. The first relies on the se-

quential coupling of models: GCM models are run to project future precipitations and temperatures which are then downscaled

and used as inputs to hydrologic models whose outputs are then processed by water systems models (Peel and Blöschl, 2011).

This is consistent with the traditional "predict-then-act" decision-making paradigm (Weaver et al., 2013). The second category25
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rather seeks to identify robust solutions, i.e. solutions that will perform relatively well across a wide range of hydrologic con-

ditions (Lempert et al., 2006). In terms of decision-making paradigm, the idea here is to "minimize regret".

Despite their differences, both frameworks rely at some point on a hydrological model to transform the climate forcings into

streamflows. The hydrological model can be stochastic (Borgomeo et al., 2014; Poff et al., 2016), distributed or conceptual30

(Fortin et al., 2007; Ludwig et al., 2009). When the model is conceptual, its performances must be assessed over contrast-

ing climatic periods because it should be able to perform well over contrasted hydro-climatic conditions (Klemes, 1986). For

that purpose, the differential split-sample test principle of Klemes (1986) suggests dividing the whole period into independent

periods with different stationary climate features. The hydrological model is then calibrated on a specific climate period and

validated on other(s). Also, the technique used to sub-divide a time series is key when calibrating/validating a hydrological35

model (Thirel et al., 2015a,b; Stephens et al., 2019; Huang et al., 2020).

Several methods have then been proposed to detect shifts in climate regimes (see e.g. Liu et al. (2016) for a review of detec-

tion methods), including the Mann-Kendall test (Mann, 1945; Kendall, 1948) and the Pettitt test (Pettitt, 1979). Those tests can

be used to detect trends or ruptures in streamflow observations (Drogue, 2013; Diop et al., 2017; Ali et al., 2019). However, they40

can only make the distinction between two periods, before and after the change point, and are therefore unable to handle more

complex climate sequences with multiple change points. In certain regions, for example, time series of river discharges are

characterized by low-frequency shifts, and hence multiple change points, indicating that the underlying hydrological processes

are influenced by low-frequency climate signals such as El Nino Southern Oscillation (Bracken et al., 2014; Nalley et al., 2019).

45

Hidden Markov Models (HMMs) can be used to identify a succession of subsequences in a time series (Rabiner, 1989).

Rather than focusing on shifts in the mean of a process, HMMs estimate shifts in the state of a process (Whiting et al., 2004).

In other words, a HMM labels the observations according to their state, which ultimately leads to a new time series with states

alongside the original time series. If the latter is a time series of river discharges, then the HMM will generate a new time series

of climate states. In hydrology, HMMs are typically used to analyze time series exhibiting a regime-like behaviour character-50

ized by long-term persistence (Akintug and Rasmussen, 2005; Whiting et al., 2004; Turner and Galelli, 2016).

In this article, we propose a calibration/validation protocol integrating a classification obtained by HMM that can handle

complex hydrologic sequences. The goal is to improve the robustness of the calibration/validation of a hydrological model,

which is a prerequisite to climate change impact assessment. This is illustrated using the Senegal River Basin (SRB) as a case55

study.

The paper is organized as follows. We first describe the case study in section 2, and then the selected lumped hydrological

model (section 3). The proposed calibration/validation protocol and its application are presented in the section 4. In the next
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Figure 1. The SRB and its sub-basins boundaries. Red crosses represent sub-basin outlets (a), while sub-basin superficies are shaded in blue

(b. Daka-Saidou, c. Oualia, d. Bakel).

section 5, the results are described and discussed. Finally, concluding remarks are given.60

2 The Senegal River Basin and its sub-basins

The Senegal River drains a basin shared by four countries in West Africa : Guinea, Mali, Mauritania, and Senegal. There are

three main tributaries: (i) the Bafing River contributing to∼ 50% of the Senegal flows, (2) the Bakoye River (∼ 15%), and (iii)

the Faleme River (35%). Flowing northward on 500 km, the Bafing River collects precipitation on the Fouta Djallon, a high65

plateau considered as the water tower of West Africa. After merging with the Bakoye, the Senegal River runs north-west on

200km before the confluence with the Faleme River at Bakel, the last major tributary. After Bakel, the river meanders over 800

km through the floodplain and then discharges into the Atlantic Ocean.

