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Abstract 10 

Evapotranspiration (ET) links the hydrological, energy, and carbon cycle on the land surface. Quantifying 11 

ET and its spatiotemporal changes is also key to understanding climate extremes such as droughts, 12 

heatwaves and flooding. Regional ET estimates require reliable observationally-based gridded ET 13 

datasets, and while many have been developed using physically-based, empirically-based and hybrid 14 

techniques, their efficacy, and particularly the efficacy of their uncertainty estimates, is difficult to 15 

verify. In this work, we extend the methodology used in Hobeichi et al. (2018) to derive a new version of 16 

the Derived Optimal Linear Combination Evapotranspiration (DOLCE) product, with observationally 17 

constrained spatiotemporally varying uncertainty estimates, higher spatial resolution, more constituent 18 

products and extended temporal reach (1980-2018). After successful evaluation of the efficacy of these 19 

uncertainty estimates out-of-sample, we derive novel ET climatology clusters for the land surface, based 20 

on the magnitude and variability of ET at each location. The verified uncertainty estimates and extended 21 

time period then allow us to examine the robustness of historical trends spatially and in each of these 22 

six ET climatology clusters. We find that despite robust decreasing ET trends in some regions, these do 23 

not correlate with behavioural ET clusters. Each cluster, and the vast majority of the Earth’s surface, 24 

show clear robust increases in ET over the recent historical period. 25 

 26 

1. Introduction 27 

Understanding the spatiotemporal variability of evapotranspiration (ET) is a critical part of 28 

understanding the processes that lead to high impact weather phenomena, such as droughts (Han et al. 29 

2018; Montano et al. 2015; Sheffield, Wood, and Roderick 2012; Teuling et al. 2013), heatwaves (Teuling 30 

2018; Ukkola et al. 2018) and flooding (Dawdy, Lichty, and Bergmann 1972; Sharma, Wasko, and 31 

Lettenmaier 2018). Several global gridded ET datasets have been developed, using physical schemes 32 

with different scopes and complexity (see Fisher and Koven, 2020) and empirical techniques including 33 

machine-learning algorithms (Hamed Alemohammad et al. 2017; Jung et al. 2010, 2019), typically 34 

incorporating a range of remote sensing inputs. Recently, ET datasets derived with a hybrid approach 35 
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have been recognised for their potential to outperform single source datasets (Ershadi et al. 2014; Feng 36 

et al. 2016; McCabe et al. 2016; Pan et al. 2020).  37 

 38 

While most observational products are global (or near global) in their spatial extent, and typically 39 

available with a monthly time step, different products are constrained by very different types of 40 

observations, and vary significantly in their treatment of uncertainty. As detailed below when describing 41 

the datasets we use here, ‘physically-based’ approaches, use equations that represent different 42 

physical, chemical, and biological processes and incorporate satellite-based atmospheric forcing, and 43 

parameterization of land surface characteristics, while ‘empirical’ approaches integrate ground-based 44 

measurements of ET together with satellite data and ground-based measurements of vegetation 45 

characteristics and land surface parameters. These differences result in a diverse group of products and 46 

estimates, but it is their approach to deriving uncertainty estimates that is arguably more important.  47 

 48 

Very few datasets provide uncertainty estimates associated with the ET flux, these include datasets 49 

described in Bodesheim et al. (2018) and Jung et al. (2019). In Bodesheim et al. (2018), monthly 50 

uncertainty estimates are computed from the standard deviation of the half-hourly ET values that were 51 

used to derive monthly ET averages. Jung et al. (2019) provide an ensemble of global ET estimates, 52 

deviations from the ensemble median are used to derive ET uncertainties. In both cases, uncertainties 53 

do not reflect the actual deviation from the measured ET at site locations. Without well calibrated 54 

uncertainty estimates we are unable to tell whether an identified property of any given data set, such as 55 

a trend or a proportion of the surface energy or water budget, is robust, rather than a result of bias or 56 

stochastic uncertainty. 57 

 58 

ET trends computed from different approaches (i.e. physical and empirical) show general agreement at 59 

the global scale, and indicate that ET has increased since early 1980s (Miralles et al. 2014; Pan et al. 60 

2020; Zhang et al. 2016). However, different ET products exhibit considerable disparities in regional and 61 

continental ET trends. For instance, Miralles et al. (2014) detected upward ET trends in GLEAM (Global 62 

Land Evaporation Amsterdam Model; Miralles et al. 2011) in the northern latitudes caused by vegetation 63 

greening. In water limited regions, they found that ET is characterised by a multidecadal variability that 64 

follows ENSO dynamics, mainly in eastern and central Australia, southern Africa and eastern South 65 

America. In comparison, ET trends estimated from the observation-driven Penman-Monteith-Leuning 66 

(PML; Zhang et al. 2016) model show increasing ET since 1980 in the northern latitudes, arid regions in 67 

northern Africa, and northern and eastern Amazon. On the other hand, PML exhibits negative trends in 68 

southern South America and western United States. More recently, Pan et al. (2020) found that ET 69 

trends exhibited by a range of empirical and physical based estimates disagree in the direction of trend 70 

in the Amazon basin and many arid and semi-arid regions. Without incorporating uncertainties in ET 71 

estimates in the analysis of trends, it becomes difficult to assess the reliability of the established trends. 72 

 73 

The gridded ET product derivation technique implemented by Hobeichi et al. (2018) offers the potential 74 

for robust out-of-sample testing of its uncertainty estimates, as well as several other advantages over 75 

other techniques. Like other merging approaches it offers the potential to minimise the eccentricities or 76 

biases of any one product, by averaging them (in this case using weights). However, unlike several other 77 

merging techniques (Mueller et al. 2013; Paca et al. 2019; Rodell et al. 2015; Stephens et al. 2012) it 78 

accounts for performance differences between parent estimates using in-situ data as the observational 79 

https://doi.org/10.5194/hess-2020-595
Preprint. Discussion started: 9 December 2020
c© Author(s) 2020. CC BY 4.0 License.



3 
 

constraint, rather than assigning weights based on the ability to match another gridded dataset that is 80 

deemed more reliable, or the ensemble mean of a selection of datasets (Munier et al. 2014; Sahoo et al. 81 

2011; Wan et al. 2015; Zhang et al. 2018). The efficacy of using in-situ measurements for constraining 82 

much larger scale gridded estimates has also been shown explicitly (Hobeichi et al. 2018; Hobeichi, 83 

Abramowitz, Contractor, et al. 2020). Next, most available merging techniques do not account for 84 

dependence between parent estimates, where redundant information in different parent products is 85 

likely to bias the hybrid estimate (Abramowitz et al. 2019; Herger et al. 2018). Finally, and perhaps most 86 

important for this work, the technique calculates global spatially and temporally varying uncertainty 87 

estimates that are observationally-based, in that they are based on the discrepancy between the hybrid 88 

ET estimate and in-situ data. Aside from being more defensible than simply taking the spread of the 89 

parent products around their mean (e.g. Pan et al., 2012, Zhang et al., 2018), this approach also allows 90 

for out-of-sample testing, by leaving some sites out of the derivation of the hybrid product and its 91 

uncertainty, and then using them to test its accuracy.   92 

 93 

Despite these advantages, out-of-sample testing of uncertainty estimates was not explored by Hobeichi 94 

et al (2018), and the short temporal availability of the DOLCE product (2000 – 2009) limited its 95 

application, particularly in examining historical trends. While different subsets of parent products were 96 

used over different regions to expand the spatial coverage of DOLCE, the possibility of different product 97 

subsets in different time periods to extend its temporal reach was not explored. Additionally, since the 98 

development of DOLCE, four of its six parent datasets (Jung et al. 2010; Martens et al. 2016; Miralles et 99 

al. 2011; Mu, Zhao, and Running 2011; Zhang et al. 2016) have been improved and several new global ET 100 

datasets have been developed (Balsamo et al. 2015; Bodesheim et al. 2018; Jung et al. 2019). Most of 101 

these are available at a higher spatial resolution than the original 0.5° in DOLCE and cover different 102 

subsets of the period 1980 – 2018, with at least two available for every year during this period (Table1).  103 

 104 

In this paper we amend these shortcomings and explore some of the insights that the new version of 105 

