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Abstract. The impacts of climate and land-use changes make the stationary assumption in hydrology obsolete. Moreover,

there is still considerable uncertainty regarding the future evolution of the Earth’s climate and the extent of the alteration of

flow regimes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions.

We propose a calibration/validation protocol based on the differential split-sample test and numerous, contrasted, climate sequences identified through a Hidden Markov Model

(HMM) classification. The proposed protocol is tested on the Senegal River in West Africa. Results show that when the time series of river discharges does not exhibit a clear5

climate trend, or when it has multiple change points, classical rupture tests are useless and HMM classification is a viable alternative as long as the climate sub-sequences are

long enough.Climate change impact assessment in the water sector typically involves a modelling chain in which a hydro-

logical model is needed to generate hydrologic projections from climate forcings. Considering the inherent uncertainty

of the future climate, it is crucial to assess the performance of the hydrologic model over a wide range of climates and

their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a Hidden10

Markov Model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic

model. The differential split-sample test based on an HMM classification is implemented on the time series of monthly

river discharges in the upper Senegal River Basin in West Africa, a region characterized by the presence of low-frequency

climate signals. A comparison with the results obtained using classical rupture tests shows that the diversity of hydrologic

sequences identified using the HMM can help assessing the robustness of the hydrologic model.15

1 Introduction

According to some authors, humanity has entered a new geological Epoch, the Anthropocene, characterized by rapid envi-

ronmental changes due to human activities (Falkenmark et al., 2019). Among those activities, the massive release of carbon

dioxide since the industrial revolution is expected to lead to global warming, which in turn will affect the hydrological cycle20

(Gleeson et al., 2020). In the past, water engineers were able to design and operate water infrastructure based on the assump-

tion that the climate was stationary, and hence that time series of recorded hydrologic variables such as precipitation and river

discharge were representative of future hydrologic conditions (Bernier, 1977; Payrastre, 2003; Naghettini, 2017). Now that the

climate is changing, this assumption of stationarity is considered obsolete or even "dead" according to Milly et al. (2008). To
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deal with this issue, water planners and managers have devoted significant efforts to the development of new decision analytic25

frameworks that explicitly capture the uncertainties attached to climate change and its impacts on water resources (Brown and

Wilby, 2012; Prudhomme et al., 2010).

There are essentially two categories of decision-analytic frameworks : top-down versus bottom-up. The first relies on the se-

quential coupling of models: GCM models are run to project future precipitations and temperatures which are then downscaled30

and used as inputs to hydrologic models whose outputs are then processed by water systems models (Peel and Blöschl, 2011).

This is consistent with the traditional "predict-then-act" decision-making paradigm (Weaver et al., 2013). The second category

rather seeks to identify robust solutions, i.e. solutions that will perform relatively well across a wide range of hydrologic con-

ditions (Lempert et al., 2006). In terms of decision-making paradigm, the idea here is to "minimize regret".

35

Despite their differences, both frameworks rely at some point on a hydrological model to transform the climate forcings into

streamflows. The hydrological model can be stochastic (Borgomeo et al., 2014; Poff et al., 2016), distributed or conceptual

(Fortin et al., 2007; Ludwig et al., 2009). When the model is conceptual, its performances must be assessed over contrasting

climatic periods because it should be able to perform well over contrasted hydro-climatic conditions (Klemes, 1986). For that

purpose, the differential split-sample test principle of Klemes (1986) suggests dividing the whole period into independent pe-40

riods with different stationary climate features. The hydrological model is then calibrated on a specific climate period and validated

on other(s). Also, the technique used to sub-divide a time series is key when calibrating/validating a hydrological model (Thirel et al., 2015a,b; Stephens et al., 2019; Huang

et al., 2020)However, as the technique used to subdivide a time series affects the intrinsic variability embedded in the subse-

quences, it may impact the calibration and validation steps (Thirel et al., 2015a,b; Stephens et al., 2019; Motavita et al.,

2019; Dakhlaoui et al., 2019; Huang et al., 2020).45

Several methods have then been proposed to detect shifts in climate regimes (see e.g. Liu et al. (2016) for a review of detection methods), including the Mann-Kendall test (Mann,

1945; Kendall, 1948) and the Pettitt test (Pettitt, 1979). Those tests can be used to detect trends or ruptures in streamflow observations (Drogue, 2013; Diop et al., 2017; Ali et al.,

2019). However, they can only make the distinction between two periods, before and after the change point, and are therefore unable to handle more complex climate sequences with

multiple change points. In certain regions, for example, time series of river discharges are characterized by low-frequency shifts, and hence multiple change points, indicating that50

the underlying hydrological processes are influenced by low-frequency climate signals such as El Nino Southern Oscillation (Bracken et al., 2014; Nalley et al., 2019).Several

statistical tests have then been proposed to detect shifts and trends in time series including the Mann-Kendall test (Mann,

1945; Kendall, 1948) and the Pettitt test (Pettitt, 1979). A review of those tests can be found in Liu et al. (2016). How-

ever, most of those tests can only make the distinction between two periods, before and after the change point, and are

therefore unable to handle more complex climate sequences with multiple change points. In certain regions, for example,55

time series of river discharges are characterized by low-frequency shifts, and hence multiple change points, because the

underlying hydrological processes are influenced by low-frequency climate signals such as El Nino Southern Oscillation

(Bracken et al., 2014; Nalley et al., 2019).
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Hidden Markov Models (HMMs) can be used to identify a succession of subsequences in a time series (Rabiner, 1989).60

Rather than focusing on shifts in the mean of a process, HMMs estimate shifts in the state of a process (Whiting et al., 2004).

In other words, a HMM labels the observations according to their state, which ultimately leads to a new time series with states

alongside the original time seriesone with the observations. If the latter is a time series of river discharges, then the HMM will

generate a new time series of climate states. In hydrology, HMMs are typically used to analyze time series exhibiting a regime-

like behaviour characterized by long-term persistence (Akintug and Rasmussen, 2005; Whiting et al., 2004; Turner and Galelli,65

2016).

In this article, we propose a calibration/validation protocol integrating a combine a classification obtained by HMM that can handle complex hydrologic

sequencesan HMM with the differential split-sample testing framework. The goal is to improve the robustness of the calibra-

tion/validation of a hydrological model, which is a prerequisite to climate change impact assessment. The term "robustness"70

refers to the ability of the hydrological model to perform well under contrasted hydro-climatic conditions. This definition

is coherent with the so-called robust decision-making framework that is often advocated to handle the deep uncertainty

attached to climate change (Lempert et al., 2006). This is illustrated using the Senegal River Basin (SRB) as a case study.

Headwaters in the SRB are still largely natural areas (Descroix et al., 2020; Faty, 2017) and the flow regime in the upper

part of the basin exhibits regime-shifting behavior with departures from the inter-annual average over extended periods75

of time (Faye et al., 2015; Paturel et al., 2004; Dacosta et al., 2002). These characteristics makes the SRB an interesting

case study to illustrate the differential split-sample testing framework with hydrologic sequences identified from an HMM.

