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Abstract 10 

Evapotranspiration (ET) links the hydrological, energy, and carbon cycle on the land surface. Quantifying 11 
ET and its spatiotemporal changes is also key to understanding climate extremes such as droughts, 12 
heatwaves and flooding. Regional ET estimates require reliable observationally-based gridded ET 13 
datasets, and while many have been developed using physically-based, empirically-based and hybrid 14 
techniques, their efficacy, and particularly the efficacy of their uncertainty estimates, is difficult to 15 
verify. In this work, we extend the methodology used in Hobeichi et al. (2018) to derive two new 16 
versions of the Derived Optimal Linear Combination Evapotranspiration (DOLCE) product, with 17 
observationally constrained spatiotemporally varying uncertainty estimates, higher spatial resolution, 18 
more constituent products and extended temporal coverage (1980-2018). After demonstrating the 19 
efficacy of these uncertainty estimates out-of-sample, we derive novel ET climatology clusters for the 20 
land surface, based on the magnitude and variability of ET at each location on land. The new clusters 21 
include three wet and three dry regimes and provide an approximation of Köppen-Geiger climate 22 
classes. The verified uncertainty estimates and extended time period then allow us to examine the 23 
robustness of historical trends spatially and in each of these six ET climatology clusters. We find that 24 
despite robust decreasing ET trends in some regions, these do not correlate with behavioural ET 25 
clusters. Each cluster, and the majority of the Earth’s surface, show clear robust increases in ET over the 26 
recent historical period. The new datasets DOLCE V2.1 and DOLCE V3 can be used for benchmarking 27 
global ET estimates and for examining ET trends respectively.  28 

 29 

1. Introduction 30 

Understanding the spatiotemporal variability of evapotranspiration (ET) is a critical part of 31 
understanding the processes that lead to high impact weather phenomena, such as droughts (Han et al., 32 
2018; Montano et al., 2015; Sheffield et al., 2012; Teuling et al., 2013), heatwaves (Teuling, 2018; Ukkola 33 
et al., 2018) and flooding (Dawdy et al., 1972; Sharma et al., 2018). Several global gridded ET datasets 34 
have been developed, using physical schemes with different scopes (e.g. addressing key questions in 35 
ecology, hydrology, or other disciplines),  and complexity (see Fisher and Koven, 2020), and empirical 36 
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techniques including machine-learning algorithms, typically incorporating a range of remote sensing 37 
inputs (Hamed Alemohammad et al., 2017; Jung et al., 2010, 2019). Recently, ET datasets derived with a 38 
hybrid approach have been recognised for their potential to outperform single source datasets in 39 
reducing bias against tower-based eddy-covariance ET measurements (Ershadi et al., 2014; Feng et al., 40 
2016; Hobeichi et al., 2018; Jiménez et al., 2018; McCabe et al., 2016).  41 
 42 
While most observational products are global (or near global) in their spatial extent, and typically 43 
available with a monthly time step, different products are constrained by very different types of 44 
observations, and vary significantly in their treatment of uncertainty. As detailed below when describing 45 
the datasets we use here, ‘physically-based’ approaches use equations that represent different physical, 46 
chemical, and biological processes and incorporate satellite-based atmospheric forcing, and 47 
parameterization of land surface characteristics, while ‘empirical’ approaches integrate ground-based 48 
measurements of ET together with satellite data and ground-based measurements of vegetation 49 
characteristics and land surface parameters. These differences result in a diverse group of products and 50 
estimates, but it is their approach to deriving uncertainty estimates that is arguably more important.  51 
 52 
Very few datasets provide uncertainty estimates associated with the ET flux, these include datasets 53 
described in Bodesheim et al. (2018) and Jung et al. (2019). In Bodesheim et al. (2018), monthly 54 
uncertainty estimates are computed from the standard deviation of the half-hourly ET values that were 55 
used to derive monthly ET averages. Jung et al. (2019) provide an ensemble of global ET estimates, 56 
deviations from the ensemble median are used to derive ET uncertainties. In both cases, uncertainties 57 
do not reflect the actual deviation from the measured ET at site locations. Without well calibrated 58 
uncertainty estimates we are unable to tell whether an identified property of any given data set, such as 59 
a trend or a proportion of the surface energy or water budget, is robust, rather than a result of bias or 60 
stochastic uncertainty. 61 
 62 
ET trends computed from different approaches (i.e. physical and empirical) show general agreement at 63 
the global scale, and indicate that ET has increased since early 1980s (Miralles et al., 2014; Pan et al., 64 
2020; Zhang et al., 2016). However, different ET products exhibit considerable disparities in regional and 65 
continental ET trends. For instance, Miralles et al. (2014) detected upward ET trends in GLEAM (Global 66 
Land Evaporation Amsterdam Model; Miralles et al. 2011) in the northern latitudes caused by vegetation 67 
greening. In water limited regions, they found that ET is characterised by a multidecadal variability that 68 
follows ENSO dynamics, mainly in eastern and central Australia, southern Africa and eastern South 69 
America. In comparison, ET trends estimated from the observation-driven Penman-Monteith-Leuning 70 
(PML; Zhang et al. 2016) model show increasing ET since 1980 in the northern latitudes, arid regions in 71 
northern Africa, and northern and eastern Amazon. On the other hand, PML exhibits negative trends in 72 
southern South America and western United States. More recently, Pan et al. (2020) found that ET 73 
trends exhibited during 1982-2011 by a range of empirical and physically-based estimates disagree in 74 
the direction of trend in the Amazon basin and many arid and semi-arid regions. Without incorporating 75 
uncertainties in ET estimates in the analysis of trends, it becomes difficult to assess the reliability of the 76 
established trends. 77 
 78 
The gridded ET product derivation technique implemented by Hobeichi et al. (2018) offers the potential 79 
for robust out-of-sample testing of its uncertainty estimates, as well as several other advantages over 80 
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other techniques. Like other merging approaches, it offers the potential to minimise the eccentricities or 81 
biases of any one product, by averaging them (in this case using weights). However, unlike several other 82 
merging techniques (Mueller et al., 2013; Paca et al., 2019; Rodell et al., 2015; Stephens et al., 2012) it 83 
accounts for performance differences between parent estimates using in-situ data as the observational 84 
constraint, rather than assigning weights based on the ability to match another gridded dataset that is 85 
deemed more reliable, or the ensemble mean of a selection of datasets (Munier et al., 2014; Sahoo et 86 
al., 2011; Wan et al., 2015; Zhang et al., 2018). The efficacy of using in-situ measurements for 87 
constraining much larger scale gridded estimates has also been shown explicitly (Hobeichi et al., 2018, 88 
2020b). Next, most available merging techniques do not account for dependence between parent 89 
estimates, where redundant information in different parent products is likely to bias the hybrid estimate 90 
(Abramowitz et al., 2019; Herger et al., 2018). Finally, and perhaps most important for this work, the 91 
technique calculates global spatially and temporally varying uncertainty estimates that are 92 
observationally-based, in that they are based on the discrepancy between the hybrid ET estimate and in-93 
situ data. Aside from being more defensible than simply taking the spread of the parent products 94 
around their mean (e.g. Pan et al., 2012, Zhang et al., 2018), this approach also allows for out-of-sample 95 
testing, by leaving some sites out of the derivation of the hybrid product and its uncertainty, and then 96 
using them to test its accuracy.   97 
 98 
Despite these advantages, out-of-sample testing of uncertainty estimates was not explored by Hobeichi 99 
et al (2018), and the short temporal availability of the DOLCE product (2000 – 2009) limited its 100 
application, particularly in examining historical trends. While different subsets of parent products were 101 
used over different regions to expand the spatial coverage of DOLCE, the possibility of different product 102 
subsets in different time periods to extend its temporal reach was not explored. Additionally, since the 103 
development of DOLCE, four of its six parent datasets (Jung et al., 2010; Martens et al., 2016; Miralles et 104 
al., 2011; Mu et al., 2011; Zhang et al., 2016) have been improved and several new global ET datasets 105 
have been developed (Balsamo et al., 2015; Bodesheim et al., 2018; Jung et al., 2019). Most of these are 106 
available at a higher spatial resolution than the original 0.5° in DOLCE and cover different subsets of the 107 
period 1980 – 2018, with at least two available every year during this period (Table1).  108 
 109 
In this paper we amend these shortcomings and explore some of the insights that the new versions of 110 
DOLCE offer, in particular focusing on the temporal trends in ET in different regions, and the assessment 111 
of robustness of trends that well calibrated uncertainty estimates afford. Roughly in order, we detail 112 
below: (1) how we update the DOLCE product with new parent datasets and extend its temporal 113 
coverage; (2) how the improved products compare to their previous version and other existing ET 114 
estimates from the literature; (3) the efficacy of uncertainty estimates, in particular whether or not they 115 
are overconfident; (4) an exploration of historical trends in ET using the extended temporal coverage, 116 
and how the uncertainty estimates allow us to examine the robustness of these trends; and (5) 117 
behavioural ET clusters that describe ET based climate regimes, as a mean to understand the spatial 118 
distribution of trends we find.  119 
  120 
 121 

2. Data and Methods 122 
 123 
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To derive two new versions of DOLCE, one suitable for benchmarking ET dataset and another for trends 124 
analysis, we combine 11 and 4 available global gridded ET datasets respectively using the same merging 125 
technique as in DOLCE V1. This technique derives a linear combination of the participating ET datasets 126 
based on their ability to match in-situ observations while also accounting for their error dependency. 127 
While we acknowledge the obvious spatial mismatch between gridded and in-situ data, we refer readers 128 
to Hobeichi et al (2018) where it was shown that in-situ observations do contain useful information 129 
about grid scale fluxes, using out-of-sample testing in a similar framework to the one we present here.  130 
 131 
Our aim is to increase the time coverage and spatial resolution of DOLCE V1, as well as examine 132 
strategies to improve the effectiveness of the weighting strategy. Below we detail newly available global 133 
datasets that allow us to derive DOLCE V2 and DOLCE V3 at 0.25o spatial resolution, and an improved 134 
collection of in-situ constraining data. We then briefly revisit the weighting and uncertainty estimation 135 
approach, before describing our tiering approach to extending the temporal reach of DOLCE V2 and 136 
DOLCE V3. Finally, we examine alternative clustering and bias-correction approaches to improve the 137 
out-of-sample performance of the weighting technique. 138 
 139 
Throughout the paper, we use the two terms evapotranspiration (ET) and latent heat (LE) 140 
interchangeably, and the unit 𝑊𝑊 𝑚𝑚−2 for heat fluxes and 𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1 for the water flux equivalent. For 141 
reference: 1 𝑊𝑊 𝑚𝑚−2  = 12.86 𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1. As above, we refer to the product from Hobeichi et al (2018) 142 
as DOLCE V1 and the new products we are deriving as DOLCE V2 or DOLCE V2.1 and DOLCE V3. 143 
 144 
 145 
2.1 Data 146 