DOLCE offers, in particular focusing on the temporal trends in ET in different regions, and the 106 

assessment of robustness of trends that well calibrated uncertainty estimates afford. Roughly in order, 107 

we detail below: (1) how we update the DOLCE product with new parent datasets, extended temporal 108 

coverage and higher spatial resolution; (2) how the improved product compares to its previous version 109 

and other existing ET estimates from the literature; (3) the efficacy of uncertainty estimates, in 110 

particular whether or not they are overconfident; (4) an exploration of historical trends in ET using the 111 

extended temporal coverage, and how the uncertainty estimates allow us to examine the robustness of 112 

these trends (5) behavioural ET clusters that describe ET based climate regimes, as a mean to 113 

understand the distribution of trends we find.  114 

  115 

 116 

2. Data and Methods 117 

To derive a new version of DOLCE, we combine 11 available global gridded ET datasets using the same 118 

merging technique as in DOLCE V1. This technique derives a linear combination of the participating ET 119 

datasets based on their ability to match in-situ observations while also accounting for their error 120 

dependency. While we acknowledge the obvious spatial mismatch between gridded and in-situ data, we 121 

refer readers to Hobeichi et al (2018) where it was shown that in-situ observations do contain useful 122 
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information about grid scale fluxes, using out-of-sample testing in a similar framework to the one we 123 

present here.  124 

 125 

Our aim is to increase the time coverage and spatial resolution of DOLCE V1, as well as examine 126 

strategies to improve the effectiveness of the weighting strategy. Below we detail newly available global 127 

datasets that allow us to derive DOLCE V2 at 0.25o spatial resolution, and an improved collection of in-128 

situ constraining data. We then briefly revisit the weighting and uncertainty estimation approach, before 129 

describing our tiering approach to extending the temporal reach of DOLCE V2. Finally, we examine 130 

alternative clustering and bias-correction approaches to improve the out-of-sample performance of the 131 

weighting technique. 132 

 133 

Throughout the paper, we use the two terms evapotranspiration (ET) and latent heat (LE) 134 

interchangeably, and the unit 𝑊 𝑚−2 for heat fluxes and 𝑚𝑚 𝑦𝑒𝑎𝑟−1 for the water flux equivalent. For 135 

reference: 1 𝑊 𝑚−2  = 12.86 𝑚𝑚 𝑦𝑒𝑎𝑟−1. As above, we refer to the product from Hobeichi et al (2018) 136 

as DOLCE V1 and the new product we are deriving as DOLCE V2 or DOLCE V2.1 . 137 

 138 

 139 

2.1 Data 140 

2.1.1 Global ET datasets: 141 

DOLCE V1 was derived from 6 global ET datasets: MPIBGC (Jung et al. 2010), GLEAM v2a, GLEAM v2b, 142 

GLEAM v3a, MOD16 (Mu et al., 2011) and PML. In DOLCE V2, we keep both MOD16 and PML datasets, 143 

substitute the GLEAM products with their improved and latest versions (i.e. GLEAM3.3A and 144 

GLEAM3.3B; Martens et al., 2016, 2017), and replace MPIBGC with newly developed empirical ET 145 

datasets from the Max Planck Institute for Biogeochemistry: BACI and two ET estimates from the 146 

FLUXCOM projects. Additionally, we incorporate a recently published dataset ERA5-Land and three 147 

newly available ET datasets PLSH, SEBS and SRB-GEWEX. We provide a brief description of these 148 

datasets below, with URLs and download dates shown in supplementary Table S2.  149 

Biosphere Atmosphere Change Index (BACI; Bodesheim et al., 2018): The dataset is derived by upscaling 150 

diurnal cycles of ET and other land-Atmosphere fluxes from a large set of FLUXNET sites based on a 151 

random forest regression framework. It uses seasonal vegetation variables and indices from MODIS 152 

satellites, and meteorological data either measured at the flux tower sites or retrieved from the ERA-153 

Interim data. 154 

ERA5-Land (Balsamo et al. 2015): A global land surface reanalysis dataset that has been developed by 155 
rerunning the land component of the ECMWF ERA5 climate reanalysis with a series of improvements 156 
(mainly higher temporal frequency and spatial resolution) that makes it more reliable for land 157 
applications. ERA5-Land is produced under a single simulation that uses adjusted atmospheric inputs from 158 
ERA5 atmospheric variables without being coupled to the atmospheric module of ERA5.  159 

FLUXCOM (Jung et al. 2019): An empirical upscaling of observations from 224 flux tower sites using 160 
machine learning methods. The full FLUXCOM product includes 63 global ET datasets that have been 161 
produced using two different setups, a remote sensing (RS) setup and a remote sensing + meteorological 162 
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(MET) setup. The development of the global datasets incorporates 9 machine learning techniques, 4 global 163 
meteorological datasets (used only with the MET setup), 3 correction methods for energy imbalance at 164 
the flux tower sites and MODIS remote sensing input. In DOLCE V2, we include one dataset from each 165 
setup, that we refer to as FLUXCOM-RS (from the RS setup) and FLUXCOM-MET (from the MET setup). To 166 
choose the two datasets we analysed the pair-wise error correlations of all the products against in-situ 167 
flux tower and selected the two that had the lowest pair-wise error correlation (and so were deemed least 168 
dependent).  169 

Process-based Land Surface Evapotranspiration/Heat Fluxes algorithm (PLSH; Zhang et al., 2015): 170 

Terrestrial ET is derived using an improved NDVI-based Penman-Monteith algorithm originally developed in 171 

(Zhang et al. 2010). ET is regulated by a set of geophysical data from GIMMS and Vegetation Index and 172 

Phenology  along with radiative data from World Climate Research Programme/Global Energy and 173 

Water-Cycle Experiment (WCRP/GEWEX) Surface Radiation Budget (SRB) and CERES along with other 174 

meteorological observations data from the NCEP/DOE AMIP-II Reanalysis (NCEP2; Kanamitsu et al., 175 

2002). 176 

Surface Energy Balance System  (SEBS; Chen et al., 2019; Su, 2002): ET estimates are produced with the 177 

revised Surface Energy Balance System (SEBS) algorithm in Chen et al. (2013; 2019). It uses 178 

meteorological observations, ground heat flux, net radiation and canopy measurements collected from 179 

flux tower sites, and NDVI and emissivity data from MODIS. 180 

Surface Radiation Budget (SRB)-GEWEX (Vinukollu et al. 2011): ET is estimated based on the Penman-181 

Monteith equation. Input data sets include remote sensing data from AVHRR and MODIS, 182 

meteorological data derived from the Variable Infiltration Capacity (VIC; Liang et al., 1994) land surface 183 

model forced by PGF and radiative data from the NASA Global Energy and Water Exchanges (GEWEX) 184 

Surface Radiation Budget Project (Stackhouse Jr et al. 2011). 185 

 186 

It is clear that different parent datasets share forcing, parameterisations, and physical and empirical 187 

assumptions. Therefore, they do not constitute entirely independent estimates. Furthermore, their error 188 

correlation (when compared with data from 254 sites – details on these below), which can be used as a 189 

measure of their dependence (Bishop and Abramowitz 2013) is high (Fig. S2, correlation > 0.5), 190 

reinforcing the potential for benefit using a weighting approach that can account for this redundancy.  191 

 192 

Part of the high correlation is of course due to spatial heterogeneity and the scale mismatch between in-193 

situ and gridded data sets – individual site locations within a grid cell are likely biased with respect to the 194 

(unknown) true grid cell averaged flux. While it might appear that a weighting approach that accounts 195 

for error correlations between parent data sets might be in danger of overfitting to error correlation 196 

resulting from spatial heterogeneity, we have two mechanisms that ensure this is not a concern for our 197 

final product. First, weights for each product are constructed over very large spatiotemporal domains, so 198 

that the (assumed stochastic) biases of individual sites relative to grid cell values are unlikely to 199 

influence weights over a large sample. Second, and more categorical, all results here are presented out-200 

of-sample, so that any overfitting will degrade, rather than improve the results we present. More detail 201 

on this is presented below. 202 
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 203 

Given that most of the parent datasets provide ET information at a 0.25° or finer spatial resolution 204 

(Table 1), it is possible to enhance the resolution of DOLCE from 0.5° to 0.25°. All the parent datasets are 205 

resampled from their original spatial resolution to a common 0.25° grid using the nearest-neighbour 206 

resampling method, and aggregated to monthly temporal scale before implementing the weighting 207 

technique. 208 

 209 

 210 

2.1.2 Flux tower data 211 

We use flux tower observations from a range of networks including Ameriflux (ameriflux.lbl.gov), The 212 