The paper is organized as follows. We first describe the case study in section 2, and then the selected lumped hydrological model (section 3). The proposed calibration/validation

protocol and its application are presented in the section 4. In the next section 5, the results are described and discussed. Finally, concluding remarks are given.80

The paper is organized as follows. Section 2 describes the methodology as well as the case study. Results are then

discussed in section 3. Finally, concluding remarks are given in section 4.

2 Methods and material

2.1 Calibration and validation of a hydrological model under contrasted climates85

Generally speaking, the calibration-validation of a hydrological model seeks to identify the unknown parameters of the

model on one portion of historical data and then to judge the performance of the calibrated model over another por-

tion (Roche et al., 2012). Subdividing the whole period into subsequences must be done carefully keeping in mind that

the validation period must be close to the conditions to which the model will be applied operationally (Brigode et al., 2013).

90

Klemes (1986) proposes a hierarchical scheme for the systematic testing of hydrological models. When calibrating/-

validating a model under non-stationary conditions, the author recommends to follow the differential split-sample test.
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Depending on the nature of the change leading to non-stationary conditions, climate or land-use, the differential split

sample test can take different forms. Since this paper is concerned by the robustness of hydrological models for climate

change impact assessments, we focus on the differential split sample test to handle non-stationary conditions due to a95

changing climate. In that case, the time series of river discharges must divided into at least two stationary subsequences

with contrasted climates, e.g. dry and wet, calibrate the model on one subsequence and use the other one for validation.

The main idea is to make sure that the model is able to perform well under the transition required: from drier to wetter

conditions or the opposite. This amounts to testing the stability of the parameters for different climate conditions (Brigode

et al., 2013).100

As explained in the introduction, classical rupture tests make the distinction between only two periods, therefore limiting

the number of transitions that can be explored to assess the robustness of the hydrological model. This paper addresses

this limitation by identifying multiple subsequences using a Hidden Markov Model (HMM), which are then use in a differ-

ential split sample testing framework.105

2.2 Identifying the climate subsequences Identifying stationary subsequences

The calibration/validation protocol relies on the differential split-sample test proposed by Klemes (1986). The main idea is to split a period into a number of sub-periods with

different hydro-climatic features. This amounts to detecting shifts in climate regimes.

Identifying multiple subsequences in a time series of river discharges comes down to detecting shifts in the flow regime,110

which can be done using a statistical test like the Pettitt test, or with the help of a HMM.

The non-parametric trend Pettitt test divides the streamflow record of length T into two subsequences denoted Tpettitt.P1

and Tpettitt.P2 respectively. It involves identifying the change-point Y marking the transition from one subsequence to the

next. Given a random variable q (e.g. annual streamflow), the Pettitt test is defined as: (Pettitt, 1979):115

For an given variable (q, referring to inflows for example) , the Pettitt test is defined as follow (Pettitt, 1979):

Ut,L =

t∑
i=1

L∑
j=t+1

sng(qi− qj) (1)

With L, the length of the time-serie q.120

Ut,T =

t∑
i=1

T∑
j=t+1

sng(qi− qj) (2)
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K =max(Ut,L) (3)

p≈ 2× exp( −6K2

L3 +L2
) (4)125

KT =max(Ut,T ) (5)

p≈ 2 ∗ exp(
−6K2

T

T 3 +T 2
) (6)

where K gives the year of the change-point if the test is significant (p≤ 0,05)(Pettitt, 1979).130

Since they are considered as an integrative signal of the whole basin hydro-climatic conditions, Pettitt test has been carried out on the mean annual flows. KT gives the year of the

change-point if the test is significant (p≤ 0,05)(Pettitt, 1979).

Hidden Markov Modeling is a class of probabilistic model that can be used to label the observations (Rabiner, 1989). The

motivation for adopting this type of model in hydrology is that the flow regime can be represented by a state variable that135

can take only a limited number of values (dry/wet for 2 states; dry/normal/wet for 3 states for examples). In other words, in

parallel to the time series of historical river discharges, there exists another time series with discrete climate states. Denote

{q1, q2, ..., qL} the time series of annual flows and {Φ1,Φ2, ...,ΦL} the time series of states which can only take N possible

values (Figure 1).

140

The state variable is unobserved and is accordingly referred to as a hidden variable. The hidden climate state Φt is modelled as a N state Markov chain (i.e the probability of a

particular state depends only on the previous state) described by a transition probability matrix M with elementsMij :

The state variable is unobserved and is accordingly referred to as a hidden variable. The hidden state Φt is modelled

as a N state Markov chain fully characterized by its transition probability matrix M with elements Mij :

145

Mij = M(Φt = j|Φt−1 = i) (7)

where Mij describes the transition probability to switch from the state i at time t− 1 to state j at time t.
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Figure 1. Schematic graph of Hidden Markov Modelling.

With

t= 2, ...,T

The observed variable qt is assumed to have been drawn from a probability distribution whose parameters are conditional150

upon the distinct state at time t such that, when Φt is known, the distribution of qt depends only on the current state Φt and not

on previous states or observations.

M(qt|qt−1, ...q1,Φt, ...,Φ1) = M(qt|Φt) (8)

A HMM is described by (1) the parameters of Gaussian distributions i.e., mean µ= (µ1,µ2, ...,µN ) and standard deviation155

σ = (σ1,σ2, ...,σN ) associated with N states, (2) the N×N matrix of transition probabilities M, and (3) the initial distribution

of the Markov chain δ. Consequently, the set of parameters to be estimated is θ = {µ,σ,M,δ}.

Fitting a HMM to the observed sequence (here the time series of annual flows), requires evaluating the likelihood of ob-

serving that sequence, as calculated under a N-state HMM (see Appendix A for more details). In this study, we use the160

Expectation-Maximization (EM) algorithm, which is an iterative method for finding the maximum-likelihood estimate of the

parameters of an underlying distribution when some of the data are missing. In the context of HMM, the EM algorithm is

known as the Baum-Welch algorithm (Welch, 2003) and the hidden climate states are treated as missing data (Bilmes, 1998;

Zucchini et al., 2017).

165

The EM algorithm consists of two main phases: an expectation phase called "E step", followed by a maximization phase

called "M step". Given the current estimate of the HMM parameters θ, the following steps are repeated until acceptable con-

vergence is achieved: The "E step" phase of the algorithm computes the expected value of unobserved data (i.e hidden climate
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states) using the current estimate of the parameters and the observed data. The "M step" phase of the algorithm then provides a

new estimate of the parameters by using the data from the "E step" phase as if they were actually measured data. These param-170

eters are then used to calculate the distribution of unobserved data in the next "E step" phase of the algorithm. The resulting

values of θ is then the stationary point of the likelihood of the observed data (Please refer to Appendix B for more details).