2.1.1 Global ET datasets: 147 

DOLCE V1 was derived from 6 global ET datasets: MPIBGC (Jung et al., 2010), GLEAM v2a, GLEAM v2b 148 
(Miralles et al., 2011), GLEAM v3a (Martens et al., 2016, 2017), MOD16 (Mu et al., 2011) and PML 149 
(Zhang et al., 2016). In DOLCE V2, we keep both MOD16 and PML datasets, substitute the GLEAM 150 
products with their improved versions GLEAM3.3A and GLEAM3.3B (Martens et al., 2016, 2017), and 151 
replace MPIBGC with newly developed empirical ET datasets from the Max Planck Institute for 152 
Biogeochemistry: BACI (Bodesheim et al., 2018) and two ET estimates from the FLUXCOM project (Jung 153 
et al., 2019). Additionally, we incorporate a recently published dataset ERA5-Land (Muñoz Sabater, 154 
2019) and three newly available ET datasets PLSH (Zhang et al., 2015), SEBS (Chen et al., 2019; Su, 2002) 155 
and SRB-GEWEX (Vinukollu et al., 2011). In comparison, DOLCE V3 was derived from 4 global ET 156 
datasets. These are: ERA5-Land, an ET dataset from the FLUXOM project, and the two latest versions of 157 
the GLEAM products, GLEAM V3.5A and GLEAM V3.5B. We provide a brief description of these datasets 158 
below, with URLs and download dates shown in supplementary Table S2.  159 

Biosphere Atmosphere Change Index (BACI; Bodesheim et al., 2018): The dataset is derived by upscaling 160 
diurnal cycles of ET and other land-Atmosphere fluxes from a large set of FLUXNET sites based on a 161 
random forest regression framework. It uses seasonal vegetation variables and indices from MODIS 162 
satellites, and meteorological data either measured at the flux tower sites or retrieved from the ERA-163 
Interim data. 164 
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ERA5-Land(Muñoz Sabater, 2019): A global land surface reanalysis dataset that has been developed by 165 
rerunning the land component of the ECMWF ERA5 climate reanalysis with a series of improvements 166 
(mainly higher temporal frequency and spatial resolution) that makes it more reliable for land 167 
applications. ERA5-Land is produced under a single simulation that uses adjusted atmospheric inputs from 168 
ERA5 atmospheric variables without being coupled to the atmospheric module of ERA5.  169 

FLUXCOM (Jung et al., 2019): An empirical upscaling of observations from 224 flux tower sites using 170 
machine learning methods. The full FLUXCOM product includes 63 global ET datasets that have been 171 
produced using two different setups, a remote sensing (RS) setup and a remote sensing + meteorological 172 
(MET) setup. The development of the global datasets incorporates 9 machine learning techniques, 4 global 173 
meteorological datasets (used only with the MET setup), 3 correction methods for energy imbalance at 174 
the flux tower sites and MODIS remote sensing input. In DOLCE V2, we include one dataset from each 175 
setup, that we refer to as FLUXCOM-RS (from the RS setup) and FLUXCOM-MET (from the MET setup). To 176 
choose the two datasets we analysed the pair-wise error correlations of all the products against in-situ 177 
flux tower and selected the two that had the lowest pair-wise error correlation (and so were deemed least 178 
dependent). In DOLCE V3, we include a dataset from the MET setup only. 179 

Process-based Land Surface Evapotranspiration/Heat Fluxes algorithm (PLSH; Zhang et al., 2015): 180 
Terrestrial ET is derived using an improved NDVI-based Penman-Monteith algorithm originally developed in 181 
(Zhang et al., 2010). ET is regulated by a set of geophysical data from GIMMS and Vegetation Index and 182 
Phenology  along with radiative data from World Climate Research Programme/Global Energy and 183 
Water-Cycle Experiment (WCRP/GEWEX) Surface Radiation Budget (SRB) and CERES along with other 184 
meteorological observations data from the NCEP/DOE AMIP-II Reanalysis (NCEP2; Kanamitsu et al., 185 
2002). 186 

Surface Energy Balance System  (SEBS; Chen et al., 2019; Su, 2002): ET estimates are produced with the 187 
revised Surface Energy Balance System (SEBS) algorithm in Chen et al. (2013; 2019). It uses 188 
meteorological observations, ground heat flux, net radiation and canopy measurements collected from 189 
flux tower sites, and NDVI and emissivity data from MODIS. 190 

Surface Radiation Budget (SRB)-GEWEX (Vinukollu et al., 2011): ET is estimated based on the Penman-191 
Monteith equation. Input data sets include remote sensing data from AVHRR and MODIS, 192 
meteorological data derived from the Variable Infiltration Capacity (VIC; Liang et al., 1994) land surface 193 
model forced by PGF and radiative data from the NASA Global Energy and Water Exchanges (GEWEX) 194 
Surface Radiation Budget Project (Stackhouse Jr et al., 2011). 195 
 196 
It is clear that different parent datasets share forcing, parameterisations, and physical and empirical 197 
assumptions. Therefore, they do not constitute entirely independent estimates. Furthermore, their error 198 
correlation (when compared with data from 254 sites – details on these below), which can be used as a 199 
measure of their dependence (Bishop and Abramowitz, 2013) is high (Fig. S2, correlation > 0.5), 200 
reinforcing the potential for benefit using a weighting approach that can account for this redundancy.  201 
 202 
Part of the high correlation is of course due to spatial heterogeneity and the scale mismatch between in-203 
situ and gridded datasets since individual site locations within a grid cell are likely biased with respect to 204 
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the (unknown) true grid cell averaged flux. While it might appear that a weighting approach that 205 
accounts for error correlations between parent datasets might be in danger of overfitting to error 206 
correlation resulting from spatial heterogeneity, we have two mechanisms that ensure this is not a 207 
concern for our final product. First, weights for each product are constructed over very large 208 
spatiotemporal domains, i.e. more than 13000 space-time records as described below, so that the 209 
(assumed stochastic) biases of individual sites relative to grid cell values are unlikely to influence weights 210 
over a large sample. In fact, representativeness of point-scale measurement for the grid scale does exist 211 
across all the flux tower sites as a whole, this has been verified by Hobeichi et al., (2018). Second, and 212 
more categorical, all results here are presented out-of-sample, so that any overfitting will degrade, 213 
rather than improve the results we present. More detail on this is presented below. 214 
 215 
Given that most of the parent datasets provide ET information at a 0.25° or finer spatial resolution 216 
(Table 1), it is possible to enhance the resolution of DOLCE from 0.5° to 0.25°. All the parent datasets are 217 
resampled from their original spatial resolution to a common 0.25° grid using the nearest-neighbour 218 
resampling method, and aggregated to monthly temporal scale before implementing the weighting 219 
technique. 220 
 221 
 222 
2.1.2 Flux tower data 223 

We use flux tower observations from a range of networks including Ameriflux (ameriflux.lbl.gov), the 224 
Atmospheric Radiation Measurement (ARM; arm.gov), AsiaFlux (asiaflux.net), European Fluxes Database 225 
(europe-fluxdata.eu), Fluxnet 2015, LaThuile Free Fair Use (fluxnet.fluxdata.org), Oak Ridge data 226 
repository (daac.ornl.gov), OzFlux (ozflux.org.au), and data acquired through communication with 227 
individual site principal investigators (PI). Particular efforts were made to establish connections with PIs 228 
in regions where ET observations are scarce, including all areas outside North America, Europe and 229 
Australia, particularly the MENA regions, Siberia, Central Africa and the Amazon basin. Our efforts and 230 
communications with many PIs unfortunately failed to incorporate flux data from some of these regions 231 
(excepting those that are already available from the cited networks). Before the quality control process 232 
detailed below, we had obtained data from 366 flux tower sites.  233 
 234 
The raw data consists of a composite of half hourly, daily and monthly records. We compute daily 235 
averages from half-hourly records for days where at least 80% of half-hourly LE records are available. 236 
Subsequently, we compute monthly averages from daily records for months where at least 80% of daily 237 
LE records are available. In DOLCE V1 we applied a less strict quality control on the observational data in 238 
which up to 50% of gap filling was allowed. The reason was that DOLCE V1 incorporated much fewer 239 
observational data – sourced from Fluxnet 2015 and LaThuile Free Fair use only. In order to retain 240 
enough observational data to constrain the weighting, it was necessary to make a trade-off between the 241 
quality and the quantity of the data.  242 
 243 
We also apply energy balance corrections to the monthly LE at all sites where monthly averages of the 244 
other variables of the surface energy budget - net radiation (𝑅𝑅𝑛𝑛), ground heat flux (𝐺𝐺), and sensible 245 
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heat flux (𝐻𝐻) - are available with the same high quality (quality flag > 80%). Corrections are carried out 246 
independently for every monthly record. Where any of the other components of the energy budgets are 247 
absent, latent heat measurements are used without any corrections. The energy balance correction is 248 
applied as a Bowen Ratio (BR) based correction that distributes the energy budget residuals among H 249 
and LE in such a way that their ratio is conserved. This is done under pre-defined constraints that 250 
disallow large changes to be applied to LE. As a result of this, we accept the BR correction and use the 251 
corrected LE (𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐) values if the original monthly LE and  𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 satisfy: 252 

 �
 𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐
𝐿𝐿𝐿𝐿

ϵ �1
2

–  2� ,                       𝑤𝑤ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝐿𝐿𝐿𝐿 ≤ 30 𝑊𝑊 𝑚𝑚−2

𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐿𝐿𝐿𝐿 ≤ 20 𝑊𝑊 𝑚𝑚−2,    𝑤𝑤ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝐿𝐿𝐿𝐿 ≥ 30 𝑊𝑊 𝑚𝑚−2 
 253 

In DOLCE V1, we did not set a threshold for LE adjustments, which resulted in LE being changed 254 
drastically in a few sites to offset errors in the other energy balance components. If the BR correction 255 
does not meet the above criterion, we reject the correction and try using a residual correction, which 256 
simply calculates LE as the residual term in the energy balance equation, i.e. 𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅n − 𝐻𝐻 − 𝐺𝐺 . 257 
Similarly, we reject the residual correction if the relation between LE and 𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 above is not satisfied. In 258 
this case, we use the original monthly LE values without correction. A simplified flowchart of these steps 259 
is displayed in Fig. S3 in the supplementary material. A study by Paca et al. (2019) examined the changes 260 
to flux tower LE by three means of correction, and found that these on average differ by around 20 Wm-261 
2 from one another. On this basis, we expect that typically, the correction of flux tower LE should not 262 
exceed 20 Wm-2, unless errors in other components of the budgets are propagating in the corrected ET. 263 
The rule for correcting small fluxes and the condition in which each rule is applied (i.e. LE= 30 Wm-2 ) 264 
are in part subjective and in another part based on a case by case assessment of changes induced to ET 265 
by the correction techniques, and achieve a reasonable trade-off between data quality and availability. 266 

In a further pre-processing step, if a site is located in close proximity to other sites such that they all sit 267 
on the same 0.25° grid-cell, we use observational data from the site that is more representative of the 268 
underlying grid-cell. Selecting the most representative site among these sites involves 1) identifying the 269 
biome cover at each site; 2) computing the fraction of the grid area covered by each biome; the most 270 
representative site is the one whose biome is more abundant in the underlying grid-cell (i.e. scores the 271 
highest fraction of the total area). If all sites are equally representative of the underlying grid-cell, we 272 
consider them as one site and we combine monthly LE from the sites by taking the average. We use the 273 
high resolution 300 m - land cover maps from the European Space Agency (ESA; http://www.esa.int/) 274 
downloaded from https://cds.climate.copernicus.eu/ to determine the biome types of neighbouring 275 
sites and the corresponding grid-cells. This step has ensured that we are not matching a grid-cell with 276 
inappropriate observational data. All the excluded sites are in Europe and North America. This filtering 277 
along with the quality control measures described earlier reduced the number of employed sites in this 278 
study from 366 sites to 260 sites (Fig. S1). Furthermore, we exclude 6 sites from the weighting, located 279 
on flooded land area, wetlands or intensively irrigated land. As a result of this, the constraining 280 
observational dataset used to derive DOLCE V2 includes 254 sites with a total of 13641 monthly records.   281 
 282 

http://www.esa.int/
https://cds.climate.copernicus.eu/
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2.2. Methods 283 