Atmospheric Radiation Measurement (ARM; arm.gov), AsiaFlux (asiaflux.net), European Fluxes Database 213 

(europe-fluxdata.eu), Fluxnet 2015, LaThuile Free Fair Use (fluxnet.fluxdata.org), Oak Ridge data 214 

repository (daac.ornl.gov), OzFlux (ozflux.org.au) and through communication with individual site 215 

principal investigators (PI). Particular efforts were made to establish connections with PIs in regions 216 

where ET observations are scarce, including all areas outside North America, Europe and Australia, 217 

particularly the MENA regions, Siberia, Central Africa and the Amazon basin. Our efforts and 218 

communications with many PIs unfortunately failed to incorporate flux data from some of these regions 219 

(excepting those that are already available from the cited networks). Before the quality control process 220 

detailed below, we had obtained data from 366 flux tower sites.  221 

 222 

The raw data consists of a composite of half hourly, daily and monthly records. We compute daily 223 

averages from half-hourly records for days where at least 80% of half-hourly LE records are available. 224 

Subsequently, we compute monthly averages from daily records for months where at least 80% of daily 225 

LE records are available. In DOLCE V1 we applied a less strict quality control on the observational data in 226 

which up to 50% of gap filling was allowed. The reason was that DOLCE V1 incorporated much fewer 227 

observational data – sourced from Fluxnet 2015 and LaThuile Free Fair use only. In order to retain 228 

enough observational data to constrain the weighting, it was necessary to make a trade-off between the 229 

quality and the quantity of the data.  230 

 231 

We also apply energy balance corrections to the monthly LE at all sites where monthly averages of the 232 

other variables of the surface energy budget - net radiation (𝑅𝑛), ground heat flux (𝐺), and sensible 233 

heat flux (𝐻) - are available with the same high quality (quality flag > 80%). Corrections are carried out 234 

independently for every monthly record. Where any of the other components of the energy budgets are 235 

absent, latent heat measurements are used directly. The energy balance correction is applied as a 236 

Bowen Ratio (BR) based correction that distributes the energy budget residuals among H and LE in such 237 

a way that their ratio is conserved. This is done under pre-defined constraints that disallow large 238 

changes to be applied to LE. As a result of this, if the original monthly LE and the corrected LE (𝐿𝐸𝑐𝑜𝑟) 239 

satisfy: 240 

 {
 
𝐿𝐸𝑐𝑜𝑟

𝐿𝐸
ϵ [

1

2
–  2] ,                       𝑤ℎ𝑒𝑟𝑒 𝐿𝐸 ≤ 30 𝑊 𝑚−2

𝐿𝐸𝑐𝑜𝑟 − 𝐿𝐸 ≤ 20 𝑊 𝑚−2,    𝑤ℎ𝑒𝑟𝑒 𝐿𝐸 ≥ 30 𝑊 𝑚−2 
 241 
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we accept the BR correction and use the corrected 𝐿𝐸𝑐𝑜𝑟 values. In DOLCE V1, we did not set a threshold 242 

for LE adjustments, which resulted in LE being changed drastically in a few sites to offset errors in the 243 

other energy balance components. If the BR correction does not meet the above criterion, we reject the 244 

correction and try using a residual correction, which simply calculates LE as the residual term in the 245 

energy balance equation, i.e. 𝐿𝐸𝑐𝑜𝑟 = 𝑅n − 𝐻 − 𝐺 . Similarly, we reject the residual correction if the 246 

relation between LE and 𝐿𝐸𝑐𝑜𝑟 above is not satisfied. In this case, we use the original monthly LE values 247 

without correction. A simplified flowchart of these steps is displayed in Fig. S3 in the supplementary 248 

material. 249 

In a further pre-processing step, if a site is located in close proximity to other sites such that they all sit 250 

on the same 0.25° grid-cell, we use observational data from the site that is more representative of the 251 

underlying grid-cell. Selecting the most representative site among these sites involves 1) identifying the 252 

biome cover at each site; 2) computing the fraction of the grid area covered by each biome; the most 253 

representative site is the one whose biome is more abundant in the underlying grid-cell (i.e. scores the 254 

highest fraction of the total area). If all sites are equally representative of the underlying grid-cell, we 255 

consider them as one site and we combine monthly LE from the sites by taking the average. We use the 256 

high resolution 300 m - land cover maps from the European Space Agency (ESA; http://www.esa.int/) 257 

downloaded from https://cds.climate.copernicus.eu/ to determine the biome types of neighbouring 258 

sites and the corresponding grid-cells. This step has ensured that we are not matching a grid-cell with 259 

inappropriate observational data. This filtering reduced the number of employed sites in this study from 260 

366 sites to 260 sites (Fig. S1). All the excluded sites are in Europe and North America. Furthermore, we 261 

exclude 6 sites from the weighting, located on flooded land area, wetlands or intensively irrigated land. 262 

As a result of this, the constraining observational dataset used to derive DOLCE V2 includes 254 sites 263 

with a total of 13641 monthly records.   264 

 265 

2.2. Methods 266 

2.2.1 Weighting approach 267 

The weighting technique is the same as that used in DOLCE V1 and was originally presented by Bishop and 268 

Abramowitz (2013) and implemented for merging observational estimates by Hobeichi et al. (2018, 2019, 269 

2020a). It consists of building a linear combination, 𝜇, of the parent datasets that minimise 270 

∑ (𝜇 
𝑗 − 𝑦 

𝑗)2𝐽
𝑗=1 , where 𝑗 ∈ [1, 𝐽] are the monthly time-site records, 𝑦 

𝑗 is the observed ET at the  jth  time-271 

site record. The linear combination 𝜇 
𝑗 = ∑ 𝑤 𝑘𝑥 𝑘

𝑗K 
k=1  is subject to the constraint that  ∑ 𝑤𝑘 = 1𝐾

𝑘=1 , 272 

where 𝑘 ∈ [1, 𝐾 ] represents the parent datasets and 𝑥k
j
 is the value of the kth bias-corrected parent 273 

dataset (i.e. after subtracting its mean bias relative to the all-site observational dataset) corresponding to 274 

the jth time-site record. The analytical solution to this problem accounts for both the performance 275 

differences between the parent datasets and their error covariance, a proxy for dependence. Further 276 

details on the merging technique can be found in Abramowitz and Bishop (2015) and Bishop and 277 

Abramowitz (2013). The weighting approach is used to combine the global parent datasets separately on 278 
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different spatiotemporal subsets of the entire period and globe, using a tiered approach detailed in 279 

section 2.2.3. 280 

 281 

2.2.2 Computing uncertainty in ET  282 

The ensemble dependence transformation process developed by Bishop and Abramowitz (2013) is used 283 

to calculate the spatiotemporal uncertainty of DOLCE V2. The process transforms the global parent 284 

datasets to a new ensemble so that the variance of the transformed ensemble about the derived hybrid 285 

ET estimate, 𝜇, is constrained to be equal to the error variance of 𝜇 with respect to the flux tower data, 286 

averaged over time and space (i.e. across all 𝐽 records). We use the spread √𝜎 
2 

 of the transformed 287 

ensemble as the spatially and temporally varying estimate of uncertainty standard deviation, which we 288 

will refer to as uncertainty. We refer the reader to Bishop and Abramowitz (2013) for the derivation of 289 

this approach, and Hobeichi et al (2018) for its implementation in this context. The spread √𝜎 
2 

 of the 290 

transformed ensemble accurately reflects the uncertainty of 𝜇 in those grid-cells where flux tower 291 

observations are available. This process ensures that the computed uncertainty provides a better 292 

uncertainty estimate of the hybrid ET than simply using the spread of the parent datasets. 293 