Given the observation sequence, we want to determine the sequence of hidden climate states {Φ1,Φ2, ...,ΦT } that has most

likely (under the fitted HMM) given rise to the time series of annual river discharges. In the literature, this is known as the175

decoding procedure. In this study we use the Viterbi algorithm (Viterbi, 1967) to unfold the sequence of hidden climate states

(called the Viterbi path). This, in turn, enables us to divide the whole period into numerous climate subsequences.

Figure 2 depicts the possible combinations offered by the Pettitt’s test and HMM classifications. The hydrological model

is calibrated on a specific subsequence, and the validation is achieved on others. Thus, the model performances (i.e. the180

robustness) are assessed over a large panel of hydroclimatic conditions. More specifically, the robustness of the hydro-

logical model can be assessed after examining the differences between calibration and validation scores for the different

cases (transitions) that can be investigated once the subsequences are identified. If those differences remain stable, then

the hydrologic model is robust vis-à-vis contrasted hydro-climatic conditions.

185

2.3 The study case: Senegal River Basin and its sub-basins

The use of HMM-derived subsequences in a differential split sample testing framework to assess the robustness of a

calibrated hydrological model is illustrated with the Senegal River basin.

The Senegal River drains a basin shared by four countries in West Africa : Guinea, Mali, Mauritania, and Senegal. There are190

three main tributaries: (i) the Bafing River contributing to∼ 50% of the Senegal flows, (2) the Bakoye River (∼ 15%), and (iii)

the Faleme River (35%). Flowing northward on 500 km, the Bafing River collects precipitation on the Fouta Djallon, a high

plateau considered as the water tower of West Africa. After merging with the Bakoye, the Senegal River runs north-west on

200km before the confluence with the Faleme River at Bakel, the last major tributary. After Bakel, the river meanders over 800

km through the floodplain and then discharges into the Atlantic Ocean.195

The basin is located in the Soudano-Guinean zone, which is yearly influenced by the monsoon, a rainy season from April to

October (Lahtela, 2003; Bodian, 2011). A consequence of the monsoon is a strong north/south precipitation gradient, ranging

from 1900mm/y in the south to 100mm/y in the north (Bader et al., 2014; Bodian et al., 2015). In addition, precipitations

present strong annual and inter-annual historical variabilities (Faye et al., 2015), with a wet episode (1950s-1970s) and a dry200

episode (1970s-1990s). With this historical climatic variability, as well as a strong spatial heterogeneity of its hydroclimatic

components, the SRB is an interesting case study to analyze the robustness of hydrological models; that is, their ability to perform well
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Figure 2. Pettitt’s test and HMM identifications of flow sequences in a given period T . N refers to the number of states fixed by the

modeller, and so the number of case available for the calibration/validation.

under contrasted hydrologic conditions.

To take advantage of the hydroclimatic specificities of the SRB and its heterogeneity, we have divided the SRB into three205

sub-basins (Figure 3.b,c,d and Table 1). This allows us to demonstrate the potential of the proposed protocol based on an HMM

classification on basins with contrasting hydrologic characteristics. Sub-basins have been delimited using the GRASS-3.4 soft-

ware, and the Shuttle Radar Topography Mission (SRTM) 1arc sec elevation data set.

Generally speaking, streamflows are considered as an integrative signal of the whole basin hydro-climatic conditions,210

meaning that river discharges are the result of hydrological processes taking place upstream and are influenced by
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a. b.

c.

d.

Bakel

Oualia

Daka Saidou

Figure 3. The SRB and its sub-basins boundaries. Red crosses represent sub-basin outlets (a), while sub-basin superficies are shaded in blue

(b. Daka-Saidou, c. Oualia, d. Bakel).

Sub-basins River Area (km2) Isohyets ranging (mm/y) Outlet coordinates

Daka Saidou Bafing 15 897 1500-2000 11,96◦ N; 10,63◦ W

Oualia Bakoye 102 611 500-1500 13,61◦ N; 10,38◦ W

Bakel Senegal 393 754 2000-400 400-2000 14,91◦ N; 12,47◦ W

Table 1. List of the SRB sub-basins. Superficies have been calculated with the GRASS-3.4 model and 1arc sec SRTM elevation data.

Indicative isohyets ranging are extracted from Faye et al. (2015).

changes in precipitation, land use, etc. For the Senegal River Basin, most of the runoff and headwaters are located in

the Fouta Djallon, a sparsely populated plateau where vegetation cover is relatively stable (Descroix et al., 2020), an-

thropogenic impacts on runoff seem to be negligible (Faty, 2017; Bader et al., 2014; OMVS, 2011). The areas mainly

concerned with massive land-use conversions are located downstream of Bakel, a region not considered in our analysis215

because it marginally contributes to the river discharge. This study relies on a time series of naturalized flows at Bakel

produced by Bader et al. (2014) after removing the influence of the Manantali dam. In Daka Saidou and Oualia sub-

basins, however, river discharges are still natural. Consequently, we can assume that changes in the flow regime can

only be attributed to shifting climate conditions.

220
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Figure 4. Scheme of the hydrological GR2M model.

2.4 The selected hydrological model

We have selected GR2M (Mouelhi, 2003), a monthly time-step conceptual hydrological model, because (1) it has been used in the SRB with satisfactory results (Ardoin-Bardin,

2004; Ardoin-Bardin et al., 2005; Bodian et al., 2012, 2015, 2016), and (2) the simulated flows will be processed by a hydro-economic model of the SRB working on a monthly time

step (Tilmant et al., 2020).

225

The selected hydrological model is GR2M (Mouelhi, 2003), a monthly time-step conceptual model that has already

been used in the SRB with satisfactory results (Ardoin-Bardin, 2004; Ardoin-Bardin et al., 2005; Bodian et al., 2012,

2015, 2016). Moreover, since the simulated flows will be processed by a hydro-economic model of the SRB working on a

monthly time step (Tilmant et al., 2020), there was no need for a hydrological model working on a shorter time step.

230

GR2M has only two parameters: X1 and X2 controlling the production and the transfer functions respectively (Figure 4).

We use the GR2M version included in the environment "airGR", developed by Coron et al. (2017). GR2M calibration/valida-

tion phase requires three time-series: (i) a time series of monthly precipitations (P) in the basin, (ii) a time series of monthly

potential evapotranspirations (PET), and (iii) a time series of monthly river discharges (q) at the outlet.

235
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2.5 Implementing the differential split sample test on HMM-derived subsequences

The calibration/validation protocol follows 3 steps: (1) selecting the inputs, (2) choosing the adequate objective function, and (3) identifying the climate subsequences. The opti-

mization algorithm used for the calibration phase comes from Michel (1991). This paper’s contribution lies in step 3 and how HMM can handle complex hydrologic sequences to

ultimately assess the robustness of a calibrated hydrological model.