2.2.1 Weighting approach 284 

The weighting technique is the same as that used in DOLCE V1 and was originally presented by Bishop and 285 
Abramowitz (2013) and implemented for merging observational estimates by Hobeichi et al. (2018, 2019, 286 
2020a). It consists of building a linear combination, 𝜇𝜇, of the parent datasets that minimise 287 
∑ (𝜇𝜇 

𝑗𝑗 − 𝑦𝑦 
𝑗𝑗)2𝐽𝐽

𝑗𝑗=1 , where 𝑗𝑗 ∈ [1, 𝐽𝐽] are the monthly time-site records, 𝑦𝑦 
𝑗𝑗 is the observed ET at the  jth  time-288 

site record. The linear combination 𝜇𝜇 
𝑗𝑗 = ∑ 𝑤𝑤 𝑘𝑘𝑥𝑥 𝑘𝑘

𝑗𝑗K 
k=1  is subject to the constraint that  ∑ 𝑤𝑤𝑘𝑘 = 1𝐾𝐾

𝑘𝑘=1 , 289 

where 𝑘𝑘 ∈ [1,𝐾𝐾 ] represents the parent datasets and 𝑥𝑥k
j  is the value of the kth bias-corrected parent 290 

dataset (i.e. after subtracting its mean bias relative to the all-site observational dataset) corresponding to 291 
the jth time-site record. The analytical solution to this problem accounts for both the performance 292 
differences between the parent datasets and their error covariance (Fig. S2), a proxy for dependence. 293 
Further details on the merging technique can be found in Abramowitz and Bishop (2015) and Bishop and 294 
Abramowitz (2013). The weighting approach is used to combine the global parent datasets separately on 295 
different spatiotemporal subsets of the entire period and globe, using a tiered approach detailed in 296 
section 2.2.3. 297 
 298 
2.2.2 Computing uncertainty in ET  299 

The ensemble dependence transformation process developed by Bishop and Abramowitz (2013) is used 300 
to calculate the spatiotemporal uncertainty of DOLCE V2 and DOLCE V3. The process transforms the 301 
global parent datasets to a new ensemble so that the variance of the transformed ensemble about the 302 
derived hybrid ET estimate, 𝜇𝜇, is constrained to be equal to the error variance of 𝜇𝜇 with respect to the 303 

flux tower data, averaged over time and space (i.e. across all 𝐽𝐽 records). We use the spread �𝜎𝜎 
2  of the 304 

transformed ensemble as the spatially and temporally varying estimate of uncertainty standard 305 
deviation, which we will refer to as uncertainty. We refer the reader to Bishop and Abramowitz (2013) 306 
for the derivation of this approach, and Hobeichi et al (2018) for its implementation in this context. The 307 

spread �𝜎𝜎 
2  of the transformed ensemble accurately reflects the uncertainty of 𝜇𝜇 in those grid-cells 308 

where flux tower observations are available. This process ensures that the computed uncertainty 309 
provides a better uncertainty estimate of the hybrid ET than simply using the spread of the parent 310 
datasets. 311 
One additional advantage of defining uncertainty in this way is that it should give an accurate upper 312 
bound estimate of the likely discrepancy between the product and unseen ET measurements at a range 313 
of spatial scales. That is, since it is based on the discrepancy of the final hybrid product and point-based 314 
flux tower estimates, which are essentially at the extremes of spatial discrepancy, the discrepancy 315 
between DOLCE and actual ET at any spatial scale greater than that of a tower footprint and smaller 316 
than that of DOLCE should be less than this uncertainty estimate (noting however that this is the 317 
estimated standard deviation of uncertainty, rather than a hard upper limit). In Section 2.2.5 below, we 318 
detail the out-of-sample testing of this uncertainty estimate at the point scale. 319 
 320 
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2.2.3 Tiering of data set subsets in time and space to maximise coverage 321 

To derive DOLCE V1 over the global land, we applied spatial tiering (using different subsets of parent 322 
products in different regions to maximise spatial coverage). We now expand this approach to include 323 
temporal tiering to improve the temporal reach of DOLCE. Collectively, the incorporated parent datasets 324 
have a temporal cover over 1980 – 2018, but only a short common overlap during 2003-2007 in DOLCE 325 
V2, and during 2003 – 2016 in DOLCE V3, and their spatial intersection does not cover the global land. 326 
Therefore, to achieve a global land coverage from 1980 through 2018 without excluding any of their 327 
parent products, it was necessary to build DOLCE V2 and DOLCE V3 from different subsets of parent 328 
datasets in time periods and land regions depending on the availability of the parent datasets as shown 329 
in Table 1. To this end, we consider 14 and 4 distinct temporal tiers in DOLCE V2 and DOLCE V3 330 
respectively. For example, in DOLCE V2, tier 9 covers 2008 - 2012 and incorporates all datasets except 331 
SRB-GEWEX. Tier 1 incorporates the least parent datasets, for the year 1980 (i.e. FLUXCOM-MET and 332 
GLEAM3.3A), while tier 8 uses all the parent datasets and covers 2003 – 2007. Furthermore, within each 333 
temporal tier, we consider three spatial sub-tiers, with each spatial sub-tier covering a part of the land. 334 
These consist of (a) all land except Antarctica, Greenland and North Africa, (b) only Antarctica and 335 
Greenland, (c) only North Africa. A similar spatial tiering approach was also applied in DOLCE V1. Other 336 
spatial tiers, each consisting of a small number of grid cells were also considered where necessary to 337 
ensure that no grid cell in DOLCE V2 or DOLCE V3 is missing ET data if a single parent is missing ET data 338 
for that grid cell. As a result of the tiering approach, weighting is computed separately using a different 339 
subset of parent data sets and site data in each tier, resulting in distinct spatiotemporal subsets of the 340 
entire period. Collectively, the hybrid estimates developed throughout the temporal tiers and their spatial 341 
sub-tiers form DOLCE V2 and DOLCE V3 over the global land throughout 1980 – 2018. The reduced number 342 
of temporal tiers in DOLCE V3 is to ensure that no temporal discontinuities occur throughout the covered 343 
period, which otherwise would have reduced the suitability of DOLCE V3 for trend analysis. In comparison, 344 
the incorporation of a larger ensemble of parent products in DOLCE V2 is to derive an optimal ET product 345 
that minimises discrepancy with in-situ observations.  346 
 347 
2.2.4 Weighting groups 348 

Previous studies have found that the performance of a global product can vary with different climatic 349 
circumstances, suggesting that separating the weighting into separate regions or other groupings might 350 
well improve the results of the weighting overall (Ershadi et al., 2014; Hobeichi et al., 2018; Michel et al., 351 
2016). Grouped weighting simply involves dividing the time and/or space covered by a particular tier 352 
into different subsets or groups (e.g., with different climatic conditions), and then applying the 353 
weighting technique separately for each group (within a single tier). We expect that grouped weighting 354 
has the potential to improve weighting by accounting for the variation in performance of the parent 355 
datasets over different climate or land conditions and can hopefully improve biases detected in DOLCE 356 
V1. Hobeichi et al. (2018) tried to group flux tower sites based on their land cover type and computed 357 
weights for each land cover type. However, this approach did not improve the results, whether grouping 358 
by climate zone or aridity index, with the main reason being attributed to the small number of sites in 359 
many groups. Despite the availability of 100 additional sites to constrain the weighting  here compared 360 
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to Hobeichi et al., (2018), the ratio of the observational data to the number of parents has not improved 361 
across several climate or land cover types for DOLCE V2. We therefore investigate new approaches to 362 
grouped weighting that allow sufficiently low group numbers to keep a reasonable sample size in each 363 
of them,  including: 364 

• Grouping by latitudinal zone: this is a simplification of grouping by climate type in which 365 
climates are aggregated into three latitudinal zones: (i) high latitudes (±60° poleward), (ii) mid-366 
latitudes (±60° towards the subtropics ±40°), and (iii) tropics and sub-tropics (between -40° and 367 
40°). In each zone we apply a separate weighting using the corresponding group of sites. 368 

• Grouping by continents: Sites are naturally separated by continental boundaries and we might 369 
suspect that a particular ET product performs differently across continents. For instance, 370 
precipitation is involved in the derivation of many of the parent datasets, and has been found  371 
to have different fidelity over different continents (Hobeichi et al., 2020b). 372 

• Grouping by hemisphere: Pan et al. (2020) found that ET estimates agree more in the Northern 373 
hemisphere than in the Southern hemisphere. Therefore, performing separate weighting in each 374 
hemisphere could be better than weighting across all global land.  375 

• Grouping by seasons: Several studies have shown that the skill of ET datasets vary by seasons  376 
(Jiménez et al., 2018; Long et al., 2014; Mueller et al., 2011). To capture these differences, we 377 
implement grouping by seasons, and grouping by month (detailed below). We consider two 378 
combined seasons i.e., summer-fall and winter-spring. In the summer-fall season, we constrain 379 
the weighting with (1) monthly observations from sites located in the Northern hemisphere 380 
during the period June–November, and (2) monthly observations from sites located in the 381 
Southern hemispheres during the period December–May. The remaining observational data is 382 
used to constrain the weighting during the winter-spring combined season. 383 

• Grouping by months: This is similar to grouping by seasons, the only difference is that the two 384 
groups are June–November and December–May, without accounting for the different seasonal 385 
phase between hemispheres.  386 

• Grouping by ET regime and months: Land was classified into three distinct broad ET regimes (Fig. 387 
S4) according to two aspects of ET, mean annual total ET and within-year relative variability 388 
throughout 1980 – 2018, derived from GLEAM V3.5a, and using K-means unsupervised 389 
classification (MacQueen, 1967). We explain the classification method further in section 3.5.2. 390 
Different sets of weights were computed at each ET regime during June–November and 391 
December–May. Implementing weighting this way ensured that we account for performance 392 
differences across different physical aspects of the land and seasons. Despite that observational 393 
data was divided into six distinct groups, the observational data available in each group was still 394 
appropriate to merge the four parent datasets of DOLCE V3. However, we found this grouped 395 
weighting strategy not appropriate for merging 11 parent datasets of DOLCE V2.  396 