The basin is located in the Soudano-Guinean zone, which is yearly influenced by the monsoon, a rainy season from April to70

October (Lahtela, 2003; Bodian, 2011). A consequence of the monsoon is a strong north/south precipitation gradient, ranging

from 1900mm/y in the south to 100mm/y in the north (Bader et al., 2014; Bodian et al., 2015). In addition, precipitations

present strong annual and inter-annual historical variabilities (Faye et al., 2015), with a wet episode (1950s-1970s) and a dry

episode (1970s-1990s). With this historical climatic variability, as well as a strong spatial heterogeneity of its hydroclimatic

components, the SRB is an interesting case study to analyze the robustness of hydrological models; that is, their ability to75
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Sub-basins River Area (km2) Isohyets ranging (mm/y) Outlet coordinates

Daka Saidou Bafing 15 897 1500-2000 11,96◦N; 10,63◦W

Oualia Bakoye 102 611 500-1500 13,61◦N; 10,38◦W

Bakel Senegal 393 754 2000-400 14,91◦N; 12,47◦W

Table 1. List of the SRB sub-basins. Superficies have been calculated with the GRASS-3.4 model and 1arc sec SRTM elevation data.

Indicative isohyets ranging are extracted from Faye et al. (2015).

perform well under contrasted hydrologic conditions.

To take advantage of the hydroclimatic specificities of the SRB and its heterogeneity, we have divided the SRB into three

sub-basins (Figure 1.b,c,d and Table 1). This allows us to demonstrate the potential of the proposed protocol based on an HMM

classification on basins with contrasting hydrologic characteristics. Sub-basins have been delimited using the GRASS-3.4 soft-80

ware, and the Shuttle Radar Topography Mission (SRTM) 1arc sec elevation data set.

3 The selected hydrological model

We have selected GR2M (Mouelhi, 2003), a monthly time-step conceptual hydrological model, because (1) it has been used in

the SRB with satisfactory results (Ardoin-Bardin, 2004; Ardoin-Bardin et al., 2005; Holding, 2012; Bodian et al., 2015, 2016),85

and (2) the simulated flows will be processed by a hydro-economic model of the SRB working on a monthly time step (Tilmant

et al., 2020).

GR2M has only two parameters: X1 and X2 controlling the production and the transfer functions respectively (Figure 2). We

use the GR2M version included in the environment "airGR", developed by Coron et al. (2017). GR2M calibration/validation90

phase requires three time-series: (i) a time series of monthly precipitations (P) in the basin, (ii) a time series of monthly poten-

tial evapotranspirations (PET), and (iii) a time series of monthly river discharges (q) at the outlet.

4 The calibration/validation protocol

The calibration/validation protocol follows 3 steps: (1) selecting the inputs, (2) choosing the adequate objective function, and95

(3) identifying the climate subsequences. The optimization algorithm used for the calibration phase comes from Michel (1991).

This paper’s contribution lies in step 3 and how HMM can handle complex hydrologic sequences to ultimately assess the ro-
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Figure 2. Scheme of the hydrological GR2M model.

bustness of a calibrated hydrological model.

4.1 Hydrological data100

Some authors (Paturel et al., 1995; Hossain et al., 2004; Huard and Mailhot, 2006; Kavetski et al., 2006; Huard and Mailhot,

2008) have pointed out that selecting the most accurate hydrological and meteorological inputs can significantly reduce the

Bayesian error during the calibration/validation of a hydrological model. Based on a comparison with meteorological observa-

tions compiled by SIEREM, and details given by Bader et al. (2014) about hydrological data, we have selected the following

dataset: (1) Time series of precipitations were extracted from HSM-SIEREM dataset, stretching from 1940 to 1998(Boyer105

et al., 2006); (2) PET time series comes from the Climate Research Unite CRU (Harris et al., 2020), and covers a period from

1901 to 2018; (3) Monthly river discharge at sub-basin outlets are naturalized flows extracted from Bader et al. (2014) for the

1903-2012 period. Based on the above datasets, we will analyse the period 1940-01 / 1998-12 (59 years), which is denoted by

"the full historical record" (T 1940−1998) in the remaining of this paper.

110
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4.2 Choosing adequate objective functions

Selecting an objective function to calibrate a conceptual hydrological model is one of the main concerns of the hydrological

community (Garcia et al., 2017; Krause et al., 2005; Madsen, 2003). Here, we have selected two objective functions:(1) the

Nash Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and the (2) Kling-Gupta Efficiency criterion (KGE) (Gupta et al.,

2009). The former is a popular criterion and since it mainly focuses on high flows, it is particularly relevant for rivers where115

much of the annual discharge is generated during the high flow season, which is the case in the SRB. The latter allows for a

multi-objective calibration that considers more components than just the errors; that is, correlation, bias and variability.