Some authors (Paturel et al., 1995; Hossain et al., 2004; Huard and Mailhot, 2006; Kavetski et al., 2006; Huard and Mailhot, 2008) Many authors have pointed out240

that selecting the most accurate hydrological and meteorological inputs can significantly reduce the Bayesian total error during the

calibration/validation of a hydrological model (Paturel et al., 1995; Huard and Mailhot, 2006; Kavetski et al., 2006; Huard

and Mailhot, 2008; Renard et al., 2010). Based on a comparison with meteorological observations compiled by SIEREM,

and details given by Bader et al. (2014) about hydrological data, we have selected the following dataset is selected: (1) Time series

of precipitations were extracted from HSM-SIEREM dataset, stretching from 1940 to 1998 (Boyer et al., 2006); (2) PET time245

series comes from the Climate Research Unite CRU (Harris et al., 2020), and covers a period from 1901 to 2018; (3) Monthly

river discharge at sub-basin outlets are naturalized flows extracted from Bader et al. (2014) for the 1903-2012 period. Based

on the above datasets, we will analyse the period 1940-01 / 1998-12 the analysis is carried out on the period 1940-1998 (59 years), which

is denoted by "the full historical record" (T 1940−1998) in the remaining of this paper.

250

Selecting an objective function to calibrate a conceptual hydrological model is one of the main concerns of the hydrological

community (Garcia et al., 2017; Krause et al., 2005; Madsen, 2003). Here, we have selected two objective functions are selected:

(1) the Nash Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and the (2) Kling-Gupta Efficiency criterion (KGE) (Gupta

et al., 2009). The former is a popular criterion and since it mainly focuses on high flows, it is particularly relevant for rivers

where much of the annual discharge is generated during the high flow season, which is the case in the SRB. The latter allows255

for a multi-objective calibration that considers more components than just the errors; that is, correlation, bias and variability.

Mathematically, the NSE and KGE formulations can be written as:

NSE = 1−
∑n
t=1(qobst − qsimt )2∑n
t=1(qobst −µobs)2

(9)

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (10)260

with qobs is the observed flow at time t, qsim is the simulated flow at time t, µobs the mean of observed flows; β the ratio

between the mean simulated flow and the mean observed flow value β = µsim/µobs; α the ratio between the standard deviation

of simulated flows and the standard deviation of observed flows α= σsim/σobs; and r is given by:

r =

∑n
t=1(qobst −µobs)(qsimt −µsim)√

(
∑n
t=1(qobst −µobs)2) ∗ (

∑n
t=1(qsimt −µsim)2)

(11)
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2.6 Application of the calibration/validation protocol265

Recall that the identification of change-points is done on the time series of annual flows while the hydrological model simulates monthly river discharges.

When applying the calibration/validation protocol described above, seven cases arise as shown in Figure 5. Indeed:

For the identification of the subsequences, we have implemented the Pettitt’s test, a 2-states HMM classification (a "dry"

state and a "wet" state) and a 3-states HMM classification ("dry", "normal", and "wet" states). As shown on Figure 5, seven

transitioning cases can be investigated within the differential split testing framework:270

– If relevant, the Pettitt test offers two calibration/ validation possibilities: calibration on Tpettitt.dry and validation on

Tpettitt.wet, and vice versa.

– The 2-states HMM classification offers two possibilities too: calibration on T2HMM.dry and validation on T2HMM.wet,

and the opposite.

– Similarly, the 3-states HMM classification leads to three possibilities: calibration on T3HMM.dry and validation on275

T3HMM.wet +T3HMM.wetT3HMM.nor +T3HMM.wet, and corollaries.

Note that Pettitt test and HMM classifications have been carried out on the time series of annual flows. Tpettitt.wet and

Tpettitt.dry are both subsequences made of contiguous years as the original time series are is split in two. In that case, the

temporal persistence found in the original time series is very much preserved. However, for T2HMM.wet and T2HMM.dry ,

the situation is different since they are made of numerous, non-contiguous, not necessarily contiguous "wet" or "dry" sub-sequences280

subsequences respectively. This is also true for T3HMM.wet,T3HMM.nor, and T3HMM.dry .To ensure the continuity of the internal time

series of the model, the computation of the objective function (KGE or NSE) during the calibration phase or the validation phase was carried out only on the indices included in the

selected climate state.

In addition, even285

Even though the KGE is based on a decomposition of the NSE, the corresponding scores cannot be directly compared.

Therefore, we will discuss the results obtained with NSE and KGE separately. During all calibration phases, the first year is

considered as warming-up period and not considered. Recall that the identification of change-points is done on the time

series of annual flows while the hydrological model simulates monthly river discharges.

290

3 Results and discussionAnalysis of simulation results

First, we applied the calibration-validation protocol on the full historical record (T 1940−1998). The results (section 3.1)

highlight the relevance of an HMM classification for long time-series (59 years) with a historical contrasted climate.
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Figure 5. Application of our protocol to identify climate sequences in a given period T . Seven cases for the calibration/validation phase are obtained. Pettitt’s test and

HMM identifications of flow sequences: Seven cases for the calibration/validation phase are obtained.

Then, the protocol is implemented, independently, on two shorter periods: 1945-1971 (T 1945−1971, 27 years) and 1972-295

1998 (T 1972−1998, 27 years). This second test aims at illustrating the relevance of HMM classifications for shorter time

series, and which do not display a clear climate trend. Results are respectively given in sections 3.2 and 3.3.

3.1 Subsequences identification and calibration/validation results for the full historical record T 1940−1998

The results of the division of the full historical record T 1940−1998 are displayed in Table 2 and Figure 6a., while the corresponding parameters are given in Table 2.300
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The full historical record T 1940−1998

Pettitt test

Basins p value Year break

Daka Saidou 1.10-6 1.10−6 1970

Oualia 8.10-8 8.10−8 1971

Bakel 2.10-6 2.10−6 1971

Basins µ µdry;µwet σ σdry;σwet δ δdry;δwet M

2-states-HMM

Daka Saidou 183.8; 300.2 31.3; 53.8 1,0

[
0.97 0.03

0.04 0.96

]

Oualia 65.1;178.3 32.1; 45.9 1,0

[
0.968 0.032

0.037 0.963

]

Bakel 433.9;855.1 134.8;210.0 1,0

[
0.968 0.032

0.037 0.963

]

Basins µdry;µnor;µwet σdry;σnor;σwet δdry;δnor;δwet M

3-states-HMM

Daka Saidou 162.5;206;300.7 22.8; 22.5;54.1 0,1,0


0.941 0.059 0

0.063 0.875 0.063

0 0.04 0.96


Oualia 37.8;87.8;178.4 11.4;25.3;45.8 0,1,0


0.8 0.2 0

0.125 0.813 0.063

0.037 0 0.963


Bakel 363.39; 553.32; 925.3 90.2; 149.0; 179.5 0,1,0


0.875 0.125 0

0.188 0.75 0.062

0 0.056 0.944


Table 2. Pettitt test results and Hidden Markov Model parameters (N=2 and N=3) for Daka Saidou, Oualia, and Bakel sub-basins, on the full

historical record T 1940−1998.