One additional advantage of defining uncertainty in this way is that it should give an accurate upper 294 

bound estimate of the likely discrepancy between the product and unseen ET measurements at a range 295 

of spatial scales. That is, since it is based on the discrepancy of the final hybrid product and point-based 296 

flux tower estimates, which are essentially at the extremes of spatial discrepancy, the discrepancy 297 

between DOLCE and actual ET at any spatial scale greater than that of a tower footprint should be less 298 

than this uncertainty estimate (noting however that this is the estimated standard deviation of 299 

uncertainty, rather than a hard upper limit). In 2.2.6 below, we detail the out-of-sample testing of this 300 

uncertainty estimate at the point scale. 301 

 302 

2.2.3 Tiering of data set subsets in time and space to maximise coverage 303 

To derive DOLCE V1 over the global land, we applied spatial tiering (using different subsets of parent 304 

products in different regions to maximise spatial coverage). We now expand this approach to include 305 

temporal tiering to improve the temporal reach of DOLCE. Collectively, the incorporated parent datasets 306 

have a temporal cover over 1980 – 2018, but only a short common overlap during 2003-2007, and their 307 

spatial intersection does not cover the global land. Therefore, to achieve a global land coverage from 1980 308 

through 2018 without excluding any product, it was necessary to build DOLCE V2 from different subsets 309 

of parent datasets in time periods and land regions depending on the availability of the parent datasets 310 

as shown in Table 1. To this end, we consider 14 distinct temporal tiers. For example, tier 9 covers 2008 - 311 

2012 and incorporates all datasets except SRB-GEWEX. Tier 1 incorporates the least parent datasets, for 312 

the year 1980 (i.e. FLUXCOM-MET and GLEAM3.3A), while tier 8 uses all the parent datasets and covers 313 

2003 – 2007. Furthermore, within each temporal tier, we consider three spatial sub-tiers, with each spatial 314 

sub-tier covering a part of the land. These consist of (a) all land except Antarctica, Greenland and North 315 

Africa, (b) only Antarctica and Greenland, (c) only North Africa. A similar spatial tiering approach was also 316 

applied in DOLCE V1. Other spatial tiers, each consisting of a small number of grid cells were also 317 

considered where necessary to ensure that no grid cell in DOLCE V2 is missing ET data if a single parent is 318 
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missing ET data for that grid cell. As a result of the tiering approach, weighting is computed separately 319 

using a different subset of parent data sets and site data in each tier, resulting in distinct spatiotemporal 320 

subsets of the entire period. Note that in the results we below, we briefly examine the extent to which 321 

tiering results in temporal discontinuities. Collectively, the hybrid estimates developed throughout the 322 

temporal tiers and their spatial sub-tiers form DOLCE V2 over the global land throughout 1980 – 2018. 323 

 324 

2.2.4 Weighting groups 325 

Previous studies have found that the performance of a global product can vary with different climatic 326 

circumstances, suggesting that separating the weighting into separate regions or other groupings might 327 

well improve the results of the weighting overall (Ershadi et al. 2014; Hobeichi et al. 2018; Michel et al. 328 

2016). Grouped weighting simply involves dividing the time and/or space covered by a particular tier 329 

into different subsets or groups (e.g with different climatic conditions), and then applying the weighting 330 

technique separately for each group (within a single tier). We expect that grouped weighting has the 331 

potential to improve weighting by accounting for the variation in performance of the parent datasets 332 

over different climate or land conditions and can hopefully improve biases detected in DOLCE V1. 333 

Hobeichi et al. (2018) tried to group flux tower sites based on their land cover type and computed 334 

weights for each land cover type. However, this approach did not improve the results, whether grouping 335 

by climate zone or aridity index, with the main reason being attributed to the small number of sites in 336 

many groups. Despite the availability of 100 additional sites to constrain the weighting  here compared 337 

to Hobeichi et al., (2018), the ratio of the observational data to the number of parents has not improved 338 

across several climate or land cover types for this work. We therefore investigate new approaches to 339 

grouped weighting that allow sufficiently low group numbers to keep a reasonable sample size in each 340 

of them, including: 341 

• Grouping by latitudinal zone: this is a simplification of grouping by climate type in which 342 

climates are aggregated into three latitudinal zones: (i) high latitudes (±60° poleward),  (ii) mid-343 

latitudes ±60° towards the subtropics ±40°, and (iii) tropics and sub-tropics (between -40° and 344 

40°). In each zone we apply a separate weighting using the corresponding group of sites. 345 

• Grouping by continents: Sites are naturally separated by continental boundaries and we might 346 

suspect that a particular ET product performs differently across continents. For instance, 347 

precipitation is involved in the derivation of many of the parent datasets, and has been found  348 

to have different fidelity over different continents (Hobeichi, Abramowitz, Contractor, et al. 349 

2020).  350 

• Grouping by hemisphere: Pan et al. (2020) found that ET estimates agree more in the Northern 351 

hemisphere than in the Southern hemisphere. Therefore, performing separate weighting in each 352 

hemisphere could be better than weighting across all global land.  353 

• Grouping by seasons: Several studies have shown that the skill of ET datasets vary by seasons 354 

(Jiménez et al. 2018; Long, Longuevergne, and Scanlon 2014; Mueller et al. 2011). To capture 355 

these differences, we implement grouping by seasons and grouping by month (detailed below). 356 

We consider two combined seasons i.e. summer-fall and winter-spring. In the summer-fall 357 

season, we constrain the weighting with (1) monthly observations from sites located in the 358 

Northern hemisphere during the period December–May, and (2) monthly observations from 359 
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sites located in the Southern hemispheres during the period June–November. The remaining 360 

observational data is used to constrain the weighting during the winter-spring combined season. 361 

• Grouping by months: This is similar to grouping by seasons, the only difference is that the two 362 

groups are June–November and December–May, without accounting for the different seasonal 363 

phase between hemispheres.  364 

 365 

2.2.5 Bias correction strategies 366 

 367 

In DOLCE V1, we showed that part of the success of the weighting approach is due to the bias correction 368 

applied before the weighting. Within each tier, the bias correction is applied simply by adding the mean 369 

difference between a product and tower data uniformly to all values of a product before the weights are 370 

derived – it is constant in space and time for a given product within one tier. The grouping strategies 371 

detailed above examine the effect of considering different bias correction and weighting subgroups 372 

within each spatiotemporal tier, with groups divided by region (continents or latitudes) or/and seasons. 373 

As an alternative to the grouping strategies, we also investigate if deriving a spatially varying bias 374 

correction within each tier could further improve the weighting. A spatially varying bias correction might 375 

better capture the performance deficiencies of each the parent datasets. 376 

 377 

To derive a global bias correction for a particular parent dataset within each tier, we first compute the 378 

mean bias at each flux tower site across all the time records within the tier. We then assign those ET 379 

bias values to the grid cells containing the sites. Finally, using the bias values at these grid cells, we 380 

extrapolate the bias field to the entire global land domain within the tier using several different 381 

extrapolation strategies, including inverse distance weighting (IDW), local polynomial interpolation and 382 

nearest neighbourhood. As with the different weighting groups, we test the effectiveness of each 383 

approach using out-of-sample tests, which we now describe. 384 

 385 

 386 

2.2.6 Out-of-sample testing approach 387 

 388 

To test the effectiveness of different weighting groups or bias-correction approaches, and assess which 389 

strategy offers the best performance, we use out-of-sample tests. To do this, we first divide the flux 390 

tower sites between the in-sample and out-of-sample groups by randomly selecting 25% of the sites as 391 

out of sample. The remaining sites form the in-sample training set are used to compute bias correction 392 

terms and weights for the parent datasets in each tier using the weighting technique without weighting 393 

groups (as adopted in DOLCE V1), and with each of the groups and bias correction strategies detailed 394 

above. In each case, these bias correction terms and weights are then applied to the parent datasets 395 

and compared to the out-of-sample sites to test efficacy of the clustering or bias correction approach 396 

employed. The process is repeated for each grouping or bias correction strategy to derive several hybrid 397 

ET datasets for each out of sample group of sites. 398 

 399 

For each strategy, the test was repeated 1000 times with a different random selection of sites being out 400 

of sample. The performance of each hybrid ET estimate was evaluated across five statistical metrics. 401 

These were root mean squared error (RMSE), absolute standard deviation difference |𝜎𝑑𝑎𝑡𝑎𝑠𝑒𝑡 −402 
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𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|, correlation, mean absolute deviation (i.e. mean(|dataset – observation|)) and median 403 

absolute deviation (median(|dataset – observation|)). DOLCE V1 has not been included in this test 404 

because its coarser spatial resolution (i.e. 0.5°) excludes many coastal sites and so significantly reduces 405 

the observational data we could use in this analysis. The out-of-sample test is carried out over the 406 

common period of availability of all the parent datasets i.e. 2003 – 2007 to enable comparison of the 407 

out-of-sample performance of each approach with all of the parent datasets.   408 