Mathematically, the NSE and KGE formulations can be written as:

NSE = 1−
∑n
t=1(qobst − qsimt )2

∑n
t=1(qobst −µobs)2

(1)120

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (2)

with qobs is the observed flow at time t, qsim is the simulated flow at time t, µobs the mean of observed flows; β the ratio

between the mean simulated flow and the mean observed flow value β = µsim/µobs; α the ratio between the standard deviation

of simulated flows and the standard deviation of observed flows α= σsim/σobs; and

r =
∑n
t=1(qobst −µobs)(qsimt −µsim)√

(
∑n
t=1(qobst −µobs)2) ∗ (

∑n
t=1(qsimt −µsim)2)

(3)125

4.3 Identifying the climate subsequences

The calibration/validation protocol relies on the differential split-sample test proposed by Klemes (1986). The main idea is to

split a period into a number of sub-periods with different hydro-climatic features. This amounts to detecting shifts in climate

regimes.

To achieve this, we use two methods:130

1. In the first method, we apply the non-parametric trend Pettitt test (section 4.3.1) to divide T into two climate sub-

sequences: (1) a single dry sub-sequence noted TPettitt.dry , and (2) a single wet sub-sequence noted TPettitt.wet.

2. The second method relies on a HMM to river discharge data according to a fixed number of climate states. We apply two

versions of the HMM classification:

– The 2-states HMM classification, in which each year is labelled as "dry" or "wet". Thus, T is divided into numerous135

dry or wet subsequences. All years labelled as dry are gathered under the annotation T2HMM.dry , and all years

labelled as wet under the annotation T2HMM.wet.
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– Similarly, the 3-states HMM classification, in which years are labelled as "dry", "normal" or "wet". All years

labelled as dry, normal and wet are gathered under the annotations T3HMM.dry , T3HMM.nor, and T3HMM.wet

respectively.140

4.3.1 The non-parametric trend Pettitt’s test:

For an given variable (q, referring to inflows for example) , the Pettitt test is defined as follow (Pettitt, 1979):

Ut,T =
t∑

i=1

T∑

j=t+1

sng(qi− qj) (4)

KT =max(Ut,T ) (5)

p≈ 2 ∗ exp( −6K2
T

T 3 +T 2
) (6)145

Since they are considered as an integrative signal of the whole basin hydro-climatic conditions, Pettitt test has been carried

out on the mean annual flows. KT gives the year of the change-point if the test is significant (p≤ 0,05)(Pettitt, 1979).

4.3.2 The Hidden Markov Model:

Hidden Markov Model is a class of probabilistic model that can be used to label the observations (Rabiner, 1989). The motiva-150

tion for adopting this type of model in hydrology is that the climate regime can be represented by a state variable that can take

only a limited number of values (e.g. dry/wet for 2 states; dry/normal/wet for 3 states). In other words, in parallel to the time

series of historical river discharges, there exists another time series with discrete climate states. Denote {q1, q2, ..., qT } the time

series of annual flows and {Φ1,Φ2, ...,ΦT } the time series of climate states which can only take N possible values (Figure 3).

155

The state variable is unobserved and is accordingly referred to as a hidden variable. The hidden climate state Φt is modelled

as a N state Markov chain (i.e the probability of a particular state depends only on the previous state) described by a transition

probability matrix M with elements Mij :

Mij =M(Φt = j|Φt−1 = i) (7)160

With

t= 2, ...,T (8)
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q1
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qT

Φ1 t TΦ Φ

Figure 3. Schematic graph of Hidden Markov Modelling.

i, j = 1, ...,N (9)

where Mij is the conditional probability of transitioning from a hidden climate state i to a hidden climate state j.

165

The observed variable qt is assumed to have been drawn from a probability distribution whose parameters are conditional

upon the distinct state at time t such that, when Φt is known, the distribution of qt depends only on the current state Φt and not

on previous states or observations.