 397 
As an alternative to the grouping strategies, we also investigate if deriving a spatially varying bias 398 
correction within each tier could further improve the weighting. We describe the examined bias 399 
correction approaches and their effectiveness in the Supplementary Material. 400 
 401 
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2.2.5 Out-of-sample testing approach 402 
 403 
To test the effectiveness of different weighting groups or bias-correction approaches, and assess which 404 
strategy offers the best performance, we use out-of-sample tests. To do this, we first divide the flux 405 
tower sites between the in-sample and out-of-sample groups by randomly selecting 25% of the sites as 406 
out of sample. The remaining sites form the in-sample training set are used to compute bias correction 407 
terms and weights for the parent datasets in each tier using the weighting technique without weighting 408 
groups (as adopted in DOLCE V1), and with each of the groups and bias correction strategies detailed in 409 
section 2.2.5 and S4 (supplementary material). In each case, these bias correction terms and weights are 410 
then applied to the parent datasets and compared to the out-of-sample sites to test efficacy of the 411 
clustering or bias correction approach employed. The process is repeated for each grouping or bias 412 
correction strategy to derive several hybrid ET datasets for each out of sample group of sites. 413 
 414 
For each strategy, the test was repeated 1000 times with a different random selection of sites being out 415 
of sample. The performance of each hybrid ET estimate was evaluated across five statistical metrics. 416 
These were root mean squared error (RMSE), absolute standard deviation difference |𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −417 
𝜎𝜎𝑐𝑐𝑜𝑜𝑑𝑑𝑑𝑑𝑐𝑐𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜𝑐𝑐𝑛𝑛|, correlation, mean absolute deviation (i.e. mean(|dataset – observation|)) and median 418 
absolute deviation (i.e. median(|dataset – observation|)). DOLCE V1 has not been included in this test 419 
because its coarser spatial resolution (i.e. 0.5°) excludes many coastal sites and so significantly reduces 420 
the observational data we could use in this analysis. The out-of-sample test is carried out over the 421 
common period of availability of all the parent datasets i.e. 2003 – 2007 and 2003 – 2016 to enable 422 
comparison of the out-of-sample performance of each approach with all of the 11 and 4 parent datasets 423 
of DOLCE V2 and DOLCE V3 respectively.   424 
 425 
We perform another out-of-sample experiment to test if the uncertainty estimate derived by the 426 
successful grouping/bias correction strategy performs well out of sample. In this test, we first select a 427 
site S, but instead of constraining the weighting using observed ET from this site, we compute the 428 
weights and bias correction terms of the parent datasets by using all the sites except S (i.e. just one site 429 
is out of sample). We then calculate the MSE of the derived hybrid ET against observations from all the 430 
sites except S. We denote this value by uncertaintyin−sample, since it represents the uncertainty 431 
estimate computed using the same observational dataset that we used to train the weighting. We also 432 
calculate the MSE of the hybrid ET against the out-of-sample observations from S, and we denote this as 433 
uncertaintyout−sample, since we perform the comparison against ET observations that have not been 434 
used to train the weighting. We repeat this test for all the sites, and each time we calculate the ratio 435 
uncertaintyin−sample

uncertaintyout−sample,
. In an ideal case, this ratio should equal to unity. 436 

 437 
 438 

3. Results and Discussion 439 
 440 
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3.1 Out-of-Sample Performance of DOLCE V2 and DOLCE V3 441 

We derive DOLCE V2.1 (Hobeichi, 2020) from 11 parent datasets by applying a grouped weighting by 442 
months. As detailed in the Supplementary material (section S5), this approach achieves slightly better 443 
out-of-sample performance than the other grouped weighting approaches in estimating ET (Fig. S6) and 444 
in deriving more robust uncertainty estimates (Fig. S7). We recall that in grouped weighting by months, 445 
the observational and gridded ET data are split into two groups, one covering the period June – 446 
November and the other covering December – May. Weighting and bias correction is then implemented 447 
in each group separately for each tier to create the subsets from which the hybrid ET product is derived.  448 

We derive DOLCE V3 (Hobeichi, 2021) from 4 parent datasets by applying a grouped weighting by ET 449 
regimes and months. Both DOLCE V3 and DOLCE V2.1 outperform their parent datasets in the out-of-450 
sample tests across all performance metrics (Fig. S6 and Fig. S8). DOLCE V2.1 performs better than 451 
DOLCE V3 across all performance metrics except Standard deviation difference as illustrated in Fig. S8. 452 
The overall better performance of DOLCE V2.1 is expected given that more ET estimates contributing to 453 
the weighting. On the other hand, DOLCE V2.1 has proven worse performance than DOLCE V3 in 454 
capturing variation in ET observations since variability in ET should have decreased when the variations 455 
in individual products are not temporally coincident. 456 
 457 

3.2 Comparison of DOLCE V2 and DOLCE V3 with their parent datasets 458 

Figure 1 displays the latitudinal means of each of DOLCE V2 and DOLCE V3 and their parent datasets 459 
computed over a common spatial mask and common periods of 2003 – 2007 and 2003 – 2016 in the 460 
case of DOLCE V2 and DOLCE V3 respectively.  The grey ribbon represents the uncertainty of DOLCE V2 461 
and DOLCE V3 in Fig. 1a and Fig. 1b respectively, defined by the ± uncertainty standard deviation 462 
interval. The uncertainty standard deviation of the two DOLCE products mostly contain the latitudinal 463 
variations of their parent datasets with the exception of FLUXCOM-RS which exhibits larger ET over the 464 
tropics and subtropics of the southern hemisphere relative to DOLCE V2 (Fig. 1b). This containment 465 
should not be surprising since uncertainty estimates should be robust for point-scale estimates. Figure 466 
1a shows that DOLCE V1 exhibits a slightly lower ET than DOLCE V2 in the tropics and sub-tropics. DOLCE 467 
V2 appears in the lower end of the range of the other datasets from 60° poleward. All the datasets 468 
exhibit considerable disparities over the mid-latitude south of -50°, where the contribution of the 469 
terrestrial ET comes mostly from the lower Andes. The difference between DOLCE V2 and DOLCE V3 is 470 
smallest over the mid latitudes of the Northern hemisphere where most of the flux tower sites are 471 
located, and is largest over the tropics where very few observations are available. Also, both the number 472 
and the spread of parent datasets is larger in DOLCE V2 which explains its larger uncertainty compared 473 
to DOLCE V3. The parent datasets of DOLCE V3 are in general in the upper range of ET across all the 474 
different participating products, which also explains why DOLCE V3 exhibits larger ET than DOLCE V2 475 
throughout the land and mostly over the tropics. 476 
 477 
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Figure 2 shows the spatial distribution of differences in the ET mean between DOLCE V2 and each of its 478 
parent datasets. We apply different spatiotemporal masks for each comparison based on parent dataset 479 
coverage (Table 1). We also compute the climatological difference of DOLCE V2 with its predecessor 480 
DOLCE V1 over 2000 – 2009. A similar plot showing the spatial distribution of differences in the ET mean 481 
between DOLCE V3 and each of its parent datasets is provided in Fig. S9. Fig. S9 shows that DOLCE V3 482 
exhibits higher ET than DOLCE V2.1 and DOLCE V1 over most of the land, particularly over the tropics 483 
and the high latitudes. On the other hand, the climatological difference between DOLCE V3 and its 484 
parent datasets show different spatial patterns, and the least climatological difference is between 485 
DOLCE V3 and GLEAM V3.5B.  486 
 487 
Over the temperate regions of the northern hemisphere, DOLCE V2 exhibits lower mean ET than all its 488 
parents except SEBS. We have computed the mean bias of all these datasets relative to the 489 
observational data available from sites located in these temperate latitudes. DOLCE V2 has a negligible 490 
bias of 0.2 𝑊𝑊 𝑚𝑚−2  relative to the observational data. This bias results from a positive bias of 0.4 𝑊𝑊 𝑚𝑚−2 491 
during June – November and a negative bias of -0.2 𝑊𝑊 𝑚𝑚−2 during December–May. All the parent 492 
datasets except SEBS exhibit a positive bias that ranges between 2.7 and 11.4  𝑊𝑊 𝑚𝑚−2 and SEBS has a 493 
negative mean bias of -3.4 𝑊𝑊 𝑚𝑚−2, that varies between -0.2 𝑊𝑊𝑚𝑚−2  during December – May and -6.3 494 
𝑊𝑊𝑚𝑚−2 during June – November.  We note that the bias relative to the in-situ observational datasets is 495 
only indicative of the performance of the gridded datasets at the sites and do not necessarily represent 496 
the actual mean bias over these regions. The discrepancy between DOLCE V2 and DOLCE V1 is relatively 497 
small across all land.   498 
 499 
Large differences between DOLCE V2 and FLUXCOM-RS are seen over the Congo and the Amazon basins, 500 
southern Africa, and the Brazilian highlands. The mean climatological bias of FLUXCOM-RS relative to 501 
observational data from these regions is 30 𝑊𝑊 𝑚𝑚−2.  This large bias likely results from the lack of 502 
sufficient data available to train the machine learning algorithm over climatically distinct biomes, which 503 
made ET prediction less constrained. This bias did not appear in FLUXCOM-MET possibly because ET 504 
prediction is based on a larger set of predictor variables. DOLCE V2 exhibits a relatively small bias 505 
ranging between 2.6 𝑊𝑊 𝑚𝑚−2 during June–November and 6.4 𝑊𝑊 𝑚𝑚−2 during December–May. In 506 
comparison, DOLCE V3 exhibits no significant bias during June–November and a bias of 12.2 𝑊𝑊 𝑚𝑚−2 507 
during December–May  which is similar to the bias in GLEAM V3.5B over these latitudes and seasons, 508 
and is less than the bias in the remaining parent datasets (i.e. GLEAM V3.5A, FLUXCOM-MET, and ERA5 509 
In general, there are apparent disparities in the patterns of climatological differences in the tropics 510 
across all the maps. This results from the fact that global ET datasets exhibit large differences over the 511 
tropics which has been highlighted previously (Paca et al., 2019; Pan et al., 2020), particularly over the 512 
Amazon basin.  513 
 514 

