
This MS attempts to derive a DF for global river basins using a large sample (n=11793) 

using state-of-the-art ML techniques. I welcome this effort and consider that that the 

HESS readership will do so too. Three reviewers have provided numerous comments 

that need to be addressed by the Authors in the revised manuscript. There are many 

comments regarding the notation, Methodology and the statistics that are not clear. In 

my opinion there are major shortcomings that need to be addressed before this MS is 

accepted in HESS: 

Dear Luis, 

 

We thank you for the constructive suggestions. We have carefully replied to all 

comments as follows and revised them in the manuscript in blue-coloured text. We hope 

that these responses and revisions meet your expectations. 

 

Best wishes, 

Gang Zhao, Paul Bates, Jeff Neal and Bo Pang 

 

1. The authors should put in the appendix all statistical test that are standard, e.g., Mann-

Kendall test and any test that has been already published. Writing once again text-book 

equations only adds bulk to the MS but not insight. Same for K-means et. If need, write 

all tests in an appendix for reference. Table 3 to appendix. The same with Anderson-

Darling (AD) test. 

 

Reply: Thanks. We put all statistical tests and Table 3 in the Appendices.  

 

2. I am missing the coefficients of the potential models for the regionalization of the 

design floods (DF) in eq. 25 and their confidence intervals. See how we reported in 

Samaniego and Bárdossy, 2005 JoH (SB2005).  

Reply: Thanks for your kind comments and references. In this research, the Power-form 

function (PF) is regarded as a benchmark model. We have not listed coefficients of PF 



in the manuscript mainly because it showed much worst performance (RMSNE >1) 

than the machine learning models. This reveals the coefficients of PF cannot accurately 

describe the contribution of factors to the result. We have added a more detailed 

description of this point in Section 4.1. 

In this regard too, how did you select the optimal number of predictors? Which methods 

was used? Are the number of predictors the same for all regions? How the parameters 

(\beta_i) vary from region-to-region? Is the change significative? 

Reply: Sorry for the unclear description here. Before model development, we analysed 

the correlation of all factors. According to the criteria proposed by Evans (1996), no 

factor pairs show a strong correlation (Pearson’s correlation coefficient > 0.6). This 

reveals no factor is replicated with others.  

Table R1 correlation analysis of all factors 
 

CA SL AP PS AT TR CN DC LF PD LA LO 

CA 1.00  -0.15  -0.12  0.24  0.07  0.08  0.03  0.02  0.15  -0.13  -0.09  -0.02  

SL -0.15  1.00  0.17  0.01  -0.29  -0.27  -0.30  0.01  -0.07  -0.13  0.06  -0.02  

AP -0.12  0.17  1.00  0.00  0.39  -0.48  -0.01  0.02  -0.05  0.08  -0.27  0.13  

PS 0.24  0.01  0.00  1.00  0.39  -0.23  0.22  0.02  -0.03  -0.01  -0.36  0.08  

AT 0.07  -0.29  0.39  0.39  1.00  -0.57  0.50  0.00  -0.26  0.15  -0.70  0.27  

TR 0.08  -0.27  -0.48  -0.23  -0.57  1.00  -0.12  0.02  0.20  -0.07  0.56  -0.42  

CN 0.03  -0.30  -0.01  0.22  0.50  -0.12  1.00  -0.01  -0.32  0.16  -0.29  -0.03  

DC 0.02  0.01  0.02  0.02  0.00  0.02  -0.01  1.00  0.13  0.00  0.00  -0.02  

LF 0.15  -0.07  -0.05  -0.03  -0.26  0.20  -0.32  0.13  1.00  -0.05  0.18  -0.09  

PD -0.13  -0.13  0.08  -0.01  0.15  -0.07  0.16  0.00  -0.05  1.00  0.01  0.07  

LA -0.09  0.06  -0.27  -0.36  -0.70  0.56  -0.29  0.00  0.18  0.01  1.00  -0.40  

LO -0.02  -0.02  0.13  0.08  0.27  -0.42  -0.03  -0.02  -0.09  0.07  -0.40  1.00  

 

The factor importance in each subgroup was evaluated using the RF model and Figure 