M(qt|qt−1, ...q1,Φt, ...,Φ1) =M(qt|Φt) (10)170

A HMM is described by (1) the parameters of Gaussian distributions i.e., mean µ= (µ1,µ2, ...,µN ) and standard deviation

σ = (σ1,σ2, ...,σN ) associated with N states, (2) the N×N matrix of transition probabilities M, and (3) the initial distribution

of the Markov chain δ. Consequently, the set of parameters to be estimated is θ = {µ,σ,M,δ}.

Fitting a HMM to the observed sequence (here the time series of annual flows), requires evaluating the likelihood of ob-175

serving that sequence, as calculated under a N-state HMM (see Appendix A for more details). In this study, we use the

Expectation-Maximization (EM) algorithm, which is an iterative method for finding the maximum-likelihood estimate of the

parameters of an underlying distribution when some of the data are missing. In the context of HMM, the EM algorithm is

known as the Baum-Welch algorithm (Welch, 2003) and the hidden climate states are treated as missing data (Bilmes, 1998;

Zucchini et al., 2017).180
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The EM algorithm consists of two main phases: an expectation phase called "E step", followed by a maximization phase

called "M step". Given the current estimate of the HMM parameters θ, the following steps are repeated until acceptable con-

vergence is achieved: The "E step" phase of the algorithm computes the expected value of unobserved data (i.e hidden climate

states) using the current estimate of the parameters and the observed data. The "M step" phase of the algorithm then provides a185

new estimate of the parameters by using the data from the "E step" phase as if they were actually measured data. These param-

eters are then used to calculate the distribution of unobserved data in the next "E step" phase of the algorithm. The resulting

values of θ is then the stationary point of the likelihood of the observed data (Please refer to Appendix B for more details).

Given the observation sequence, we want to determine the sequence of hidden climate states {Φ1,Φ2, ...,ΦT } that has most190

likely (under the fitted HMM) given rise to the time series of annual river discharges. In the literature, this is known as the

decoding procedure. In this study we use the Viterbi algorithm (Viterbi, 1967) to unfold the sequence of hidden climate states

(called the Viterbi path). This, in turn, enables us to divide the whole period into numerous climate sub-sequences.

4.4 Application of the calibration/validation protocol195

Recall that the identification of change-points is done on the time series of annual flows while the hydrological model simulates

monthly river discharges.

When applying the calibration/validation protocol described above, seven cases arise as shown in Figure 4. Indeed:

– If relevant, the Pettitt test offers two calibration/ validation possibilities: calibration on Tpettitt.dry and validation on200

Tpettitt.wet, and vice versa.

– The 2-states HMM classification offers two possibilities too: calibration on T2HMM.dry and validation on T2HMM.wet,

and the opposite.

– Similarly, the 3-states HMM classification leads to three possibilities: calibration on T3HMM.dry and validation on

T3HMM.wet +T3HMM.wet, and corollaries.205

Note that Tpettitt.wet and Tpettitt.dry are both subsequences made of contiguous years as the original time series are spit in

two. In that case, the temporal persistence found in the original time series is very much preserved. However, for T2HMM.wet

and T2HMM.dry , the situation is different since they are made of numerous, non-contiguous, "wet" or "dry" sub-sequences

respectively. This is also true for T3HMM.wet,T3HMM.nor and T3HMM.dry . To ensure the continuity of the internal time series

of the model, the computation of the objective function (KGE or NSE) during the calibration phase or the validation phase was210

carried out only on the indices included in the selected climate state.

In addition, even though the KGE is based on a decomposition of the NSE, the corresponding scores cannot be directly

compared. Therefore, we will discuss the results obtained with NSE and KGE separately. During all calibration phases, the
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Figure 4. Application of our protocol to identify climate sequences in a given period T . Seven cases for the calibration/validation phase are

obtained.

first year is considered as warming-up period and not considered.215

5 Results and discussion

5.1 Complex climate sequences and HMM classifications

The results of the division of the full historical record T 1940−1998 are displayed in Table 2 and Figure 5a., while the corre-

sponding parameters are given in Table 2.220
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The full historical record T 1940−1998

Pettitt test

Basins p value Year break

Daka Saidou 1.10-6 1970

Oualia 8.10-8 1971

Bakel 2.10-6 1971

2-states-HMM

Basins µ σ δ M

Daka Saidou 183.8; 300.2 31.3; 53.8 1,0

[
0.96 0.04

0.04 0.96

]

Oualia 178.3; 65.1 32.1; 45.9 1,0

[
0.966 0.034

0.038 0.962

]