3.3 Comparison of basin and continental ET with existing literature 515 

We now compare DOLCE V2 and DOLCE V3 with annual mean ET aggregates over a range of river basins 516 
documented in a recent study (Table 4 of Zhang et al., 2018). ET in this study - which we’ll refer to as 517 
CDR-ET- is derived by merging 10 available ET datasets into a hybrid ET which then receives corrections, 518 
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so that the surface water budget - established by derived hybrid estimates of the other hydrological 519 
variables -  is closed. Table 2 displays the mean annual ET aggregates in 𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1 across 20 river 520 
basins calculated for DOLCE V2, DOLCE V3 and CDR-ET over the common period 1984 – 2010. Our 521 
results show that there is an overall agreement between DOLCE V2 and CDR-ET across all the non-522 
Siberian rivers where the difference in ET estimates is mostly around 10%. The agreement worsens over 523 
the Arctic basins Indigirka, Kolyma, Lena, Northern Dvina, Yenisei and particularly over Olenik and 524 
Pechora where the differences in ET estimates exceed 20%. Previous studies have reported large 525 
uncertainties in the water fluxes over the Siberian basins (Lorenz et al., 2015) most likely due to the 526 
absence of a proper representation of snow and permafrost dynamics (Candogan Yossef et al., 2012). 527 
Interestingly, over the north American arctic basins Mackenzie and Yukon, DOLCE V2 and CDR-ET exhibit 528 
much smaller relative differences than at their Siberian counterparts. DOLCE V3 exhibits higher ET than 529 
DOLCE V2 and CDR-ET across the majority of the river basins, and particularly over the Arctic basins. 530 
DOLCE V3 is within the range of its recently developed parent datasets which exhibit higher ET than the 531 
old generation products such as SRB-GEWEX and SEBS incorporated in DOLCE V2.  532 
 533 
We also compare DOLCE V2 and DOLCE V3 with continental annual means of ET shown by L’Ecuyer et al. 534 
(2015). In their study, they derive a hybrid ET by merging three global datasets. Then, they adjust the 535 
hybrid ET and its associated uncertainty by enforcing the physical constraints of the surface and 536 
atmospheric water and energy budgets using a data assimilation technique (DAT). Our results show that 537 
DOLCE V2 has smaller ET with larger associated uncertainties compared to those derived in L’Ecuyer et 538 
al. (2015) (Table 3). The range of their ET estimate overlaps with the range of DOLCE V2 and DOLCE V3 539 
throughout all continents. In L’Ecuyer et al. (2015), the uncertainty estimates are originally taken from 540 
the literature and are deemed constant across time and space, then these are reduced by the DAT. The 541 
uncertainty estimate of DOLCE, however, is firmly grounded in the discrepancy between the gridded 542 
DOLCE product and in-situ tower data. The variance of this discrepancy is used to recalibrate the 543 
variance of the parent datasets, which are then used to estimate uncertainty, allowing spatiotemporally 544 
varying uncertainty estimate that is both consistent with the discrepancy between DOLCE and surface 545 
observations while at the same time being spatially and temporally complete. This process is detailed by 546 
Hobeichi et al (2018). 547 
 548 
Finally, we compare DOLCE V2 with the ET component of Conserving Land Atmosphere Synthesis Suite  549 
(CLASS; Hobeichi, 2019; Hobeichi et al., 2020a) which we denote as CLASS-ET. CLASS dataset comprises 550 
coherent estimates of the surface water and energy budgets at the gridded monthly scale. CLASS-ET has 551 
been derived by adjusting DOLCE V1 by enforcing the simultaneous closure of the surface water and 552 
energy budgets using the same DAT as in  L’Ecuyer et al. (2015), and can be therefore considered an 553 
improved version of DOLCE V1. Table S3 displays the continental area weighted averages of DOLCE V2, 554 
DOLCE V1 and CLASS-ET and the mean differences DOLCE V2 – DOLCE V1 and DOLCE V2 – CLASS 555 
computed over a common time period 2003-2009, and using a common spatial mask.  We find that, in 556 
general, DOLCE-V2 is closer to CLASS-ET (i.e. the improved version of DOLCE V1), than DOLCE V1. 557 
 558 

3.4 Performance of DOLCE V2 at flux sites 559 

We now compare DOLCE V2 with ET measured at the 260 sites used in this study (Table S1). We display 560 
two performance metrics - correlation and standard deviation - on a Taylor Diagram (Fig. 3). All data has 561 
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been normalised before computing the statistical metrics so that the observational data at each site has 562 
a mean of zero and a standard deviation of 1. Each coloured point summarises the performance 563 
statistics of DOLCE V2 at a single site. The observational data is represented by a single “reference” 564 
point i.e., the hollow point at one on the horizontal axis. The plot in Fig. 3 shows that most of the 565 
coloured points lie close to the reference point, indicating that DOLCE V2 is highly correlated with most 566 
of the observational data. Overall, Fig. 3 shows good agreement with the observational datasets. Poor 567 
performance is seen over a small number of sites. These are represented by points located outside the 568 
Taylor diagram area. Most of these sites have less than one year of monthly records with several gaps, 569 
perhaps raising questions about observational quality. 570 
In a further analysis, we investigate whether the performance of DOLCE V2 is reduced over a particular 571 
land cover type. For this purpose, we repeat Fig. 3, but this time we colour-code the statistics points by 572 
the land cover type of the sites they represent as shown in Fig. S10. The new plot does not reveal clear 573 
links between the performance of DOLCE V2 and the biome types of the sites. Similarly, we could not 574 
find performance links with the degree of representativeness of the site to the underlying grid-cell. This 575 
is shown in Fig. S11 where colours represent the degree of agreement between the land cover type at 576 
the footprint of the tower site and the dominant land cover of the grid-cell containing the site. As shown 577 
in Fig. S11, we carry out this analysis on the basis of three levels of agreement. These include blue points 578 
representing sites whose land types match the dominant land types of the underlying grid-cells; green 579 
points representing sites whose land types cover more than 25% of the underlying grid-cells without 580 
being the dominant land cover at these grid-cells; and pink points representing sites whose land types 581 
covers less than 25% of the underlying grid-cells. 582 
 583 
 584 

3.5 Changes in ET since 1980 585 

3.5.1 Annual ET trends over the global land 586 

We use DOLCE V3 to produce a long-term (1980 – 2018) map of trends in annual ET totals (Fig. 4) as 587 
proposed by Mann-Kendall (Kendall, 1948; Mann, 1945) using the Sen’s slope method (Sen, 1968). We 588 
use the uncertainty estimates associated with the ET fields and the confidence interval of the slope as 589 
two confidence measures to filter out spurious trends. These confidence measures consider trends’ 590 
behaviour as reliable only if (i) the confidence interval of the slope does not encompasses a mix of 591 
negative and positive values; and (ii) trends’ slopes computed for multiple different random samples of 592 
ET within the interval ET ± uncertainty standard eviation agree in sign at least 90% of the time.  593 

Unreliable trends occur in regions where ET uncertainty is relatively high, such as in north Africa and 594 
Sahel, and in the high latitudes where ET observations are sparse or do not exist. Inconsistent trend 595 
behaviour (CI includes positive and negative values) is found in regions that experienced long phases of 596 
droughts and non-droughts during 1980-2018, mainly in Australia, or a succession of drought and wet 597 
events, mainly in southern United States and the Amazons basin (Marengo et al., 2018). As a result of 598 
this, a general long trend in ET is not identified in these regions. Miralles et al. (2014) report that these 599 
changes in ET over these regions reflect El-Niño-La-Niña cycle.  Similarly, we have not detected clear 600 
long trends in southern South America and eastern and southern Africa. This partially agrees with the 601 
study of Pan et al. (2020) where their figure 8 shows no  ET trend in eastern Africa, and no agreement on 602 
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the sign of trend between the participating datasets has been found in southern South America. Figure 4 603 
indicates that ET has increased over most of the northern latitudes which has been highlighted in many 604 
studies (e.g. Miralles et al. 2014; Pan et al. 2020; Zhang et al. 2016), and declined in western United 605 
States, central Africa and South Amercia. Unfortunately, given the absence of adequate in-situ 606 
observations that cover a long enough period to establish trends analysis, it is difficult to validate the 607 
identified trends directly. 608 

In further analysis, we verify that the spatiotemporal tiering adopted in DOLCE V3 has not resulted in 609 
temporal discontinuities. Figure 5 illustrates the annual average line plot of the area weighted mean of 610 
continental ET exhibited by DOLCE V3. The vertical dashed lines mark the beginning of a new tier, i.e. in 611 
1981, 2003 and 2017. While the line plot does shows some marked changes, these do not coincide with 612 
changes in tiers, and rather coincide with extreme events, and are specific to the continents where 613 
these events occurred. For instance, in Australia, ET shows high mean annual total in three very wet 614 
years 2000, 2010 and 2011, and low levels throughout 2001 – 2009 during the millennium drought. 615 
Additionally, the decline in ET since 2017 is caused by severe droughts that developed across most of 616 
Australia. 617 
 618 
3.5.2 ET regimes 619 

To understand changes in ET across wet and dry regions, we classify land into 6 distinct dry and wet ET 620 
regimes according to two aspects of ET: annual averages and within-year relative variability derived 621 
from DOLCE V3. We apply K-means clustering (MacQueen, 1967) - an unsupervised machine learning 622 
algorithm known for its outstanding efficiency in clustering data – by implementing the K-Means 623 
function and the least squares quantisation method (Lloyd, 1982) using R software.  K-Means identifies K 624 
centroids (i.e. imaginary values representing the centre of the clusters) and assigns each data point to 625 
the cluster of the nearest centroid using – in this paper - the least squares quantisation method. For 626 
each grid cell, we compute 1) the average of the annual total ET across 39 years (1980-2018); and 2) 627 
within-year relative variability climatology by temporally averaging the relative standard deviation of 628 
monthly ET calculated over a year and across all years. These have been used as input features for the 629 
unsupervised classification. After trial and error, we find that the global land can be adequately 630 
classified into six distinct regimes that include three dry and three wet regimes. According to centroids 631 
values (Table S4), we label the six regimes from driest to wettest and we list the proportion of the land 632 
covered by each regime : (i) very low ET with high variability (16%), (ii) low ET with high variability (34%), 633 
(iii) mild low ET with medium variability (22%), (iv) mild high ET with medium variability (13%), (v) high 634 
ET with low variability (8%), and (vi) very high ET with low variability (7%). Figure 6 displays the spatial 635 
distribution of the 6 ET regimes. 636 

We compare the derived ET regimes map with the modified Köppen climate (KC) classification map by 637 
Chen and Chen (2013). We find that each KC class overlaps with only one ET regime with only two 638 
exceptions (Table 4): i) Land characterised by a ‘Dry Steppe Hot arid’ (coded BSh in KC)  climate belongs 639 
the ‘Mild low ET with medium variablity regime’, but in two regions, the Indian Deccan plateau and 640 
Argentinean Gran Chaco low forests, where the climate is BSh, the ET regime is ‘Mild high ET with 641 
medium variability’; ii) Regions with a ‘Mild temperate Fully humid Hot summer’ climate (coded Cfa in 642 
KC) overlaps with the ‘Mild high ET with medium variability’ regime in coastal regions, and to the ‘Very 643 
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high ET with low variability’ regime in inland regions. These two KC classes (i.e. BSh and Cfa) are shown 644 
in bold in Table 4. Overall, ET-regimes defined in this paper provide an efficient way to aggregate the KC 645 
classes in less varied classes. This is not surprising knowing that KC classes are developed based on the 646 
empirical relationship between climate and vegetation, and that ET links the water, energy (climate) and 647 
carbon (vegetation) budgets. 648 
 649 
3.5.3 Global annual trends across the ET regimes 650 

We now explore annual trends in mean ET exhibited in each ET regime during 1980-2018. First, we 651 
calculate the annual ET total climatology and ET relative variability climatology spatially averaged across 652 
each regime separately, then we compute the trends in yearly ET as above (i.e. using Mann-Kendall and 653 
the Sen’s slope methods). Figure 7 illustrates trends’ results for the dry regimes ( V.L.ET, H.variability, 654 
L.ET, H.variability and M.L.ET, M.Variability) and the wet regimes (M.H.ET, M.variability, H.ET, 655 
L.variability and V.H.ET, L.variability). Across all regimes except the wettest one, trends in yearly ET total 656 
are upward as indicated by the positive signs of both the slopes and their complete confidence intervals. 657 
The strongest trends occur in the  ‘M.H.ET, M.variability’ regime at a rate 0.6 𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1, while the 658 
slowest trend occurs in the ‘V.L.ET H.variability’ regime where ET is in general low. In the wettest ET 659 
regime ‘V.H. ET, L. variability’, while the slope of the trend is positive, its confidence interval contains 660 
mixed positive and negative values. This suggest that the tendency for increasing ET in the wettest ET 661 
regime is not robust. Our results indicate that decreasing ET trends observed in some regions oppose 662 
the consistent positive trends across the majority of ET clusters. 663 