The results of the division of the full historical record T 1940−1998 are displayed in Table 2 and Figure 6a. Calibration

and validation values are given in Figure 6b. and in Table 3.

For the three sub-basins, the Pettitt test is significant and shows a rupture in 1970 or 1971 (Figure 5a. red vertical line). The 2-state HMM classification provides similar results305
with nearly aligned climate sub-sequences for all sub-basins. This is also true for the 3-states HMM classification.

With the 2-states or 3-states HMM classification, the states are clearly distinct, which enables us to divide the time series into numerous climate sub-sequences. The values close

to one on the diagonal indicate that when the climate is in a particular state, it will likely remain in that state in the next time period (year). With a 2-states-HMM classification

(Figure 6a. blue line), the dry is dominant in all sub-basins, whereas with a 3-states-HMM classification (Figure 6b. orange line), the wet state is dominant in both Daka Saidou and310
Oualia sub-basins. This is due to the fact that some years that were labelled as "dry" with the 2-states HMM classification are now recognized as "normal" when using the 3-states

HMM classification. Similarly, several years move from "wet" to "normal" with the 3-states HMM classification. However, since the number of years that are switching from dry to

normal is larger than those that are switching from wet to normal, the result is a dominant wet state.

We note that Pettitt change-point is aligned with the 2 or 3-states-HMM transitions in 1970 (Daka Saidou) or in 1971 (Oualia and Bakel). The length of climate sub-sequences315
are given in Table 3.

The full historical record (T 1940−1998)could be seen as a textbook case with a clear climate trend and long climate and hydrological records. In a such situation, classical

rupture tests like the Pettitt test are adequate to identify two climate sub-sequences by detecting a single change point. However, 2-states and 3-states HMM classifications allow for

afiner labelling of the years. For example, according to the Pettitt test, the years prior to 1945 are considered as wet even though they are classified as either dry or normal years by320
the 2-states and 3-states HMM classification respectively.
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The full historical record T 1940−1998
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Figure 6. a. Years classifications of T 1940−1998 according to the Pettitt test (vertical red lines), 2-states-HMM (in blue) and 3-states-HMM (in orange); b. Scatter-plot of

NSE (squares) and KGE (dots) calibration/validation values. Light green refers to the case 1 (Pettitt test, calibration on Tpettitt.wet and validation on Tpettitt.dry); dark green

to the case 2(Pettitt test, calibration on Tpettitt.dry and validation on Tpettitt.wet); Light blue to the case 3 (2-states-HMM, calibration on T2HMM.dry and validation on

T2HMM.wet.), and dark blue to the opposite (case 4); Orange to the case 5 (3-states-HMM, calibration on T3HMM.dry and validation on T3HMM.nor and T3HMM.wet);

red to the case 6, and dark red to the seventh case.a. Classifications of T 1940−1998 according to the Pettitt test (vertical red lines), 2-states-HMM

(in blue) and 3-states-HMM (in orange); b. Scatter-plot of NSE (squares) and KGE (dots) calibration/validation values. The continuous

black line refer to the CalibrationV alue = V alidationV alue line.

To further highlight the relevance of integrating HMM classifications in a calibration/validation protocol, the protocol has been implemented over two other smaller periods (27

years each), which display more complex climate sequences with no clear climate trend: the period T 1945−1971 and the period T 1972−1998. Results are not shown due to a lack

of space, but available for consultation in the supplementary material section.325
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Depending on the length of period T, the climate sub-sequences can be short. This is the case with T 1945−1971 and T 1972−1998, for which climate sub-sequences provided

by the 3-states HMM classification could reach a length of 5 years. Thus, the question of the minimum of years required to ensure a reliable calibration or validation raises one more

time. No consensus has been reached by the hydrologist community at this point, but a number from two to eight years could be enough depending on the "hydrological events"

included (Razavi and Tolson, 2013; Juston et al., 2009; Singh and Bárdossy, 2012).330

In addition, we want to underline the following two points: (1) According to our protocol, when a model is calibrated on a specific climatic state, it will not be evaluated (validated)

on this same state. To overcome this, the "split-sample test" of Klemes (1986) could be combined with the differential split-sample test, but a longer record could be required. (2)

Please recall that the principle of the differential split-sample test could be applied to detect complex climate sequences and to detect massive conversions in land uses when applied

on flows.335

For the three sub-basins, the Pettitt’s test is significant and shows a rupture in 1970 or 1971 (Table 2, Figure 6a. red

vertical line). The 2-state HMM classification provides similar results with nearly aligned climate subsequences for all

sub-basins. This is also true for the 3-states HMM classification. It must also be noted that Pettitt’s test-derived and HMM-340

derived subsequences are quite long, ranging from 15 years to 33 years.

From the examination of the transition probability matrices M in Table 2, we can see that the states are clearly distinct

both with the 2-states and the 3-states HMM classification. As a matter of fact, the values close to one on the diagonal

indicate that when the climate is in a particular state, it will likely remain in that state in the next time period (year).345

The examination of Figure 6b reveals that, for Daka Saidou (upstream), the model’s scores (NSE or KGE) in calibration

and validation are gathered in the top right corner, indicating that the model is able to reproduce well the subsequences of

the historical record that have been used in calibration and then in validation. A statistical analysis of the subsequences

shows that those sharing the same (hidden) climate state have similar statistics but that the differences across climate350

states are relatively small at Daka Saidou compared to the other two sub-basins located downstream (Bakel and Oualia).

For example, the mean monthly streamflows of dry subsequences represent 64%, 61%, and 54% of wet subsequences’

for the Pettitt test’s, 2-states HMM and 3-states HMM classification respectively, which, as we will see later, are much

higher ratios than those found at Bakel or Oualia. In other words, although the climate subsequences are indeed sta-

tistically distinct, they are nevertheless not that far apart, meaning that regardless of the transitions, the conditions for355

calibration and validation are not significantly different.