Bakel 433.9;855.1 134.8;210.0 1,0

[
0.963 0.037

0.041 0.959

]

3-states-HMM

Daka Saidou 300.7; 206;162.5 22.8; 22.5;54.1 0,1,0


0.934 0.066 0

0.071 0.81 0.061

0.037 0 0.963


Oualia 178.4;87.8;37.8 11.4;25.3;45.8 0,1,0


0.785 0.215 0

0.129 0.81 0.061

0.037 0 0.963


Bakel 363.39; 553.32; 925.3 90.2; 149.0; 179.5 0,1,0


0.927 0.073 0

0.617 0.853 0.850

0 0.087 0.913


Table 2. Pettitt test results and Hidden Markov Model parameters (N=2 and N=3) for Daka Saidou, Oualia, and Bakel sub-basins, on the full

historical record T 1940−1998.

For the three sub-basins, the Pettitt test is significant and shows a rupture in 1970 or 1971 (Figure 5a. red vertical line). The

2-state HMM classification provides similar results with nearly aligned climate sub-sequences for all sub-basins. This is also

true for the 3-states HMM classification.

225

With the 2-states or 3-states HMM classification, the states are clearly distinct, which enables us to divide the time series

into numerous climate sub-sequences. The values close to one on the diagonal indicate that when the climate is in a particular

state, it will likely remain in that state in the next time period (year). With a 2-states-HMM classification (Figure 5a. blue

line), the dry is dominant in all sub-basins, whereas with a 3-states-HMM classification (Figure 5b. orange line), the wet state

is dominant in both Daka Saidou and Oualia sub-basins. This is due to the fact that some years that were labelled as "dry"230

with the 2-states HMM classification are now recognized as "normal" when using the 3-states HMM classification. Similarly,

several years move from "wet" to "normal" with the 3-states HMM classification. However, since the number of years that are

switching from dry to normal is larger than those that are switching from wet to normal, the result is a dominant wet state.

We note that Pettitt change-point is aligned with the 2 or 3-states-HMM transitions in 1970 (Daka Saidou) or in 1971 (Oualia235

and Bakel). The length of climate sub-sequences are given in Table 3.
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The full historical record T 1940−1998
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Figure 5. a. Years classifications of T 1940−1998 according to the Pettitt test (vertical red lines), 2-states-HMM (in blue) and 3-states-HMM (in
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on Tpettitt.wet and validation on Tpettitt.dry); dark green to the case 2(Pettitt test, calibration on Tpettitt.dry and validation on Tpettitt.wet);

Light blue to the case 3 (2-states-HMM, calibration on T2HMM.dry and validation on T2HMM.wet.), and dark blue to the opposite (case 4);

Orange to the case 5 (3-states-HMM, calibration on T3HMM.dry and validation on T3HMM.nor and T3HMM.wet); red to the case 6, and

dark red to the seventh case.

The full historical record (T 1940−1998) could be seen as a textbook case with a clear climate trend and long climate and

hydrological records. In a such situation, classical rupture tests like the Pettitt test are adequate to identify two climate sub-

sequences by detecting a single change point. However, 2-states and 3-states HMM classifications allow for a finer labelling240

of the years. For example, according to the Pettitt test, the years prior to 1945 are considered as wet even though they are

classified as either dry or normal years by the 2-states and 3-states HMM classification respectively.

To further highlight the relevance of integrating HMM classifications in a calibration/validation protocol, the protocol has

been implemented over two other smaller periods (27 years each), which display more complex climate sequences with no clear245

climate trend: the period T 1945−1971 and the period T 1972−1998. Results are not shown due to a lack of space, but available for

consultation in the supplementary material section.
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The full historical record T 1940−1998

Daka Saidou
Pettitt’s Test 2-states HMM 3-states HMM

Sub-sequence(s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Calibration Dry 0.93/0.97(28y) 0.92/0.96(33y) 0.93/0.96(17y)

Normal 0.92/0.96(16y)

Wet 0.94/0.97(30y) 0.94/0.97(25y) 0.94/0.97(25y)

Validation Dry 0.93/0.94(28y) 0.92/0.95(33y) 0.92/0.93(17y) 0.91/0.9(17y)

Normal 0.92/0.93(16y) 0.92/0.95(16y)

Wet 0.93/0.95(30y) 0.94/0.95(25y) 0.94/0.96(25y) 0.94/0.97(25y)