We repeat the same analysis for all the participating parent datasets that span at least 30 years. Sen’s 664 
slope of the trends over the period 1982 – 2012 and their confidence interval (computed at the 95% 665 
confidence level) are presented in Table 5. As noted earlier, trends’ behaviour is deemed inconclusive 666 
when the CI encompasses negative and positive values. These are presented with regular (as opposed to 667 
bold) typeface and are exhibited by FLUXCOM-MET in all regimes except the driest. In contrast, PLSH 668 
shows reliable upward trends in all regimes. ERA5-land shows downward trends in the ‘M.H.ET, 669 
M.variability’ and ‘H.ET, L.variability’ regimes.  Both GLEAM 3.5A and DOLCE V3 show reliable upward ET 670 
trends in the two middle regimes. Differences exist in the magnitude of trends across the majority the 671 
products and the regimes. In DOCLE V3, the strongest trend occur in the ‘M.H.ET, M.variability’ regime 672 
at a rate 0.56 𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1. Finally, the slopes of DOLCE V3 trends are within the range of slopes of 673 
trends in available ET products. 674 
 675 
There are of course some notable limitations to the approach we have taken here, some of which were 676 
previously discussed in Hobeichi et al. (2018). First, the weighting approach adopted here relies heavily 677 
on flux tower observations, which can suffer from a range of technical issues (Burba and Anderson, 678 
2010; Fratini et al., 2019), as well as temporal gaps during particular weather conditions such as 679 
extremes (Van Der Horst et al., 2019), which can affect our results. Next, unresolved land surface 680 
processes in the parent datasets due for example to the absence of a proper representation of snow and 681 
permafrost dynamics, or the heterogeneity of the land surface are likely to lead to uncertain ET 682 
estimation in DOLCE V2 and DOLCE V3, since each of these is only a combination of its parent datasets. 683 
This applies particularly in regions where observations are scarce or do not exist.   684 
 685 
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 686 

4. Conclusions 687 

This work presents two new hybrid ET datasets DOLCE V2.1 and DOLCE V3. The new datasets are the 688 
result of several key improvements over their predecessor, incorporating more parent products in 689 
DOLCE V2.1, more in-situ data, testing a range of alternative implementations of its weighting and bias 690 
correction approach, increased spatial resolution, and covering a longer time period. The incorporation 691 
of a large ensemble of parent datasets in DOLCE V2.1 allowed us to derive a more optimal ET product 692 
that can be used to benchmark global ET estimates. In comparison, the reduced number of parent 693 
datasets in DOLCE V3 minimised temporal tiering and ensured that no temporal discontinuities occur 694 
throughout the covered period. This allowed us to examine historical trends in ET and their robustness 695 
to observational uncertainty. Despite the observationally constrained approach to defining uncertainty, 696 
we found robust ET trends across most areas of the land surface, enough to present a clear signal in 697 
most of the ET climate regimes we examined. These trends indicate a global increase in land derived ET 698 
between 1980 and 2018. This contrasts with other gridded ET products that did not incorporate the 699 
same degree of observational constraint in either their mean field or uncertainty estimates, and 700 
demonstrates the usefulness of this long-term hybrid ET dataset. 701 

 702 

5. Data Availability 703 
 704 
DOLCE V2.1 dataset (Hobeichi, 2020) is publicly available in NetCDF-4 format and can be freely 705 
downloaded from the NCI data catalogue at http://dx.doi.org/10.25914/5f1664837ef06. 706 
 707 
DOLCE V3 dataset (Hobeichi, 2021)  is publicly available in NetCDF-4 format and can be freely 708 
downloaded from the NCI data catalogue at https://doi.org/10.25914/606e9120c5ebe. 709 
 710 
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8. Tables 736 
 737 
Table 1: Spatial and temporal coverage and original resolution of the global ET datasets (at the time of analysis) used to develop 738 
DOLCE V2.1 and DOLCE V3. DOLCE V2.1 was derived from 11 datasets and 14 temporal tiers. DOLCE V3 was derived from 4 739 
datasets and 4 temporal tiers i.e. (1) 1980, (2) 1981 – 2002, (3) 2003 – 2016, (4) 2017 - 2018 . 740 
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 V2.1 V2.1 
V3 

V2.1 
V3 (1980-

2016) 

V2.1 
 

V2.1 
V3 (GLEAMV3.5A & 

B) 
 

V2.1 V2.1 V2.1 V2.1 V2.1 

Tier Excluded 
Land 
domain 

Antarctica 
Greenland 

North 
Africa 

 Antarctica 
Greenland 

North 
Africa 

Antarctica 
Greenland 

North 
Africa 

  Antarctica 
Greenland 

North 
Africa 

Antarctica 
Greenland 
 

   

 Original 
resolution 

0.5° 
half 

hourly 

0.1° 
hourly 

1°
12

 

monthly 
1°
12

 

monthly 
0.25° 

monthly 
0.25° 

monthly 
0.05° 

monthly 
0.5° 

monthly 
1°
12

 

monthly 
0.05° 

monthly 
0.1° 
3-

hourly 
1 1980   •  •       
2 1981  • •  •   •    
3 1982 – 

1983 
 • •  •   • •   

4 1984 – 
1999 

 • •  •   • •  • 

5 2000 
1,2&3 

 • •  •  • • •  • 

6 2000 
(4 – 12) 

 • •  •  • • • • • 

7 2001 – 
2002 

• • • • •  • • • • • 

8 2003 – 
2007 

• • • • • • • • • • • 

9 2008 – 
2012 

• • • • • • • • • •  

10 2013 • • • • • • •  • •  
11 2014 • • • • • • •   •  
12 2015  •  • • • •   •  
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13 2016 –  
2017 (1 
– 6) 

 •   • •    •  

14 2017 
(7 – 12) 
– 2018  

 •   • •      

 741 
Table 2: Mean annual ET aggregates in 𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1 across 20 river basins calculated for DOLCE V2, DOLCE V3 and CDR-ET 742 
(Table 4 of Zhang et al., 2018) over a common period 1984 – 2010. CDR-ET is derived by merging 10 available ET datasets into a 743 
hybrid ET which then receives corrections, so that the surface water budget established by derived hybrid estimates of the other 744 
hydrological variables is closed. 745 
 746 

Basin CDR-ET 
1984 – 2010 

DOLCE V2 
1984 – 2010 

DOLCE V3 
1984 – 2010 

Amazon 1153 1167 1314 
Amur 295 309 421 

Columbia 331 340 436 

Congo 1045 1084 1160 

Danube 503 451 550 

Indigirka 138 107  231 

Indus 277 323 365 

Kolyma 167 132  243 

Lena 245 185  283 

Mackenzie 241 214 333 

Mississippi 577 513 555 

Murray-Darling 411 419  445 

Niger 401 456  427 

Northern Dvina 324 232  376 

Ob 323 245  357 

Olenek 174 108 237 

Paraná 892 854 856 

Pechora 244 166 276 

Yenisei 265 216 325 

Yukon 175 158 261 

 747 
Table 3: Annual continental averages of ET   (𝑊𝑊 𝑚𝑚−2) and its standard deviation uncertainty calculated for DOLCE V2, DOLCE V3 748 
and developed in (L’Ecuyer et al., 2015) over a common period 2000 – 2009. In (L’Ecuyer et al., 2015), ET is derived by merging 749 
three global datasets, and then adjusted by enforcing the physical constraints of the surface and atmospheric water and energy 750 
budgets. 751 

continent 
ET± uncertainty 

(L’Ecuyer et al., 2015) 
 

ET± uncertainty 
DOLCE V2  

ET± uncertainty 
DOLCE V3 
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Africa 45 ± 3 40 ± 17 39 ± 13 
Australia  27 ± 3 28 ± 16 28 ± 13 
Eurasia 33 ± 3 30 ± 13 34 ± 13 
North 

America 33 ± 6 28 ± 12 32 ± 12 

South 
America 77 ± 4 73 ± 23 76 ± 19 

 752 

Table 4: correspondence between ET-regimes derived here and Köppen climate classes derived in (Chen and Chen, 2013. Text in 753 
bold fontface indicates that the Köppen climate is associated with more than one ET regime. 754 
 755 

ET regimes Köppen climate classes (Chen and Chen, 2013) 
Very low ET with high 
variability  

Polar (Tundra/Frost)  
Dry Desert (Hot/Cold) arid 

Low ET with high variability  Snow Fully humid Cold summer/Cool summer 
Snow Dry summer Cool summer  
Snow Dry winter Cold summer 
Dry Steppe Cold arid  
Dry Desert Hot arid/Cold arid  
Mild temperate Dry summer Cool summer 
Mild temperate Dry summer Warm summer 

Mild low ET with medium 
variability  

Snow Fully humid (Hot/Warm summer) 
Snow Dry winter (Hot/Warm/Summer) 
Dry Steppe Hot arid 
Mild temperate Dry summer Hot summer 
Mild temperate Fully humid Warm summer 

Mild high ET with medium 
variability  

Dry Steppe Hot arid (observed only in the Indian Deccan plateau and 
Argentinean Gran Chaco low forests) 
Mild temperate Fully humid Hot summer (observed in inland regions) 
Mild temperate Dry winter (Hot/Warm summer) 
Tropical Dry summer 

High ET with low variability  Mild temperate Fully humid Hot summer/Warm summer (observed in coastal 
regions) 
Tropical Dry winter 

Very high ET with low 
variability  

Tropical Fully humid 
Topical Monsoon 

 756 
Table 5: Trends in yearly ET total (mm year-1) spatially averaged across each ET regime calculated for DOLCE V3 and five 757 
participating parent datasets available during 1982 – 2012. The text shows slopes of the trend line and their confidence interval 758 
calculated at the 95% confidence level, bold text indicates that the trend is reliable since the confidence interval is strictly 759 
positive or negative.  760 
 761 
Dataset and 
time span 

V.L.ET, 
H.variability 

L.ET, 
H.variability 

M.L.ET, 
M.variability 

M.H.ET, 
M.variability 

H.ET, 
L.variability 

V.H.ET, 
L.variability 

DOLCE V3 
 

-0.04 [-0.23, 0.16] 0.26 [-0.11, 0.63] 0.44 [0.1, 0.76] 0.56 [0.2, 0.87] 0.07 [-0.27, 0.4] 0.34 [-0.1, 0.9] 

ERA5-land 
 

-0.18 [-0.36, 0.04] 0.02 [-0.42, 0.47] 0.14 [-0.38, 0.6] -0.65 [-1.14, -0.22] -0.89 [-1.28, -0.51] 0.11 [-0.2, 0.5] 

FLUXCOM-
MET 

-0.02 [-0.04, 0] 0.04 [-0.11, 0.23] 0.05 [-0.07, 0.2] -0.11 [-0.27, 0.04] -0.003 [-0.18, 0.17] 0.25 [-0.04, 0.57] 
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GLEAM 3.5A -0.08 [-0.28, 0.16] 0.35 [-0.04, 0.76] 0.59 [0.34, 0.95] 0.43 [0.1, 0.77] 0.05 [-0.33, 0.44] 0.62 [0.12, 1.31] 