For Oualia and Bakel sub-basins, however, calibration/validation scores are more scattered; only some model versions

are able to perform consistently over contrasted climates. For Oualia, calibrations on dry and normal subsequences

(cases 2,3,5 and 6) provide relatively good values and similar validation scores (difference between calibration and

validation scores lower than 0.1), meaning that the associated model versions could be considered as robust. Those360

results suggest that the "wet version" of the model struggles to simulate very dry months (especially during the dry sub-

sequences). It seems that the "wet version" of the model does not handle well the intermittent streams which can be
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The full historical record T 1940−1998

Daka Saidou
Pettitt’s Test 2-states HMM 3-states HMM

Subsequence(s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Calibration Dry 0.93/0.97(28y) 0.92/0.96(33y) 0.93/0.96(17y)

Normal 0.92/0.96(16y)

Wet 0.94/0.97(30y) 0.94/0.97(25y) 0.94/0.97(25y)

Validation Dry 0.93/0.94(28y) 0.92/0.94 (33y) 0.91/0.89 (17y) 0.92/0.94 (17y)

Normal 0.91/0.89 (16y) 0.92/0.91 (16y)

Wet 0.93/0.95(30y) 0.94/0.95(25y) 0.93/0.95 (25y) 0.94/0.92 (25y)

Oualia
Calibration Dry 0.80/0.88(27y) 0.77/0.86(31y) 0.74/0.82(15y)

Normal 0.77/0.87 (16y)

Wet 0.89/0.94(31y) 0.89/0.94(27y) 0.89/0.94(27y)

Validation Dry 0.73/0.80(27y) 0.71/0.8(31y) 0.72/0.79(15y) 0.58/0.75(15y)

Normal 0.76/0.82(16y) 0.71/0.79(16y)

Wet 0.84/0.84(31y) 0.83/0.86(27y) 0.8/0.81(27y) 0.84/0.85(27y)

Bakel
Calibration Dry 0.86/0.92(27y) 0.78/0.88(31y) 0.8/0.9(17y)

Normal 0.83/0.91(21y)

Wet 0.9/0.94(31y) 0.90/0.95(27y) 0.91/0.94(20y)

Validation Dry 0.69/0.53(27y) 0.71/0.68(31y) 0.77/0.74(17y) 0.63/0.48(17y)

Normal 0.78/0.73(21y) 0.75/0.69(21y)

Wet 0.64/0.47(31y) 0.80/0.68(27y) 0.62/0.44(20y) 0.81/0.68(20y)

Table 3. Table of NSE/KGE calibration and validation scores according to the seven cases for the full historical record T 1940−1998. The

numbers of years used for the calibration or validation are given between brackets.

observed in the northern (driest) part of Oualia sub-basin during dry years. For Bakel, we can see that the calibration/val-

idation scores obtained from the HMM-derived wet and dry subsequences (cases 3 and 4) are systematically better than

those calculated for the subsequences identified by the Petittt test (cases 1 and 2). Here, calibrating on dry conditions365

and validating on wet does not systematically performs better than the other way around. In contrast to Oualia, Bakel

sub-basin drains a portion of the Fouta Djallon with the Faleme and Bafing Rivers and is therefore less sensitive to those

intermittent streams found in the north. Finally, as we move downstream, we can see that the difference between NSE

and KGE scores tends to increase. As pointed out by (Gupta et al., 2009), since the NSE uses the observed mean as

baseline, it can lead to overestimation of model skill for highly seasonal time series. Here, due to the north-south precipi-370

tation gradient, the seasonality of the flow regime increases once the river leaves the Fouta Djallon since it receives the

contribution of more and more intermittent tributaries.

3.2 Subsequences identification and calibration/validation results for T 1945−1971

17



This section examines the period 1945-1971 (T 1945−1971), which can be considered as a wet historical episode in the375

SRB. The results of the division are displayed in Table 4 and Figure 7a. Calibration and validation values are given in

Figure 7b. and in Table 5.

The wet historical episode T 1945−1971

Pettitt test

Basins p value Year break

Daka Saidou 0.694 -

Oualia 0.399 -

Bakel 0.646 -

Basins µdry;µwet σdry;σwet δdry;δwet M

2-states-HMM

Daka Saidou 273.3;366 25.6;43.6 1,0

[
0.864 0.136

0.413 0.587

]

Oualia 124;201.8 32.1; 15 0,1

[
0.344 0.656

0.287 0.713

]

Bakel 713;1073 65.4;125.4 0,1

[
0.684 0.316

0.535 0.465

]

Basins µdry;µnor;µwet σdry;σnor;σwet δdry;δnor;δwet M

3-states-HMM

Daka Saidou 217;289.8;361.6 15.3;20.9;27.2 0,1,0


0.589 0.158 0.252

0.141 0.696 0.163

0.154 0.252 0.594


Oualia 127.7;192.9;243.9 17;19.5;6.5 0,1,1


0.397 0.281 0.322

0.482 0.435 0.083

0 0.835 0.165


Bakel 127.7;192.9;243.9 6.5;19.5;17 0,1,0


0.397 0.281 0.322

0.482 0.435 0.083

0 0.835 0.165


Table 4. Pettitt test results and Hidden Markov Model parameters (N=2 and N=3) for Daka Saidou, Oualia, and Bakel sub-basins, on

the wet subsequence T 1945−1971.

Depending on the length of period T, the climate sub-sequences can be short. This is

For the three sub-basins, Pettitt’s tests are inconclusive, indicating that there is no clear climatic trend in the T 1945−1971380

period. However, the HMM is still able to make the distinction between climate states and thus identify corresponding subse-

quences, which can then be exploited in a differential split-sample test. The subsequences provided by 2-state HMM and the

3-states HMM classifications are not necessary aligned for all sub-basins. As T 1945−1971 is 26-years length period, the 2-states

HMM derived and the 3-states HMM derived subsequences have lengths ranging from 5 to 19 years. Various authors have

discussed the minimum length required for achieve a calibration or a validation without reaching a consensus, even though a385

number from two to eight years could be enough depending on the "hydrological events" included in the subsequences (Razavi

and Coulibaly, 2013; Juston et al., 2009; Singh and Bárdossy, 2012). In our case, the technique used to identify the subse-

quences (HMM classifications) seeks to provide relatively homogeneous ones. Here, we assume that five years is acceptable
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The wet subsequence T 1945−1971
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Figure 7. The caption is identical to the Figure 6’s caption, but for the T 1945−1971 period.

but we do not investigate this issue further since it is beyond the scope of our paper.

390

The transition probability matrices for the 2-states HMM and 3-states HMM are now diverging from an identity matrix, in-

dicating that the temporal persistence is less pronounced than that found in the full historical records. In addition, we note that

the mean annual flow of dry subsequences (T 1945−1971
2HMM.dry and T 1945−1971

3HMM.dry) are relatively high (in comparison with T 1940−1998
2HMM.dry

and T 1940−1998
3HMM.dry).