 409 

We perform another out-of-sample experiment to test if the uncertainty estimate derived by the 410 

successful grouping/bias correction strategy performs well out of sample. In this test, we first select a 411 

site S, but instead of constraining the weighting using observed ET from this site, we compute the 412 

weights and bias correction terms of the parent datasets by using all the sites except S (i.e. just one site 413 

is out-of-sample). We then calculate the MSE of the derived hybrid ET against observations from all the 414 

sites except S. We denote this value by uncertaintyin−sample, since it represents the uncertainty 415 

estimate computed using the same observational dataset that we used to train the weighting. We also 416 

calculate the MSE of the hybrid ET against the out-of-sample observations from S, and we denote this as 417 

uncertaintyout−sample, since we perform the comparison against ET observations that have not been 418 

used to train the weighting. We repeat this test for all the sites, and each time we calculate the ratio 419 
uncertaintyin−sample

uncertaintyout−sample,
. In an ideal case, this ratio should equal to unity. 420 

 421 

 422 

3. Results and Discussion 423 

 424 

3.1 Selection of a grouping strategy 425 

Figure 1 shows the out-of-sample performance of different grouping strategies (including no grouping) 426 

against parent datasets (left column). The performance results across all 1000 different random site 427 

samples are shown in a boxplot for each clustering method (yellow), non-clustered weighting (as per 428 

DOLCE V1, in magenta, labelled NO.GROUPING), and each parent dataset (purple). The hybrid ET 429 

estimates derived from grouping weighting are labelled LAT.ZONES, CONTINENTS, SEASONS, MONTHS, 430 

and HEMISPHERE, following the grouping approaches outlined above. The plots in the left column show 431 

that overall, the hybrid ET estimates outperform their parent datasets across all the performance 432 

metrics and in all clustering settings. The hybrid ET estimates derived by implementing spatially varying 433 

bias correction strategies failed to outperform the parent datasets in the out-of-sample site tests, and 434 

have been excluded from the plot (Fig. S3). To highlight the differences between the grouping strategies, 435 

we magnify the leftmost section of these plots in the right column of Fig. 1, and also show in red the 436 

median value of each boxplot. Results only change slightly across the grouping approaches, with the 437 

best results achieved by grouping weights by months. Despite the relatively small improvement offered 438 

by this strategy at the out-of-sample sites over the other grouping strategies, we derive DOLCE V2 439 

(Hobeichi 2020) by applying a grouped weighting by months. Recall that in this approach, the 440 

observational and gridded ET data are split into two groups, one covering the period June – November 441 
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and the other covering December – May. Weighting and bias correction is then implemented in each 442 

group separately for each tier to create the subsets from which the hybrid ET product is derived.  443 

The box plots in Fig. 2 show the ratio 
Uncertaintyin−sample

Uncertaintyout−sample,
  obtained across the different grouping 444 

techniques. Each boxplot represents this ratio from all sites out of sample and shows that over half of 445 

the data, the ratio ranges between 0.83 and 1.51, with a median very close to 1. This confirms that, 446 

overall, when the uncertainty estimates are computed out of sample, they are very similar to what they 447 

would have been if they were computed in sample. Also, the fact the shift in ratio is mostly towards 448 

values bigger than 1 rather than smaller than 1 indicates that Uncertaintyin−sample is greater than 449 

Uncertaintyout−sample so that uncertainty is overestimated rather than underestimated. Interestingly, 450 

the lower (0.86) and upper (1.46) quartiles achieved by grouping weighting by months are the closest to 451 

1 than the other grouping techniques. This suggests that overall, grouping weighting by months is able 452 

to derive slightly more robust uncertainty estimates than the other techniques. 453 

 454 

 455 

3.2 Comparison of DOLCE V2 with its parent datasets 456 

Figure 3 displays the latitudinal means of DOLCE V1, DOLCE V2 and its parent datasets computed over 457 

land for 2003 – 2007. We exclude Antarctica from the analysis due to the lack of reliable reference 458 

information on ET for validation. The grey ribbon in Fig. 3 represents the uncertainty of DOLCE V2 459 

defined by the ± standard deviation interval. The pink shaded areas represent latitudinal domains where 460 

some parent datasets do not estimate ET for some parts of the land. In the white area where all the 461 

datasets have complete terrestrial coverage, the uncertainty standard deviation of DOLCE V2 mostly 462 

contains the latitudinal variations of its parent datasets with the exception of FLUXCOM-RS which 463 

exhibits larger ET over the tropics and subtropics of the southern hemisphere. This containment should 464 

not be surprising since uncertainty estimates should be robust for point-scale estimates. Similarly, the 465 

middle pink area shows that DOLCE V2 agrees with its parent datasets except BACI, FLUXCOM-RS, 466 

FLUXCOM-MET and MOD16. These four datasets do not estimate ET over arid and semi-arid regions in 467 

north Africa, the middle east and central Asia, so it is expected that they exhibit larger ET averages over 468 

these latitudes. DOLCE V1 exhibits a slightly lower ET than DOLCE V2 in the tropics and sub-tropics. 469 

DOLCE V2 appears in the lower end of the range of the other datasets from 60° poleward. All the 470 

datasets exhibit considerable disparities over the mid-latitude south of -50°, where the contribution of 471 

the terrestrial ET comes mostly from the lower Andes.  472 

 473 

Figure 4 shows the spatial distribution of differences in the ET mean between DOLCE V2 and each of its 474 

parent datasets. We apply different spatiotemporal masks for each comparison based on parent dataset 475 

coverage (Table 1). We also compute the climatological difference of DOLCE V2 with its predecessor 476 

DOLCE V1 over 2000 – 2009.  477 

Over the temperate regions of the northern hemisphere, DOLCE V2 exhibits lower mean ET than all its 478 

parents except SEBS. We have computed the mean bias of all these datasets relative to the 479 

observational data available from sites located in these temperate latitudes. DOLCE V2 has a negligible 480 
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bias of 0.2 𝑊 𝑚−2  relative to the observational data. This bias results from a positive bias of 0.4 𝑊 𝑚−2 481 

during June – November and a negative bias of -0.2 𝑊 𝑚−2 during December–May. All the parent 482 

datasets except SEBS exhibit a positive bias that ranges between 2.7 and 11.4  𝑊 𝑚−2 and SEBS has a 483 

negative mean bias of -3.4 𝑊 𝑚−2, that varies between -0.2 𝑊𝑚−2  during December – May and -6.3 484 

𝑊𝑚−2 during June – November.  We note that the bias relative to the in-situ observational datasets is 485 

only indicative of the performance of the gridded datasets at the sites and do not necessarily represent 486 

the actual mean bias over these regions. The discrepancy between DOLCE V2 and DOLCE V1 is relatively 487 

small across all land.   488 

Large differences between DOLCE V2 and FLUXCOM-RS are seen over the Congo and the Amazon basins, 489 

southern Africa, and the Brazilian highlands. The mean climatological bias of FLUXCOM-RS relative to 490 

observational data from these regions is 30 𝑊 𝑚−2. The bias is likely to be the reason for the 491 

exceptionally large FLUXCOM-RS ET seen over the tropics in Fig. 3. On the other hand, DOLCE V2 exhibits 492 

a much smaller bias than FLUXCOM-RS that ranges between 2.6 𝑊 𝑚−2 during June–November and 6.4 493 

𝑊 𝑚−2 during December–May.  494 

In general, there are apparent disparities in the patterns of climatological differences in the tropics 495 

across all the maps. This results from the fact that global ET datasets exhibit large differences over the 496 

tropics which has been highlighted previously (Paca et al. 2019; Pan et al. 2020), particularly over the 497 

Amazon basin.  498 

 499 

For reference, we provide in global maps of the seasonal climatology of DOLCE V2 computed throughout 500 

1980 – 2018 in Fig. S5.  501 

 502 

3.3 Comparison of basin and continental ET with existing literature 503 

We now compare DOLCE V2 with annual mean ET aggregates over a range of river basins documented in 504 

a recent study (Table 4 of Zhang et al., 2018). ET in this study - which we’ll refer to as CDR-ET- is derived 505 

by merging 10 available ET datasets into a hybrid ET which then receives corrections, so that the surface 506 

water budget - established by derived hybrid estimates of the other hydrological variables -  is closed. 507 