PML -0.1 [-0.28, 0.15] 0.42 [0.11, 0.75] 1 [0.64, 1.45] 0.21 [-0.19, 0.64] 0.28 [-0.38, 0.81] -0.32 [-1.24, 0.62] 

PLSH 0.17 [0.1, 0.24] 0.39 [0.16, 0.66] 1.3 [0.8, 1.77] 1.41 [0.85, 1.89] 1.53 [0.75, 2.17] 0.82 [0.36, 1.35] 

 762 
 763 

9. Figures 764 
 765 

 766 
Figure 1: (a) Latitudinal means of DOLCE V2 and its parent datasets computed over a common period 2003–2007, and a 767 
common spatial mask. (b) Latitudinal means of DOLCE V3 and its parent datasets computed over a common period 2003–2016, 768 
and common spatial mask. The grey ribbon represents the values of DOLCE ± uncertainty. DOLCE V1 and DOLCE V2 are included 769 
in (a) and (b) respectively for comparison. FLUXCOM-METa and FLUXCOM-METb are two different datasets from the FLUXCOM-770 
MET setup.  771 

 772 
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 773 

 774 
Figure 2: Spatial distribution of differences in ET climatology between DOLCE V2 and each of its parent datasets and DOLCE V1. 775 
Different spatiotemporal masks are applied for each comparison based on the spatiotemporal coverage of DOLCE V2 and the 776 
other datasets.  777 

 778 
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Figure 3: Taylor Diagram displaying two performance metrics i.e. correlation and standard deviation of DOLCE V2 relative to 779 
normalised observational data presented by a hollow point (reference point) at one unit on the x-axis. Pink points represent 780 
performance statistics scored at sites located on wetlands, flooded plain or intensively irrigated areas.  781 

 782 

 783 
Figure 4: Spatial pattern of ET climate trends in DOLCE V3 over 1980 – 2018 derived using Mann-Kendall and Sen’s slope 784 
methods. Grid cells in white correspond to unreliable ET trends because (i) the confidence interval of the slope encompasses a 785 
mix of negative and positive values; or (ii) trends’ slopes computed for multiple different random samples of ET within the 786 
interval ET ± uncertainty do not agree in sign. 787 

 788 
 789 
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 790 
Figure 5:  Annual average line plot of the area weighted mean of continental ET exhibited by DOLCE V3. The vertical dashed lines 791 
mark the beginning of a new tier in 1981, 2003 and 2017 792 
 793 

 794 
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 795 
Figure 6: Classification of the land into 6 distinct dry and wet ET regimes using K-means unsupervised classification based on 796 
DOLCE V3 annual ET mean and within-year relative variability both computed for 1980-2018. The six ET regimes are labelled 797 
from driest to wettest as very low ET with high variability (V.L.ET, H. variability), (ii) low ET with high variability (L.ET, H. 798 
variability) , (iii) mild low ET with medium variability (M.L.ET, M. variability), (iv) mild high ET with medium variability (M.H.ET, 799 
M. variability), (v) high ET with low variability (H.ET, L. variability), and (vi) very high ET with low variability (V.H.ET, L. 800 
variability). 801 
 802 

 803 
 804 
Figure 7: Trends in mean annual ET total computed for the dry and wet ET regimes during 1980-2018. Slopes and confidence 805 
intervals are computed using Mann-Kendall and the Sen’s slope methods. The spatial distribution of the ET regimes is illustrated 806 
in Fig. 6. 807 
 808 
 809 

10. References 810 
Abramowitz, G. and Bishop, C. H.: Climate model dependence and the ensemble dependence 811 
transformation of CMIP projections, J. Clim., 28(6), 2332–2348, doi:10.1175/JCLI-D-14-00364.1, 2015. 812 



27 
 

Abramowitz, G. ., Herger, N., Gutmann, Ethan; Hammerling, D. and Knutti, Reto; Leduc, Martin; Lorenz, 813 
Ruth; Pincus, Robert; Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate 814 
ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam, 10(1), 91–105, 815 
doi:10.5194/esd-10-91-2019, 2019. 816 
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-817 
Sabater, J., Pappenberger, F., De Rosnay, P., Stockdale, T. and Vitart, F.: ERA-Interim/Land: a global land 818 
surface reanalysis data set, Hydrol. Earth Syst. Sci, 19, 389–407, doi:10.5194/hess-19-389-2015, 2015. 819 
Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate Earth paradigm, Clim. 820 
Dyn., 41(3–4), 885–900, doi:10.1007/s00382-012-1610-y, 2013. 821 
Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D. and Reichstein, M.: Upscaled diurnal cycles of land-822 
Atmosphere fluxes: A new global half-hourly data product, Earth Syst. Sci. Data, 10(3), 1327–1365, 823 
doi:10.5194/essd-10-1327-2018, 2018. 824 
Burba, G. B. P. G. to E. C. F. M. P. and W. E. for S. and I. A. and Anderson, D.: A Brief Practical Guide to 825 
Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial 826 
Applications, LI-COR Biosciences., 2010. 827 
Candogan Yossef, N., Van Beek, L. P. H., Kwadijk, J. C. J. and Bierkens, M. F. P.: Assessment of the 828 
potential forecasting skill of a global hydrological model in reproducing the occurrence of monthly flow 829 
extremes, Hydrol. Earth Syst. Sci., 16(11), 4233–4246, doi:10.5194/hess-16-4233-2012, 2012. 830 
Chen, D. and Chen, H. W.: Using the Köppen classification to quantify climate variation and change: An 831 
example for 1901–2010, Environ. Dev., 6, 69–79, 2013. 832 
Chen, X., Su, Z., Ma, Y., Yang, K., Wen, J. and Zhang, Y.: An improvement of roughness height 833 
parameterization of the Surface Energy Balance System (SEBS) over the Tibetan plateau, J. Appl. 834 
Meteorol. Climatol., 52(3), 607–622, doi:10.1175/JAMC-D-12-056.1, 2013. 835 
Chen, X., Massman, W. J. and Su, Z.: A column canopy-air turbulent diffusion method for different 836 
canopy structures, J. Geophys. Res. Atmos., 124(2), 488–506, 2019. 837 
Dawdy, D. R., Lichty, R. W. and Bergmann, J. M.: A rainfall-runoff simulation model for estimation of 838 
flood peaks for small drainage basins, US Government Printing Office., 1972. 839 
Erfanian, A., Wang, G. and Fomenko, L.: Unprecedented drought over tropical South America in 2016: 840 
Significantly under-predicted by tropical SST, Sci. Rep., 7(1), doi:10.1038/s41598-017-05373-2, 2017. 841 
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W. and Wood, E. F.: Multi-site evaluation of 842 
terrestrial evaporation models using FLUXNET data, Agric. For. Meteorol., 187, 46–61, 843 
doi:10.1016/j.agrformet.2013.11.008, 2014. 844 
Feng, F., Li, X., Yao, Y., Liang, S., Chen, J., Zhao, X., Jia, K., Pintér, K. and McCaughey, J. H.: An Empirical 845 
Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, 846 
Meteorological and Satellite Observations, PLoS One, 11(7), e0160150, 847 
doi:10.1371/journal.pone.0160150, 2016. 848 
Fisher, R. A. and Koven, C. D.: Perspectives on the future of Land Surface Models and the challenges of 849 
representing complex terrestrial systems, J. Adv. Model. Earth Syst., 12, 1–24, 850 
doi:10.1029/2018ms001453, 2020. 851 
Fratini, G., Sabbatini, S., Ediger, K., Riensche, B., Burba, G., Nicolini, G., Vitale, D. and Papale, D.: 852 
Characterization of Eddy Covariance flux errors due to data synchronization issues during data 853 
acquisition, in Geophysical Research Abstracts, vol. 21., 2019. 854 
Hamed Alemohammad, S., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, 855 
C. and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically 856 



28 
 

based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced 857 
fluorescence, Biogeosciences, 14(18), 4101–4124, doi:10.5194/bg-14-4101-2017, 2017. 858 
Han, D., Wang, G., Liu, T., Xue, B.-L., Kuczera, G. and Xu, X.: Hydroclimatic response of 859 
evapotranspiration partitioning to prolonged droughts in semiarid grassland, J. Hydrol., 563, 766–777, 860 
2018. 861 
Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K. and Sanderson, B. M.: Selecting a climate 862 
model subset to optimise key ensemble properties, Earth Syst. Dyn., 9(1), 135–151, doi:10.5194/esd-9-863 
135-2018, 2018. 864 
Hobeichi, S.: Conserving Land-Atmosphere Synthesis Suite (CLASS) v 1.1, , doi:10.25914/5c872258dc183, 865 
2019. 866 
Hobeichi, S.: Derived Optimal Linear Combination Evapotranspiration - DOLCE v2.1, , 867 
doi:10.25914/5f1664837ef06, 2020. 868 
Hobeichi, S., Abramowitz, G., Evans, J. and Ukkola, A.: Derived Optimal Linear Combination 869 
Evapotranspiration (DOLCE): A global gridded synthesis et estimate, Hydrol. Earth Syst. Sci., 22(2), 1317–870 
1336, doi:10.5194/hess-22-1317-2018, 2018. 871 
Hobeichi, S., Abramowitz, G., Evans, J. and Beck, H. E.: Linear Optimal Runoff Aggregate (LORA): A global 872 
gridded synthesis runoff product, Hydrol. Earth Syst. Sci., 23, 851–870, doi:10.5194/hess-23-851-2019, 873 
2019. 874 
Hobeichi, S., Abramowitz, G. and Evans, J. P.: Conserving Land – Atmosphere Synthesis Suite ( CLASS ), J. 875 
Clim., 33, 1821–1844, doi:10.1175/JCLI-D-19-0036.1, 2020a. 876 
Hobeichi, S., Abramowitz, G., Contractor, S. and Evans, J.: Evaluating precipitation datasets using surface 877 
water and energy budget closure, J. Hydrometeorol., 989–1009, doi:10.1175/jhm-d-19-0255.1, 2020b. 878 
Van Der Horst, S. V. J., Pitman, A. J., De Kauwe, M. G., Ukkola, A., Abramowitz, G. and Isaac, P.: How 879 
representative are FLUXNET measurements of surface fluxes during temperature extremes?, 880 
Biogeosciences, 16(8), 1829–1844, doi:10.5194/bg-16-1829-2019, 2019. 881 
Jiménez, C., Martens, B., Miralles, D. M., Fisher, J. B., Beck, H. E. and Fernández-prieto, D.: Exploring the 882 
merging of the global land evaporation WACMOS-ET products based on local tower measurements, 883 
Hydrol. Earth Syst. Sci, 22, 4513–4533, doi:https://doi.org/10.5194/hess-22-4513-2018, 2018. 884 
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., 885 
Chen, J., De Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., 886 
Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., 887 
Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S. and Zhang, K.: Recent 888 
decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467(7318), 889 
951–954, doi:10.1038/nature09396, 2010. 890 
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Gustau-Camps-Valls, Papale, D., Schwalm, C., 891 
Tramontana, G. and Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere energy fluxes, , 892 
6:74, 1–14, doi:10.1038/s41597-019-0076-8, 2019. 893 
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M. and Potter, G. L.: NCEP-DOE 894 
AMIP-II Reanalysis (R-2), Bull. Am. Meteorol. Soc., 83(11), 1631–1644, doi:10.1175/BAMS-83-11-1631, 895 
2002. 896 
Kendall, M. G.: Rank correlation methods., 1948. 897 
L’Ecuyer, T. S., Beaudoing, H. K., Rodell, M., Olson, W., Lin, B., Kato, S., Clayson, C. A., Wood, E., 898 
Sheffield, J., Adler, R., Huffman, G., Bosilovich, M., Gu, G., Robertson, F., Houser, P. R., Chambers, D., 899 
Famiglietti, J. S., Fetzer, E., Liu, W. T., Gao, X., Schlosser, C. A., Clark, E., Lettenmaier, D. P. and Hilburn, 900 