Oualia
Calibration Dry 0.80/0.88(27y) 0.77/0.86(31y) 0.74/0.82(15y)

Normal 0.77/0.89(16y)

Wet 0.89/0.94(31y) 0.89/0.94(27y) 0.89/0.94(27y)

Validation Dry 0.73/0.80(27y) 0.71/0.8(31y) 0.72/0.79(15y) 0.58/0.75(15y)

Normal 0.76/0.82(16y) 0.71/0.79(16y)

Wet 0.84/0.84(31y) 0.83/0.86(27y) 0.8/0.81(27y) 0.84/0.85(27y)

Bakel
Calibration Dry 0.86/0.92(27y) 0.78/0.88(31y) 0.8/0.9(17y)

Normal 0.83/0.91(21y)

Wet 0.9/0.94(31y) 0.90/0.95(27y) 0.91/0.94(20y)

Validation Dry 0.69/0.53(27y) 0.71/0.68(31y) 0.77/0.74(17y) 0.63/0.48(17y)

Normal 0.78/0.73(21y) 0.75/0.69(21y)

Wet 0.64/0.47(31y) 0.80/0.68(27y) 0.62/0.44(20y) 0.81/0.68(20y)

Table 3. Table of NSE/KGE calibration and validation scores according to the seven cases for the full historical record T 1940−1998. The

numbers of years used for the calibration or validation are given between brackets.

Depending on the length of period T, the climate sub-sequences can be short. This is the case with T 1945−1971 and T 1972−1998,

for which climate sub-sequences provided by the 3-states HMM classification could reach a length of 5 years. Thus, the ques-250

tion of the minimum of years required to ensure a reliable calibration or validation raises one more time. No consensus has

been reached by the hydrologist community at this point, but a number from two to eight years could be enough depending on

the "hydrological events" included (Razavi and Tolson, 2013; Juston et al., 2013; Singh and Bárdossy, 2012).

In addition, we want to underline the following two points: (1) According to our protocol, when a model is calibrated on a255

specific climatic state, it will not be evaluated (validated) on this same state. To overcome this, the "split-sample test" of Klemes

(1986) could be combined with the differential split-sample test, but a longer record could be required. (2) Please recall that

the principle of the differential split-sample test could be applied to detect complex climate sequences and to detect massive

conversions in land uses when applied on flows.

260
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5.2 Towards an enhancement of calibration and validations scores with HMM classifications?

For Daka Saidou, all seven cases have high scores (≥0.9), indicating that the model is robust. However, for Oualia and Bakel,

calibration/validation scores are more scattered (Figure 5b.).

When comparing the NSE and KGE values for calibration and validation, more several optimal cases are explored (seven265

cases in this article), which could lead to better model performances than if we had limited ourselves to the 2 cases provided

by the Pettitt test.

For Daka-Saidou, calibration/validation NSE (or KGE) scores are gathered in the same area, showing that the model will

have similar performances regardless of the method used to divide the period (Pettitt test, 2-states HMM or 3-states HMM270

classifications). For Oualia and Bakel, results are more scattered, and the HMM classifications could enhance NSE or KGE

scores. This is due to the fact that Daka-Saidou is a small upstream basin with relatively homogeneous precipitation and evap-

otranspiration (Table 1), whereas Oualia and Bakel are larger and heterogeneous basins.

6 Conclusions275

In this article, we have shown how an HMM can deal with complex climates sequences, and how the resulting classification

can be used to develop a robust calibration/validation protocol. The protocol has been implemented in the Senegal River basin

using the GR2M model and the historical flow from 1940-1998.

The main concluding remarks are:280

– When records display a single point change, a classical rupture trend (as Pettitt test) remains an adequate tool to divide

the records into two climate sub-sequences.

– If the records contain multiple change points, HMM classifications are a good alternative to divide the records into several

climate sub-sequences. However, records must be long enough (typically 20-25 years for a 2-states HMM classification,

and 30-35 years for a 3-states HMM classification) to (i) have a sufficient number of usual and unusual hydrological285

events (as mentioned by Singh and Bárdossy (2012)), and (ii) to have a minimum number of years for each climate state.

– Regardless of the division method used, the range of climate conditions over which the hydrological model can perform

depends on the intrinsic variability of the series used during the calibration/validation phase.