395

Compared to the results associated with the full historical records and discussed in the previous section, we can see

that the calibration/validation scores for the five remaining cases are more concentrated, especially for the two down-
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The wet subsequence T 1945−1971

Daka Saidou
Pettitt’s Test 2-states HMM 3-states HMM

subsequences(s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Calibration Dry */* 0.95/0.98(19y) 0.94/0.97(6y)

Normal 0.97/0.98(12y)

Wet */* 0.95/0.97(7y) 0.93/0.96(8y)

Validation Dry */* 0.89/0.75(19y) 0.92/0.9(6y) 0.93/0.88(6y)

Normal 0.94/0.91(12y) 0.93/0.81(12y)

Wet */* 0.91/0.79(7y) 0.92/0.9(8y) 0.91/0.83(8y)

Oualia
Calibration Dry */* 0.87/0.88(8y) 0.88/0.89(9y)

Normal 0.86/0.9(12y)

Wet */* 0.89/0.92(18y) 0.94/0.97(5y)

Validation Dry */* 0.86/0.9(8y) 0.89/0.91(9y) 0.85/0.83(9y)

Normal 0.85/0.87(12y) 0.84/0.83(12y)

Wet */* 0.87/0.82(18y) 0.87/0.72(5y) 0.9/0.78(5y)

Bakel
Calibration Dry */* 0.85/0.92(16y) 0.84/0.91(12y)

Normal 0.91/0.94(5y)

Wet */* 0.92/0.96(10y) 0.92/0.96(9y)

Validation Dry */* 0.85/0.9(16y) 0.82/0.9(12y) 0.81/0.85(12y)

Normal 0.9/0.94(5y) 0.91/0.91(5y)

Wet */* 0.91/0.92(10y) 0.88/0.85(9y) 0.92/0.87(9y)

Table 5. Table of NSE/KGE calibration and validation scores according to the seven cases for the wet subsequence T 1945−1971. As the

Pettitt’s test is not conclusive here, no calibration/validation scores are given (symbols ∗/∗).

stream sub-basins (Oualia and Bakel). During this wet episode, the hydrological models seems to be more robust, which

is consistent with the fact that the intrinsic variability of the hydrologic conditions within that episode is smaller than the

variability that characterizes the full historical records. With the north-south gradient that characterizes precipitations in400

the SRB, intermittent tributaries in the North under dry or normal conditions are turned into permanent rivers which are

better handled by conceptual models like GR2M.

3.3 Subsequences identification and calibration/validation results for T 1972−1998

Here, we focus on the period 1972-1998 (T 1972−1998), which can be considered as a dry historical episode in the SRB.405

The results of the division and the corresponding parameters are displayed in Table 6 and Figure 8a. Calibration and

validation values are given in Figure 8b. and in Table 7.
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The dry historical episode T 1972−1998

Pettitt test

Basins p value Year break

Daka Saidou 0.277 -

Oualia 0.399 -

Bakel 0.474 -

Basins µdry;µwet σdry;σwet δdry;δwet M

2-states-HMM

Daka Saidou 162.4;210.1 18.1;22.8 0,1

[
0.933 0.067

0.128 0.872

]

Oualia 37.8;88.4 11.4; 25.8 1,0

[
0.781 0.219

0.185 0.814

]

Bakel 356.9; 668.2 111.3;81.3 1,0

[
0.903 0.097

0.487 0.513

]

Basins µdry;µnor;µwet σdry;σnor;σwet δdry;δnor;δwet M

3-states-HMM

Daka Saidou 132.7;173.9;210.8 12.3; 12.8;18 0,0,1


0 0.757 0.243

0.307 0.693 0

0.129 0 0.871


Oualia 37.9;69.2;105 3.1;11.3;21.4 1,0,0


0.799 0 0.201

0.263 0.736 0

0.141 0.276 0.583


Bakel 315.6; 421.3 ; 686.1 44.2; 71.1; 93.5 1,0,0


0.482 0.518 0

0.756 0 0.244

0 0.5 0.5


Table 6. Pettitt test results and Hidden Markov Model parameters (N=2 and N=3) for Daka Saidou, Oualia, and Bakel sub-basins, on

the dry subsequence T 1972−1998.

Likewise in section 3.2, there is no clear monotonic climatic trend such as the Pettitt’s test is inconclusive (p-values

bigger than 0.05). Again, the HMM remains here a useful tool to identify subsequences, which are not necessary aligned410

for all sub-basins.

For Daka Saidou, all calibration and validation scores are higher than 0.9 and the differences are small (below 0.1).

For Oualia sub-basin, the calibration and validation of the hydrological model face the typical challenges associated with

the high spatial and temporal variability that characterizes the formation and propagation of river flows in dryland regions.

The dry episode, centered around the 80ies, was triggered by a sustained reduction in precipitations (Faye et al., 2015),415

which was even more pronounced in the North where some tributaries became intermittent rivers (Bader et al., 2014).

Conceptual hydrological models like GR2M are indeed not well equipped to deal with with sudden and widespread transi-

tions from wet to dry conditions (Gutierrez-Jurado et al., 2021). For Bakel, no clear pattern emerges: some "dry-versions"

have as bad (or good) performances as some "wet versions". The poorest scores are nevertheless obtained when the

calibration and validation are carried out on homogeneous subsequences associated to extreme climate states (dry - wet,420

wet-dry), e.g. cases 5-2 and 7-1..
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The dry subsequence T 1972−1998
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Figure 8. The caption is identical to the Figure 6’s caption, but for the T 1972−1998 period.

3.4 Towards an enhancement of calibration and validations scores with HMM classifications?

For Daka Saidou, all seven cases have high scores (≥ 0.9), indicating that the model is robust. However, for Oualia and Bakel,

calibration/validation scores are more scattered (Figure 5b.). When comparing the NSE and 265 KGE values for calibration and425

validation, more several optimal cases are explored (seven cases in this article), which could lead to better model performances

than if we had limited ourselves to the 2 cases provided by the Pettitt test. For Daka-Saidou, calibration/validation NSE (or

KGE) scores are gathered in the same area, showing that the model will have similar performances regardless of the method

used to divide the period (Pettitt test, 2-states HMM or 3-states HMM classifications). For Oualia and Bakel, results are more

scattered, and the HMM classifications could enhance NSE or KGE scores. This is due to the fact that Daka-Saidou is a small430
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The dry subsequence T 1972−1998

Daka Saidou
Pettitt’s Test 2-states HMM 3-states HMM

subsequence(s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Calibration Dry */* 0.93/0.96(17y) 0.94/0.97(5y)

Normal 0.92/0.96(12y)

Wet */* 0.94/0.97(9y) 0.94/0.97(9y)

Validation Dry */* 0.92/0.93(17y) 0.94/0.94(5y) 0.93/0.97(5y)

Normal 0.92/0.93(12y) 0.93/0.81(12y)

Wet */* 0.93/0.94(9y) 0.93/0.97(9y) 0.93/0.93(9y)

Oualia
Calibration Dry */* 0.73/0.82(14y) 0.73/0.82(14y)

Normal 0.88/0.88(5y)

Wet */* 0.81/0.88(12y) 0.8/0.87(7y)

Validation Dry */* 0.71/0.8(14y) 0.72/0.72(14y) 0.69/0.76(14y)

Normal 0.87/0.8(5y) 0.79/0.66(5y)

Wet */* 0.79/0.87(12y) 0.77/0.82(7y) 0.72/0.68(7y)

Bakel
Calibration Dry */* 0.73/0.82(18y) 0.73/0.82(12y)

Normal 0.88/0.88(7y)

Wet */* 0.81/0.88(8y) 0.8/0.87(7y)

Validation Dry */* 0.71/0.8(18y) 0.72/0.72(12y) 0.69/0.76(12y)

Normal 0.87/0.8(7y) 0.79/0.66(7y)

Wet */* 0.79/0.87(8y) 0.77/0.82(7y) 0.74/0.68(7y)

Table 7. Table of NSE/KGE calibration and validation scores according to the seven cases for the dry subsequence T 1972−1998. As the

Pettitt’s test is not conclusive here, no calibration/validation scores are given (symbols ∗/∗).

upstream basin with relatively homogeneous precipitation and evapotranspiration (Table 1), whereas Oualia and Bakel are

larger and heterogeneous basins.