29 
 

K.: The observed state of the energy budget in the early twenty-first century, J. Clim., 28(21), 8319–901 
8346, doi:10.1175/JCLI-D-14-00556.1, 2015. 902 
Liang, X., Lettenmaier, D. P., Wood, E. F. and Burges, S. J.: A simple hydrologically based model of land 903 
surface water and energy fluxes for general circulation models, J. Geophys. Res. Atmos., 99(D7), 14415--904 
14428, doi:10.1029/94JD00483, 1994. 905 
Lloyd, S.: Least squares quantization in PCM, IEEE Trans. Inf. theory, 28(2), 129–137, 1982. 906 
Long, D., Longuevergne, L. and Scanlon, B. R.: Uncertainty in evapotranspiration fromland 907 
surfacemodeling, remote sensing, and GRACE satellites, Water Resour. Res., 50(2), 1131–1151, 908 
doi:10.1002/2013WR014581.Received, 2014. 909 
Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N. and Kunstmann, H.: Basin-scale runoff prediction: An 910 
Ensemble Kalman Filter framework based on global hydrometeorological data sets, Water Resour. Res., 911 
51, 8450–8475, doi:10.1002/2014WR016794, 2015. 912 
MacQueen, J.: Some methods for classification and analysis of multivariate observations, in Proceedings 913 
of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, pp. 281–297, Oakland, 914 
CA, USA., 1967. 915 
Mann, H. B.: Nonparametric tests against trend, Econom. J. Econom. Soc., 245–259, 1945. 916 
Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., Alves, L. M. and Soares, 917 
W. R.: Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and 918 
Trends, Front. Earth Sci., 6, doi:10.3389/feart.2018.00228, 2018. 919 
Martens, B., Miralles, D., Lievens, H., Van Der Schalie, R., De Jeu, R., Fernández-Prieto, D. and Verhoest, 920 
N.: GLEAM v3: updated land evaporation and root-zone soil moisture datasets, Geophys. Res. Abstr. EGU 921 
Gen. Assem., 18, 2016–4253, 2016. 922 
Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, 923 
H. E., Dorigo, W. A. and Verhoest, N. E. C.: GLEAM v3: Satellite-based land evaporation and root-zone 924 
soil moisture, Geosci. Model Dev., 10(5), 1903–1925, doi:10.5194/gmd-10-1903-2017, 2017. 925 
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux 926 
project: Evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. 927 
Model Dev., 9, 283–305, doi:10.5194/gmd-9-283-2016, 2016. 928 
Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., McCabe, M. F., 929 
Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project 930 
Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms, Hydrol. 931 
Earth Syst. Sci., 20(2), 803–822, doi:10.5194/hess-20-803-2016, 2016. 932 
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A. and Dolman, A. J.: 933 
Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 934 
15(2), 453–469, doi:10.5194/hess-15-453-2011, 2011a. 935 
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H. and Dolman, A. J.: Magnitude and variability 936 
of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15(3), 967–981, 937 
doi:10.5194/hess-15-967-2011, 2011b. 938 
Miralles, D. G., Van Den Berg, M. J., Gash, J. H., Parinussa, R. M., De Jeu, R. A. M., Beck, H. E., Holmes, T. 939 
R. H., Jiménez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J., & Johannes Dolman, A. (2014). El Niño-940 
La Niña cycle and recent trends in continental evaporation. In Nature Climate Change (Vol. 4, Issue 2, pp. 941 
122–126). https://doi.org/10.1038/nclimate2068. 942 
Montano, B. Q., Westerberg, I., Wetterhall, F., Hidalgo, H. G. and Halldin, S.: Characterising droughts in 943 
Central America with uncertain hydro-meteorological data, in 2015 AGU Fall Meeting, AGU., 2015. 944 



30 
 

Mu, Q., Zhao, M. and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration 945 
algorithm, Remote Sens. Environ., 115(8), 1781–1800, doi:10.1016/j.rse.2011.02.019, 2011. 946 
Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., 947 
Fisher, J. B., Guo, Z., Jung, M., Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M., 948 
Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F. and Zhang, Y.: Evaluation of global observations-based 949 
evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38(6), 3–10, 950 
doi:10.1029/2010GL046230, 2011. 951 
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., 952 
Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. 953 
F., Zhang, Y. and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL 954 
multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, doi:10.5194/hess-17-3707-2013, 2013. 955 
Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P. and Pan, M.: Combining 956 
datasets of satellite retrieved products for basin-scale water balance study. Part II: Evaluation on the 957 
Mississippi Basin and closure correction model, J. Geophys. Res. Atmos., 119, 12,100-12,116, 958 
doi:10.1002/2014JD021953, 2014. 959 
Paca, V. H. da M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira, D. M., Comair, G. F. and Bastiaanssen, 960 
W. G. M.: The spatial variability of actual evapotranspiration across the Amazon River Basin based on 961 
remote sensing products validated with flux towers, Ecol. Process., 8(1), doi:10.1186/s13717-019-0158-962 
8, 2019. 963 
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., 964 
Lienert, S., Lombardozzi, D., Ottle, C., Poulter, B. and Zaehle, S.: Evaluation of global terrestrial 965 
evapotranspiration by state-of-the-art approaches in remote sensing, machine learning, and land 966 
surface models, Hydrol. Earth Syst. Sci., 24, 1485–1509, doi:10.5194/hess-24-1485-2020, 2020. 967 
Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., 968 
Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., 969 
Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield, J. and Wood, E. 970 
F.: The observed state of the water cycle in the early twenty-first century, J. Clim., 28, 8289–8318, 971 
doi:10.1175/JCLI-D-14-00555.1, 2015. 972 
Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J. and Wood, E. F.: Reconciling the global 973 
terrestrial water budget using satellite remote sensing, Remote Sens. Environ., 115, 1850–1865, 974 
doi:10.1016/j.rse.2011.03.009, 2011. 975 
Sen, P. K.: Estimates of the regression coefficient based on Kendall’s tau, J. Am. Stat. Assoc., 63(324), 976 
1379–1389, 1968. 977 
Sharma, A., Wasko, C. and Lettenmaier, D. P.: If precipitation extremes are increasing, why aren’t 978 
floods?, Water Resour. Res., 54(11), 8545–8551, 2018. 979 
Sheffield, J., Wood, E. F. and Roderick, M. L.: Little change in global drought over the past 60 years, 980 
Nature, 491(7424), 435–438, doi:10.1038/nature11575, 2012. 981 
Stackhouse Jr, P. W., Gupta, S. K., Cox, S. J., Zhang, T., Mikovitz, J. C. and Hinkelman, L. M.: 24.5-Year 982 
surface radiation budget data set released, Glob. Energy Water Cycle Exp. News, 21(1), 1–20, 2011. 983 
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., L’Ecuyer, T., Stackhouse, P. W., Lebsock, 984 
M. and Andrews, T.: An update on Earth’s energy balance in light of the latest global observations, Nat. 985 
Geosci., 5, 691–696, doi:10.1038/ngeo1580, 2012. 986 
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth 987 
Syst. Sci., 6(1), 85–100, doi:10.5194/hess-6-85-2002, 2002. 988 



31 
 

Teuling, A. J.: A hot future for European droughts, Nat. Clim. Chang., 8(5), 364–365, 2018. 989 
Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., 990 
Grünwald, T., Prasse, H. and Spank, U.: Evapotranspiration amplifies European summer drought, 991 
Geophys. Res. Lett., 40(10), 2071–2075, 2013. 992 
Ukkola, A. M., Pitman, A. J., Donat, M. G., De Kauwe, M. G. and Angélil, O.: Evaluating the Contribution 993 
of Land-Atmosphere Coupling to Heat Extremes in CMIP5 Models, Geophys. Res. Lett., 45(17), 9003–994 
9012, doi:10.1029/2018GL079102, 2018. 995 
Vinukollu, R. K., Wood, E. F., Ferguson, C. R. and Fisher, J. B.: Global estimates of evapotranspiration for 996 
climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, 997 
Remote Sens. Environ., 115, 801–823, doi:10.1016/j.rse.2010.11.006, 2011. 998 
Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y. and J. Gourley, J.: Water balance-based actual 999 
evapotranspiration reconstruction fromground and satellite observations over the conterminous United 1000 
States Zhanming, Water Resour. Res., 51, 6485–6499, doi:10.1002/2015WR017311, 2015. 1001 
Zhang, K., Kimball, J. S., Nemani, R. R. and Running, S. W.: A continuous satellite-derived global record of 1002 
land surface evapotranspiration from 1983 to 2006, Water Resour. Res., 46(9), 1003 
doi:10.1029/2009WR008800, 2010. 1004 
Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J. and Yu, Z.: Vegetation 1005 
Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration, Sci. Rep., 1006 
5(June), 1–9, doi:10.1038/srep15956, 2015. 1007 
Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., 1008 
Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its 1009 
components, Sci. Rep., 6, 19124, doi:10.1038/srep19124, 2016. 1010 
Zhang, Y., Pan, M., Sheffield, J., Siemann, A. L., Fisher, C. K., Liang, M., Beck, H. E., Wanders, N., 1011 
Maccracken, R. F., Houser, P. R., Zhou, T., Lettenmaier, D. P., Pinker, R. T., Bytheway, J., Kummerow, C. 1012 
D. and Wood, E. F.: A Climate Data Record (CDR) for the global terrestrial water, Earth Syst. Sci, 22(1), 1013 
241–263, doi:10.5194/hess-22-241-2018, 2018. 1014 
 1015 
 1016 


	Abstract
	1. Introduction
	2. Data and Methods
	2.1 Data
	2.1.1 Global ET datasets:
	2.1.2 Flux tower data

	2.2. Methods
	2.2.1 Weighting approach
	2.2.2 Computing uncertainty in ET
	2.2.3 Tiering of data set subsets in time and space to maximise coverage
	2.2.4 Weighting groups
	2.2.5 Out-of-sample testing approach


	3. Results and Discussion
	3.1 Out-of-Sample Performance of DOLCE V2 and DOLCE V3
	3.2 Comparison of DOLCE V2 and DOLCE V3 with their parent datasets
	3.3 Comparison of basin and continental ET with existing literature
	3.4 Performance of DOLCE V2 at flux sites
	3.5 Changes in ET since 1980
	3.5.1 Annual ET trends over the global land
	3.5.2 ET regimes
	3.5.3 Global annual trends across the ET regimes


	4. Conclusions
	5. Data Availability
	6. Competing interests.
	7. Acknowledgment
	8. Tables
	9. Figures
	10. References