Table 2 displays the mean annual ET aggregates in 𝑚𝑚 𝑦𝑒𝑎𝑟−1 across 20 river basins calculated for 508 

DOLCE V2 and CDR-ET over the common period 1984 – 2010. Our results show that there is an overall 509 

agreement across all the non-Siberian rivers where the difference in ET estimates is mostly around 10%. 510 

The agreement worsens over the Arctic basins Indigirka, Kolyma, Lena, Northern Dvina, Yenisei and 511 

particularly over Olenik and Pechora where the differences in ET estimates exceed 20%. Previous studies 512 

have reported large uncertainties in the water fluxes over the Siberian basins (Lorenz et al. 2015) most 513 

likely due to the absence of a proper representation of snow and permafrost dynamics (Candogan 514 

Yossef et al. 2012). Interestingly, over the north American arctic basins Mackenzie and Yukon, DOLCE V2 515 

and CDR-ET exhibit much smaller relative differences than at their Siberian counterparts. 516 

 517 

We also compare DOLCE V2 with continental annual means of ET shown by L’Ecuyer et al. (2015). In 518 

their study, they derive a hybrid ET by merging three global datasets. Then, they adjust the hybrid ET 519 

and its associated uncertainty by enforcing the physical constraints of the surface and atmospheric 520 

water and energy budgets using a data assimilation technique (DAT). Our results show that DOLCE V2 521 

has smaller ET with larger associated uncertainties compared to those derived in L’Ecuyer et al. (2015) 522 
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(Table 3). The range of their ET estimate overlaps with the upper range of DOLCE V2 throughout all 523 

continents. In L’Ecuyer et al. (2015), the uncertainty estimates are originally taken from the literature 524 

and are deemed constant across time and space, then these are reduced by the DAT. The uncertainty 525 

estimate of DOLCE V2 is firmly grounded in the spread of its parent ET datasets but is more robust than 526 

this spread alone, since this spread has been recalibrated so that the uncertainty of DOLCE V2 relative to 527 

the observational data is precisely the spread of the recalibrated parent datasets.  528 

 529 

Finally, we compare DOLCE V2 with the ET component of Conserving Land Atmosphere Synthesis Suite  530 

(CLASS; Hobeichi, 2019; Hobeichi et al., 2020a) which we denote as CLASS-ET. CLASS dataset comprises 531 

coherent estimates of the surface water and energy budgets at the gridded monthly scale. CLASS-ET has 532 

been derived by adjusting DOLCE V1 by enforcing the simultaneous closure of the surface water and 533 

energy budgets using the same DAT as in  L’Ecuyer et al. (2015), and can be therefore considered an 534 

improved version of DOLCE V1. Table S3 displays the continental area weighted averages of DOLCE V2, 535 

DOLCE V1 and CLASS-ET and the mean differences DOLCE V2 – DOLCE V1 and DOLCE V2 – CLASS 536 

computed over a common time period 2003-2009, and a using common spatial mask.  We find that, in 537 

general, DOLCE-V2 is closer to CLASS-ET (i.e. the improved version of DOLCE V1), than DOLCE V1. 538 

 539 

The average global land ET of DOLCE V2 during 1980 – 2018   is 37 𝑊 𝑚−2. This falls in the lower range 540 

of global ET climatology of 35 – 54 𝑊𝑚−2 computed across 20 ET datasets  during 1982 – 2011   in Pan 541 

et al. (2020) 542 

 543 

3.4 Performance of DOLCE V2 at flux sites 544 

We now compare DOLCE V2 with ET measured at the 260 sites used to derive it (Table S1). We display 545 

two performance metrics - correlation and standard deviation - on a Taylor Diagram (Fig. 5). RMSE has 546 

been excluded from the plot since the mean ET exhibited by DOLCE ET at a particular site does not 547 

necessarily equal the mean observed ET at that site. All data has been normalised before computing the 548 

statistical metrics so that the observational data at each site has a mean of zero and a standard 549 

deviation of 1. Each coloured point summarises the performance statistics of DOLCE V2 at a single site. 550 

The observational data is represented by a single “reference” point, i.e. the hollow point at one on the 551 

horizontal axis. The plot in Fig. 5 shows that most of the coloured points lie close to the reference point, 552 

indicating that DOLCE V2 is highly correlated with most of the observational data. Overall, Fig. 5 shows 553 

good agreement with the observational datasets. Poor performance is seen over a small number of 554 

sites. These are represented by points located outside the Taylor diagram area. Most of these sites have 555 

less than one year of monthly records with several gaps, perhaps raising questions about observational 556 

quality. 557 

In further analysis, we investigate whether the performance of DOLCE V2 is reduced over a particular 558 

land cover type. For this purpose, we repeat Fig. 5, but this time we colour-code the statistics points by 559 

the land cover type of the sites they represent as shown in Fig. S6. The new plot does not reveal clear 560 

links between the performance of DOLCE V2 and the biome types of the sites. Similarly, we could not 561 

find performance links with the degree of representativeness of the site to the underlying grid-cell. This 562 

is shown in Fig. S7 where colours represent the degree of agreement between the land cover type at the 563 

footprint of the tower site and the dominant land cover of the grid-cell containing the site. As shown in 564 

Fig. S7, we carry out this analysis on the basis of three levels of agreement. These include blue points 565 
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representing sites whose land types match the dominant land types of the underlying grid-cells; green 566 

points representing sites whose land types cover more than 25% of the underlying grid-cells without 567 

being the dominant land cover at these grid-cells; and pink points representing sites whose land types 568 

covers less than 25% of the underlying grid-cells. 569 

 570 

Finally, Fig. S8 shows timeseries of DOLCE V2 and observed ET at a selection of sites from various climate 571 

types. Site properties are shown in Table S1. 572 

 573 

3.5 Changes in ET since 1980 574 

3.5.1 Annual ET trends over the global land 575 

We produce a long-term (1980 – 2018) map of trends in annual ET totals (Fig. 6) as proposed by Mann-576 

Kendall (Kendall 1948; Mann 1945) using the Sen’s slope method (Sen 1968). We use the uncertainty 577 

estimates associated with the ET fields and the confidence interval of the slope as two confidence 578 

measures to filter out spurious trends.  579 

Unreliable trends occur in regions where ET uncertainty is high, such as in central Africa and Sahel, and 580 

in the high latitudes where ET observations are sparse or do not exist. Inconsistent trend behaviour (CI 581 

includes positive and negative values) is found in regions that experienced long phases of droughts and 582 

non-droughts during 1980-2018, mainly in Australia, or a succession of drought and wet events, mainly 583 

in southern United States and most of the Amazons basin (Marengo et al. 2018). As a result of this, a 584 

general long trend in ET is not identified in these regions. Miralles et al. (2014) report that these changes 585 

in ET over these regions reflect El-Niño-La-Niña cycle.  Similarly, we have not detected clear long trends 586 

in southern South America and eastern and southern Africa. This partially agrees with the study of Pan 587 

et al. (2020) where their figure 8 shows no  ET trend in eastern Africa, and no agreement on the sign of 588 

trend between the participating datasets has been found in southern South America. Figure 6 indicates 589 

that ET has intensified over most of the northern latitudes which has been highlighted in many studies 590 

(e.g. Miralles et al. 2014; Pan et al. 2020; Zhang et al. 2016), and declined in western United States, 591 

eastern India, most of Madagascar, and parts of the Ethiopian highland. Unfortunately, given the 592 

absence of adequate in-situ observations that cover a long enough period to establish trends analysis, it 593 

is difficult to validate the identified trends directly. 594 

In further analysis, we examine whether the spatiotemporal tiering adopted in DOLCE V2 has resulted in 595 

temporal discontinuities. Figure 7 illustrates the annual average line plot of the area weighted mean of 596 

continental ET exhibited by DOLCE V2. The vertical dashed lines mark the beginning of a new tier (see 597 

Table 1). While the line plot does shows some marked changes, we do not believe these reveal a signal 598 

of temporal discontinuity, as most of the strong changes in ET that coincide with changes in tiers also 599 

coincide with extreme events, and are specific to the continents where these events occurred. For 600 

instance, the drop in ET in South America in 2016 is explained by an unprecedented drought over 601 

tropical South America (Erfanian, Wang, and Fomenko 2017). Similarly, the drop in ET in Africa is caused 602 

by several droughts occurring in many African regions since 2016. In Australia, the decline in ET since 603 