4 Conclusions

In this article, we have shown how an HMM can deal with complex climates sequences, and how the resulting classification can be used to develop a robust calibration/validation

protocol. The protocol has been implemented in the Senegal River basin using the GR2M model and the historical flow from 1940-1998.435

This article proposes an HMM-based classification to deal with complex climate sequences and shows how the re-

sulting classification can be used in a differential split sample test to assess the robustness of a hydrological model. A

modeling experiment is carried out in the Senegal River basin using the GR2M model and historical flows from 1940-

1998. Then, two other periods have been investigated, a wet episode (1945-1971) and a dry one (1972-1998).

440

The main concluding remarks are:
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– When records display a single point change, a classical rupture trend (as Pettitt test) remains an adequate tool to divide

the records into two climate sub-sequences.

– If the records contain multiple change points, HMM classifications are a good alternative to divide the records into several climate sub-sequences. However, records must be

long enough (typically 20-25 years for a 2-states HMM classification, and 30-35 years for a 3-states HMM classification) to (i) have a sufficient number of usual and unusual445

hydrological events (as mentioned by Singh and Bárdossy (2012)), and (ii) to have a minimum number of years for each climate state. If the records contain

multiple change points, an HMM classification can divide the series into several climate subsequences without the

need for additional data.

– Regardless of the division method used, the range of climate conditions over which the hydrological model can perform

depends on the intrinsic variability of the seriesused during the calibration/validation phase.Compared to the Pettitt test, however,450

the HMM classification allows for a finer labelling of the years, therefore better exploiting the intrinsic variability in

the series to enrich a differential split sample test.

– HMM classifications open up the range of possibilities for calibrate/validate a hydrological model, which can lead to an enhancement of the criterion function (but not

necessarily).

– We encourage the modellers to explore as many cases as possible to calibrate/validate a hydrological model455

according to the differential split-sample test. The parameter’s stability over contrasted hydro-climatic conditions

seems to depend on the studied period, on the objective functions, on the subsequences identification techniques,

and the basin.

Appendix A: Likelihood of Hidden Markov Models

We suppose there is an observation sequenceQ= {q1, q2, ..., qT } and the associated (unobserved) state variables Ω = {Φ1,Φ2, ...,ΦT }460

generated by such a model. Given the set of HMM parameters θ = {µ,σ,M,δ}, the joint density of complete data set Z =

(Q,Ω) can be expressed as:

p(Z|θ) = p(Q,Ω|θ) = p(Q|Ω,θ)p(Ω|θ) (A1)

Assuming the data belonging to each hidden state are characterized by a specific Gaussian probability distribution, the two

terms on the right-hand side are:465

p(Q|Ω,θ) =

T∏
t=1

p(qt|µΦt
,σΦt

) (A2)

p(Ω|θ) = δ

T−1∏
t=1

p((µΦt+1
|σΦt

)|M) (A3)
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The complete data likelihood function ζ(θ|Z) can be calculated as:

ζ(θ|Z) = ζ(θ|Q,Ω) = p(Q,Ω|θ) (A4)

For a HMM which has the initial distribution δ and transition probability matrix M for the Markov chain, let us define the470

probability mass function of Q if the Markov chain is in state i at time t as:

pi(q) = p(Q= q|Ω = i) (A5)

With i= 1,2, ...N

The general form of likelihood function is then given by (Zucchini et al., 2017):

ζ = δΓ(q1)MΓ(q2)...MΓ(qT )1′ (A6)475

where Γ(q) is defined as the diagonal matrix with i the diagonal element pi(q) and 1′ is N dimensional vector of 1.

Appendix B: HMM Likelihood maximization with EM algorithm

In order to set out the likelihood computation in the form of Baum-Welch algorithm (Welch, 2003), which involves the forward

α(t) and backward β(t) probabilities, we define α(t) and β(t) as:480

α(t) = δΓ(q1)MΓ(q2)...MΓ(qt) = δΓ(q1)

t∏
n=2

MΓ(qn) (B1)

and

β(t) = δΓ(qt+1)MΓ(qt+2)...MΓ(qt)1
′ = (

T∏
n=t+1

MΓ(qn))1′ (B2)

respectively. More specifically, αi(t) is the probability of observing the partial sequence q1, q2, ..., qt and ending up in state

i at time t, and βi(t) is the probability of observing the remaining sequence. Numerical calculation of αi(t) and βi(t) is not485

trivial (Akintug and Rasmussen, 2005). Here we use the method suggested by Durbin et al. (1998) for scaling forward and

backward probabilities to overcome this problem. Now let us define uj(t) and vjk(t) as (Zucchini et al., 2017):

uj(t) = p(Φt = j|Q,θ) =
αj(t)βj(t)

ζ
(B3)
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Figure B1. Expectation Maximization algorithm for a HMM parameter estimation.

vjk(t) = p(Φt−1 = j,Φt = k|Q) = αj(t− 1)Mjkpk(qt)βk(t)/ζ (B4)

Where Mjk is the probability of transition from hidden climate state j to climate state k, and ζ is the likelihood function.490

With EM algorithm, we aim to maximize the log-likelihood of the parameters of interest θ, based on complete data (i.e. both

the observed data and the hidden climate states). Now let us represent the sequence of climate states (missing data) by the

Markov chain by the zero-one random variables. The complete data log-likelihood can be formulated as:

log(ζ(θ|Z)) =

N∑
j=1

uj(1) log(δj) +

N∑
j=1

N∑
k=1

(

T∑
t=2

vjk(t)) log(Mjk) +

N∑
j=1

T∑
t=1

uj(t) log(pj(qt)) (B5)

where uj(t) = 1 if and only if Φt = j(t= 1,2, ...,T ), and transition probability vjk(t) = 1 if and only if Φt−1 = j and495

Φt = k(t= 2,3, ...,T ), N is the number of hidden climate states,δj is the initial transition of Markov chain, and pj(.) is the

probability mass function if the Markov chain is in state j at time t. Maximization of the complete data log-likelihood function

is performed with the EM algorithm through an iterative process presented in Figure B1.
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