7 (a) describes the range and average value of factor importance of all subgroups. We 

found that catchment area, annual precipitation, and latitude and longitude are the top 

four factors that contribute most to the results. To reduce model complexity, the type of 

descriptors for training and validation is the same for all subgroups. The optimal 

number of catchment descriptors on regression results was further selected based on the 

SVM regression and the factor importance order identified by the RF model. As shown 



in Figure 7 (b)), we compared the model performances using the different number of 

predictors. We found that the range was stable after the top ten factors were considered 

for model development. The SVM showed the highest performance considering all 

factors for regression (mean RMSNE of 0.70 in the validation period). We more clearly 

described this point in the revised manuscript. 

 
Figure 7 (a) Descriptor importance evaluated by RF model and (b) the optimal 

number of catchment descriptors for SVM regression 

3. In the K-means phase: did you test another metric? For example Mahalanobis? There 

is not reason why the Euclidian metric describe the manifold of the predictors in the 

best way. Even if the Euclidean distance is the best, perhaps there is an embedding 

space (u) that betters describe the relationships between predictors (x). See other 

possibilities in Bárdossy, Pegram, & Samaniego WRR 2005 or in Samaniego, Bárdossy, 

and Schulz IEEE TGRS 2008. 

Reply: This is very helpful. We compared four distance metrics in 100-year design flood 

estimation. As shown in Table R1, we found that changing the distance metric will not 

significantly affect the regression model results, and the squared Euclidean distance is 

the best metric amongst all those we compared. In this study, the subgroups are 

delineated based on a widely used K-means model using squared Euclidean distance. I 

agree with you: the K-means model is susceptible to outliers and noise and also cannot 

solve non-convex clusters. Other clustering models and distances metrics which can 



better describe the highly nonlinear relationship between descriptors should be 

compared in the future study. We now consider this limitation in the discussion.   

Table R1 100-year design flood estimation results using different distance metrics  

Distance metrics  
Training Testing 

RBIAS RMSNE RBIAS RMSNE 

sqeuclidean -0.179 0.703 -0.174 0.708 

mahalanobis -0.192 0.728 -0.181 0.723 

cosine -0.181 0.767 -0.178 0.838 

minkowski -0.174 0.704 -0.188 0.742 

 

4. Minor: use color as suggested in https://colorbrewer2.org for the map and other 

graphics. And 8. Use more pleasing colours in Fig. 2. (suggestion above) 

Reply: This is very helpful. We used colours as suggested in the revised manuscript.  

 

5. Math notations should be consistent. Regression models must have an error term. 

(e.g., in eq. 25). By the way, are the errors of the DF models homoscedastic? Please 

comments and show tests.  

Reply: Thank you very much for your constructive comments. We revised all notations 

to avoid inconsistency. The error term is added in eq. 25. We added a boxplot to 

describe the range of errors of training, validation and eliminated stations (in Figure 9 

(b)). We found the errors of the DF in training and testing stations are homoscedastic. 

 



Figure 9 (b) RBIAS of 100-year return period flood estimation in training, testing and 

eliminated stations. 

 

For the regression models, which estimators were used? Please provide Jackknifed 

(leave one out) bias and RMSE (see paper SB2005). this is important to understand if 

the coefficients are robust of just the result of one outlier, which is very likely in this 

global data set. L1 estimators are recommended in this case. 

 

Reply: In this research, we adopted a simple hold-out strategy that 70% and 30% of 

stations were randomly selected for training and testing, respectively. This strategy is 

widely used in machine learning studies when the samples in training and testing 

datasets are sufficiently representative. To adopt Jack-knifed validation in this research, 

11793 models will be developed. This will significantly increase the computational 

demand and increase the difficulty during model selection. Meanwhile, even though 

each model’s test error is unbiased in Jack-knifed validation, it has a high variability as 

only one sample is validated for prediction. A sufficient number of hold-out samples 

are needed to demonstrate prediction ability of the model in terms of new data.  