– HMM classifications open up the range of possibilities for calibrate/validate a hydrological model, which can lead to an

enhancement of the criterion function (but not necessarily).290
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Appendix A: Likelihood of Hidden Markov Models

We suppose there is an observation sequenceQ= {q1, q2, ..., qT } and the associated (unobserved) state variables Ω = {Φ1,Φ2, ...,ΦT }
generated by such a model. Given the set of HMM parameters θ = {µ,σ,M,δ}, the joint density of complete data set Z =

(Q,Ω) can be expressed as:

p(Z|θ) = p(Q,Ω|θ) = p(Q|Ω,θ)p(Ω|θ) (A1)295

Assuming the data belonging to each hidden state are characterized by a specific Gaussian probability distribution, the two

terms on the right-hand side are:

p(Q|Ω,θ) =
T∏

t=1

p(qt|µΦt
,σΦt

) (A2)

p(Ω|θ) = δ

T−1∏

t=1

p((µΦt+1 |σΦt
)|M) (A3)

The complete data likelihood function ζ(θ|Z) can be calculated as:300

ζ(θ|Z) = ζ(θ|Q,Ω) = p(Q,Ω|θ) (A4)

For a HMM which has the initial distribution δ and transition probability matrix M for the Markov chain, let us define the

probability mass function of Q if the Markov chain is in state i at time t as:

pi(q) = p(Q= q|Ω = i) (A5)

With i= 1,2, ...N305

The general form of likelihood function is then given by (Zucchini et al., 2017):

ζ = δΓ(q1)MΓ(q2)...MΓ(qT )1′ (A6)

where Γ(q) is defined as the diagonal matrix with i the diagonal element pi(q) and 1′ is N dimensional vector of 1.
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Appendix B: HMM Likelihood maximization with EM algorithm310

In order to set out the likelihood computation in the form of Baum-Welch algorithm (Welch, 2003), which involves the forward

α(t) and backward β(t) probabilities, we define α(t) and β(t) as:

α(t) = δΓ(q1)MΓ(q2)...MΓ(qt) = δΓ(q1)
t∏

n=2

MΓ(qn) (B1)

and

β(t) = δΓ(qt+1)MΓ(qt+2)...MΓ(qt)1′ = (
T∏

n=t+1

MΓ(qn))1′ (B2)315

respectively. More specifically, αi(t) is the probability of observing the partial sequence q1, q2, ..., qt and ending up in state

i at time t, and βi(t) is the probability of observing the remaining sequence. Numerical calculation of αi(t) and βi(t) is not

trivial (Akintug and Rasmussen, 2005). Here we use the method suggested by Durbin et al. (1998) for scaling forward and

backward probabilities to overcome this problem. Now let us define uj(t) and vjk(t) as (Zucchini et al., 2017):

uj(t) = p(Φt = j|Q,θ) =
αj(t)βj(t)

ζ
(B3)320

vjk(t) = p(Φt−1 = j,Φt = k|Q) = αj(t− 1)Mjkpk(qt)βk(t)/ζ (B4)

Where Mjk is the probability of transition from hidden climate state j to climate state k, and ζ is the likelihood function.

With EM algorithm, we aim to maximize the log-likelihood of the parameters of interest θ, based on complete data (i.e. both

the observed data and the hidden climate states). Now let us represent the sequence of climate states (missing data) by the

Markov chain by the zero-one random variables. The complete data log-likelihood can be formulated as:325

log(ζ(θ|Z)) =
N∑

j=1

uj(1) log(δj) +
N∑

j=1

N∑

k=1

(
T∑

t=2

vjk(t)) log(Mjk) +
N∑

j=1

T∑

t=1

uj(t) log(pj(qt)) (B5)

where uj(t) = 1 if and only if Φt = j(t= 1,2, ...,T ), and transition probability vjk(t) = 1 if and only if Φt−1 = j and

Φt = k(t= 2,3, ...,T ), N is the number of hidden climate states,δj is the initial transition of Markov chain, and pj(.) is the

probability mass function if the Markov chain is in state j at time t. Maximization of the complete data log-likelihood function

is performed with the EM algorithm through an iterative process presented in Figure B1.330

Author contributions. A. Tilmant suggested the integration of HMM classifications into a calibration/validation protocol. V. Espanmanesh

ran the HMM onto flows to provide climate subsequences. E. Guilpart carried out all the calibrations and validations, and write this paper
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Figure B1. Expectation Maximization algorithm for a HMM parameter estimation.
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