2017 is caused by severe droughts that developed across most of Australia. 604 

 605 
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3.5.2 ET regimes 606 

To understand changes in ET across wet and dry regions, we classify land into 6 distinct dry and wet ET 607 

regimes according to two aspects of ET: annual averages and within-year relative variability. We apply K-608 

means clustering (MacQueen 1967) - an unsupervised machine learning algorithm known for its 609 

outstanding efficiency in clustering data – by implementing the K-Means function and the least squares 610 

quantisation method (Lloyd 1982) using R software.  K-Means identifies K centroids (i.e. imaginary 611 

values representing the centre of the clusters) and assigns each data point to the cluster of the nearest 612 

centroid using – in this paper - the least squares quantisation method. For each grid cell, we compute 1) 613 

the average of the annual total ET across 39 years (1980-2018); 2) within-year relative variability 614 

climatology by temporally averaging the relative standard deviation of monthly ET calculated over a year 615 

and across all years. These have been used as input features for the unsupervised classification. After 616 

trial and error, we find that the global land can be adequately classified into six distinct regimes that 617 

include three dry and three wet regimes. According to centroids values (Table S4), we label the six 618 

regimes from driest to wettest and we list the associated ET climatology and variability respectively: (i) 619 

very low ET with high variability (3 mm, 14%), (ii) low ET with high variability (207mm, 10%) , (iii) mild 620 

low ET with medium variability (371 mm, 7%), (iv) mild high ET with medium variability (631mm, 5%), (v) 621 

high ET with low variability (913mm, 3%), and (vi) very high ET with low variability (1221, 1%). Figure 8 622 

displays the spatial distribution of the 6 ET regimes. 623 

We compare the derived ET regimes map with the modifed Köppen climate (KC) classification map by 624 

Chen and Chen (2013). We find that each KC class overlaps with only one ET regime with only two 625 

exceptions (Table 4): i) Land characterised by a ‘Dry Steppe Hot arid’ (coded BSh in KC)  climate belongs 626 

the ‘Mild low ET with medium variablity regime’, but in two regions, the Indian Deccan plateau and 627 

Argentinean Gran Chaco low forests, where the climate is BSh, the ET regime is ‘Mild high ET with 628 

medium variability’; ii) Regions with a ‘Mild temperate Fully humid Hot summer’ climate (coded Cfa in 629 

KC) overlaps with the ‘Mild high ET with medium variability’ regime in coastal regions, and to the ‘Very 630 

high ET with low variability’ regime in inland regions. These two KC classes (i.e. BSh and Cfa) are shown 631 

in bold in Table 4. Overall, ET-regimes defined in this paper provide an efficient way to aggregate the KC 632 

classes in less varied classes. This is not surprising knowing that KC classes are developed based on the 633 

empirical relationship between climate and vegetation, and that ET links the water, energy (climate) and 634 

carbon (vegetation) budgets. 635 

 636 

3.5.3 Global annual trends across the ET regimes 637 

We now explore annual trends in mean ET exhibited in each ET regime during 1980-2018. First, we 638 

calculate the annual ET total climatology and ET relative variability climatology spatially averaged across 639 

each regime separately, then we compute the trends in yearly ET as above (i.e. using Mann-Kendall and 640 

the Sen’s slope methods). Figure 9 illustrates trends’ results for the dry regimes ( V.L.ET, H.variability, 641 

L.ET, H.variability and M.L.ET, M.Variability) and the wet regimes (M.H.ET, M.variability, H.ET, 642 

L.variability and V.H.ET, L.variability). Across all regimes, trends in yearly ET total are upward as 643 

indicated by the positive signs of both the slopes and their complete confidence intervals. The strongest 644 

trends occur in the ‘M.L.ET, M.Variability’ and the ‘M.H.ET, M.variability’ regimes at rates 1.8 645 
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𝑚𝑚 𝑦𝑒𝑎𝑟−1 and 1.78 𝑚𝑚 𝑦𝑒𝑎𝑟−1 respectively, while the slowest trend occurs in the ‘V.L.ET 646 

H.variability’ regime where ET is in general low.  647 

We repeat the same analysis for the 5 parent datasets that span at least 30 years. Sen’s slope of the 648 

trends and their confidence interval (computed at the 95% confidence level) are presented in Table 5. 649 

Trends’ behaviour is deemed inconclusive when the CI encompasses negative and positive values, in 650 

which case trends are considered unreliable. These are presented with regular (as opposed to bold) 651 

typeface and are exhibited by FLUXCOM-MET in all regimes. ERA5-land shows downward trends in the 652 

‘M.H.ET, M.variability’ and ‘H.ET, L.variability’ regimes.  Both GLEAM 3.3A and PLSH show upward ET 653 

trends in all regimes, with the exception of GLEAM which shows no reliable trends in the wettest ET 654 

regime. Differences exist in the magnitude of trends as DOLCE V2 shows in general the strongest trends 655 

across the majority of the regimes. As in DOCLE V2, the strongest trends in GLEAM 3.3A occur in the 656 

‘M.L.ET, M.Variability’ and the ‘M.H.ET, M.variability regimes’. 657 

 658 

There are of course some notable limitations to the approach we have taken here, some of which were 659 

previously discussed in Hobeichi et al. (2018). First, the weighting approach adopted here relies heavily 660 

on flux tower observations, which can suffer from a range of technical issues (Burba and Anderson, 661 

2010; Fratini et al., 2019), as well as temporal gaps during particular weather conditions such as 662 

extremes (Van Der Horst et al. 2019), which can affect our results. Next, unresolved land surface 663 

processes in the parent datasets due for example to the absence of a proper representation of snow and 664 

permafrost dynamics, or the heterogeneity of the land surface are likely to lead to uncertain ET 665 

estimation in DOLCE V2, since it is only a combination of its parent data sets. This applies particularly in 666 

regions where observations are scarce or do not exist.   667 

 668 

 669 

4. Conclusions 670 

The derivation of a new hybrid ET dataset allowed us to examine historical trends in ET and their 671 

robustness to observational uncertainty. The dataset, DOLCE V2, is publicly available and was the result 672 

of several key improvements over its predecessor, incorporating more parent products, more in-situ 673 

data, testing a range of alternative implementations of it weighting and bias correction approach, 674 

increased spatial resolution and covers a longer time period. Despite the observationally constrained 675 

approach to defining uncertainty, we found robust ET trends across most areas of the land surface, 676 

enough to present a clear signal in each of the ET climate regimes we examined. These trends indicate a 677 

global increase in land derived ET between 1980 and 2018. This contrasts with other gridded ET 678 

products that did not incorporate the same degree of observational constraint in either their mean field 679 

or uncertainty estimates, and demonstrates the usefulness of this long-term hybrid ET dataset. 680 

 681 

5. Data Availability 682 

 683 

DOLCE V2 dataset is available from the NCI data catalogue at 684 

http://dx.doi.org/10.25914/5f1664837ef06; (Hobeichi 2020) 685 
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 711 

8. Tables 712 

 713 
Table 1: Spatial and temporal coverage and original resolution of the global ET datasets (at the time of analysis) used to develop 714 
DOLCE V2.1. The first column shows the number of temporal tier. 715 
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Tier Excluded 
Land 
domain 

Antarctica 
Greenland 

North 
Africa 

 Antarctica 
Greenland 

North 
Africa 

Antarctica 
Greenland 

North 
Africa 

  Antarctica 
Greenland 

North 
Africa 

Antarctica 
Greenland 
 

   

 Original 
resolution 

0.5° 
half 

hourly 

0.1° 
hourly 

1°

12
 

monthly 

1°

12
 

monthly 

0.25° 
monthly 

0.25° 
monthly 

0.05° 
monthly 

0.5° 
monthly 

1°

12
 

monthly 

0.05° 
monthly 

0.1° 
3-

hourly 
1 1980   •  •       

2 1981  • •  •   •    

3 1982 – 
1983 

 • •  •   • •   
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4 1984 – 
1999 

 • •  •   • •  • 

5 2000 
1,2&3 

 • •  •  • • •  • 

6 2000 
(4 – 12) 