I agree with you, we should develop a robust model to avoid one particular dataset 

having too great an influence on the results. In the revised manuscript, a 10-fold cross-

validation strategy was adopted to test the influence of hold-out samples on the model 

results in the discussion section. All stations in one subgroup are randomly divided into 

10 folds. For every fold i (i=1, 2, …, 10), the Model𝑖 is trained by the remaining 9 

folds (except the ith fold) and is validated by the ith fold. Using this strategy, 10 models 

are developed for each subgroup, and each sample in the original dataset was used for 

validation once. Table 5 describes the best, worse and median results validated by 

samples from 10 folds. We found that the selection of hold-out samples had a moderate 

impact on the PF model and the RMSNE performance ranged from 0.97 to 1.49. Both 

SVM and RF showed stable performances and SVM provides the narrowest range. We 

suggest using ensemble results from SVM models using different split training samples 



to reduce the errors generated by sample selection. We demonstrated this in the Section 

4.5.  

Table 5 Results of 100-year design flood estimation using 10-fold cross validation. 

Regressions 
RBIAS RMSNE 

Worse Best Median Worse Best Median 

PF -0.21 -0.37 -0.29 1.49 0.97 1.12 

SVM -0.16 -0.20 -0.19 0.74 0.69 0.71 

RF -0.14 -0.21 -0.18 0.78 0.69 0.74 

 

6. Descriptions of RF, SVM, MCMC, etc. are out of the scope of this manuscript. Here 

the authors should indicate how they make assumptions, set thresholds, etc. Then show 

results, and compare the various methods. Show which is the best in cross-validation 

experiments. 

Reply: Thanks. We revised the description of RF, SVM, etc. based on editor and 

reviewers’ comments. We added the 10-fold cross-validation results in the revised 

manuscript (4.5).  

 

7. Provide uncertainty bounds of the statistics in Table 4. The same for figure 6.  

Reply: Thanks for this kind suggestion. In this research, we proposed a hybrid model 

framework for regional flood frequency analysis at a global scale. The uncertainty 

sources of the proposed framework may be induced by the errors in model inputs 

(discharge data and catchment descriptors), at-site design flood estimation, and regional 

design flood estimation (clustering and regression models). To best of our knowledge, 

there still lack mature method to quantitatively assess the RFFA uncertainty bounds for 

hybrid model framework at the global scale. A robust uncertainty analysis approach 

considering these complicated model structure and uncertainty sources should be 

developed in the future works.  

A table with the factors used for the regressions should be included. I can't find them. 

in Table 4, which are the Meteorological, Physiographical, Hydrological and 



Anthropological factors? See in SB2005 how we described them. How the optimal nr. 

was found? The data set should be made available too. I see a description in L370, but 

a table with basic descriptors (max, min, mean) is useful in the appendix 

Reply: Thanks. We described the max and min value and data source of the basic 

descriptors in Table 2. All factors are used for clustering and regression. During 

clustering, we compared the model results using all factors, the meteorological, 

physiographical, hydrological and anthropological factors, respectively. As shown in 

Table 3, the best combination is to use all factors for clustering. We added the 

abbreviation of factors in Table 3 to make it easier for readers to track. 

 

Table 3 The impact of clustering factors on regional 100-year flood estimation 

Clustering factors Optimal K Training Validation 

RBIAS RMSNE RBIAS RMSNE 

All factors 16 -0.179  0.703  -0.174  0.708  

Meteorological factors (AP, PS, AT, TR) 11 -0.202  0.768  -0.185  0.746  

Physiographical factors (SL, LF, LO, LA) 5 -0.214  0.829  -0.244  0.824  

Hydrological factors (CA, CN) 30 -0.207  0.781  -0.243  0.876  

Anthropological factors (DC, PD) 7 -0.379  1.235  -0.909  1.788  

 

During regression, the RF model is adopted to identify the factor contribution by using 

the out-of-bag (OOB) samples approach. To reduce model complexity, the type of 

factors for training and validation is the same for all subgroups. The optimal number of 

catchment descriptors on regression results was further selected based on the SVM 

regression and the factor importance order identified by the RF model. We added the 

boxplot (Figure 7 (a)) to describe the max, min, and mean value of factor importance 

of all subgroups.  



 
Figure 7 (a) Descriptor importance evaluated by RF model and (b) the optimal 

number of catchment descriptors for SVM regression 