 • •  •  • • • • • 

7 2001 – 
2002 

• • • • •  • • • • • 

8 2003 – 
2007 

• • • • • • • • • • • 

9 2008 – 
2012 

• • • • • • • • • •  

10 2013 • • • • • • •  • •  

11 2014 • • • • • • •   •  

12 2015  • • •  • •   •  

13 2016 –  
2017 (1 
– 6) 

 •   • •    •  

14 2017 
(7 – 12) 
– 2018  

 •   • •      

Table 2: Mean annual ET aggregates in 𝑚𝑚 𝑦𝑒𝑎𝑟−1 across 20 river basins calculated for DOLCE V2 and CDR-ET over a common 716 
period 1984 – 2010. 717 
 718 

Basin CDR-ET 

1984 – 2010 

DOLCE V2 

1984 – 2010 

Amazon 1153 1167 

Amur 295 309 

Columbia 331 340 

Congo 1045 1084 

Danube 503 451 

Indigirka 138 107  

Indus 277 323 

Kolyma 167 132  

Lena 245 185  

Mackenzie 241 214 

Mississippi 577 513 

Murray-Darling 411 419  

Niger 401 456  

Northern Dvina 324 232  

Ob 323 245  

Olenek 174 108 

Paraná 892 854 

Pechora 244 166 
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Yenisei 265 216 

Yukon 175 158 

 719 
Table 3: Annual continental averages of ET and its standard deviation uncertainty calculated for DOLCE V2 and developed in 720 
(L’Ecuyer et al., 2015) over a common period 2000 – 2010. 721 

continent 
ET± uncertainty  (𝑊 𝑚−2) 

(L’Ecuyer et al. 2015) 
2000 – 2010 

ET± uncertainty (𝑊 𝑚−2) 
DOLCE V2 

2000 – 2010 

Africa 45 ± 3 40 ± 17 

Australia  27 ± 3 28 ± 16 

Eurasia 33 ± 3 30 ± 13 

North 
America 

33 ± 6 28 ± 12 

South 
America 

77 ± 4 73 ±23 

 722 

Table 4: correspondence between ET-regimes derived here and Köppen climate classes derived in (Chen and Chen, 2013. Text in 723 
bold fontface indicates that the Köppen climate is associated with more than one ET regime. 724 
 725 

ET regimes Köppen climate classes (Chen and Chen 2013) 

Very low ET with high 
variability  

Polar (Tundra/Frost)  
Dry Desert (Hot/Cold) arid 

Low ET with high variability  Snow Fully humid Cold summer/Cool summer 
Snow Dry summer Cool summer  
Snow Dry winter Cold summer 
Dry Steppe Cold arid  
Dry Desert Hot arid/Cold arid  
Mild temperate Dry summer Cool summer 
Mild temperate Dry summer Warm summer 

Mild low ET with medium 
variability  

Snow Fully humid (Hot/Warm summer) 
Snow Dry winter (Hot/Warm/Summer) 
Dry Steppe Hot arid 
Mild temperate Dry summer Hot summer 
Mild temperate Fully humid Warm summer 

Mild high ET with medium 
variability  

Dry Steppe Hot arid (observed only in the Indian Deccan plateau and 
Argentinean Gran Chaco low forests) 
Mild temperate Fully humid Hot summer (observed in inland regions) 
Mild temperate Dry winter (Hot/Warm summer) 
Tropical Dry summer 

High ET with low variability  Mild temperate Fully humid Hot summer/Warm summer (observed in coastal 
regions) 
Tropical Dry winter 

Very high ET with low 
variability  

Tropical Fully humid 
Topical Monsoon 

 726 
Table 5: Trends in yearly ET total spatially averaged across each ET regime calculated for DOLCE V2 and its parents datasets that 727 
have time-span of more than 30 years. The text shows slopes of the trend line and their confidence interval calculated at the 728 
95% confidence level, bold text indicates that the confidence interval is strictly positive or negative.  729 
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 730 
Dataset and 
time span 

V.L.ET, 
H.variability 

L.ET, 
H.variability 

M.L.ET, 
M.Variability 

M.H.ET, 
M.variability 

H.ET, 
L.variability 

V.H.ET, 
L.variability 

DOLCE V2 
1980-2018 

0.3 [0.1, 0.5] 0.9 [0.5, 1.2] 1.8 [1.4, 2.1] 1.7 [0.9, 2.5] 1.3 [0.4, 2.3] 1.0 [0.3, 2.1] 

ERA5-land 
1981-2018 

-0.1 [-0.2, 0.01] 0.04 [-0.2, 0.3] -0.05 [-0.3, 0.2] -0.5 [-0.9, -0.2] -0.8 [-1.1, -0.5] -0.08 [-0.3, 0.1] 

FLUXCOM-
MET 
1980-2014 

-0.01 [-0.07, 0.04] 0.1 [-0.1, 0.3] 0.1 [-0.05, 0.2] 0.05 [-0.1, 0.2] -0.04 [-0.2, 0.1] -0.1 [-0.3, 0.1] 

GLEAM 3.3A 
1980-2018 

0.2 [0.1, 0.4] 0.7 [0.5, 1.0] 1.2 [1.0, 1.5] 1.3 [1, 1.6] 0.6 [0.4, 0.9] 0.3 [-0.1, 0.8] 

PML 
1981-2012 

-0.1 [-0.3, 0.1] 0.4 [0.1, 0.7] 1.0 [0.5, 1.4] 0.2 [-0.1, 0.6] 0.08 [-0.4, 0.5] -0.2 [-0.9, 0.6] 

PLSH 
1982-2013 

0.1 [0.03, 0.1] 0.4 [0.2, 0.6] 1.0 [0.6, 1.5] 1.4 [0.9, 1.9] 1.5 [0.9, 2.1] 0.9 [0.5, 1.5] 

 731 

 732 
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9. Figures 733 

 734 
Figure 1: Results of the out-of-sample test across five metrics of performance, (a) RMSE, (b) CORRELATION (c) SD difference , (d) 735 
Mean Absolute Deviation , and (e) Median Absolute Deviation. Box plots represent spread over 1000 different selections of out-736 
of-sample sites. Different clustering methods (yellow) include:  no clustering (NO.GROUPING; shown in magenta and horizontal 737 
dashed lines), by latitude (LATZONES), by continents (CONTINENTS), by seasons (SEASONS), by months (MONTHS), and by 738 
hemisphere (HEMISPHERE), the red text marks the median values. Performance comparison with each of the parent datasets is 739 
shown in purple. 740 

 741 
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  742 
Figure2: Box and whisker plots displaying the ratio 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒,
 , computed for each site using the clustering methods 743 

defined in Sect. 2.2.4. Labeling and colors are as in Fig. 1. Red text marks the value of the upper quantile (75%) and lower 744 
quantile (25%).  745 
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 746 
Figure 3: Latitudinal means of DOLCE V2 and its parent datasets computed over a common period 2003–2007. The grey ribbon 747 
represents the uncertainty standard deviation of DOLCE V2. The pink shaded areas represent latitudinal domains where some 748 
parent datasets have gaps in some parts of the land as shown in Table 1.  749 

 750 
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 751 
Figure 4: Spatial distribution of differences in ET mean between DOLCE V2 and each of its parent datasets and DOLCE V1. 752 

 753 
Figure 5: Taylor Diagram displaying two performance metrics i.e. correlation and standard deviation of DOLCE V2 relative to 754 
normalised observational data presented by a hollow point (reference point) at one unit on the x-axis. Pink points represent 755 
performance statistics scored at sites located on wetlands, flooded plain or intensively irrigated areas.  756 
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 757 
Figure 6: Spatial pattern of ET climate trends in DOLCE V2 over 1980 – 2018 as proposed by Mann-Kendall. Grid cells in white do 758 
not exhibit reliable trends as indicated by the implemented consistency measures.  759 

 760 

 761 
Figure 7: Annual average line plot for area weighted mean of continental ET. 762 
 763 
 764 

 765 

 766 
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 767 
Figure 8: Spatial distribution of ET regimes based on ET means and seasonal variations computed for 1980-2018. 768 
 769 

 770 
 771 
Figure 9: Trends in mean global annual ET total computed for the dry and wet ET regimes during 1980-2018. Slopes and 772 
confidence intervals (CI) are computed at the 95% significance level. 773 
 774 

 775 

 776 

 777 

 778 

 779 
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