
Authors’ response to interactive comment by Anonymous Reviewer #3  

This study aims to provide a reliable design flood estimation at global scale using 

improved methods and an expansive discharge dataset. The authors developed a three-

phase model framework consists of standard parameter estimation methods and novel 

machine learning regressions. The framework mainly includes three parts: (1) 

estimating the gage wise flood frequency curve using data from a global discharge 

station network. (2) clustering these stations into subgroups based on basin 

characteristics. (3) developing a machine learning-based regression model in each 

subgroup for design flood estimation based on the subgroup’s shared basin 

characteristics. The authors also compared the accuracy of the results in different 

regions globally and compared the performance of the three machine learning 

regressions in flood estimation. This study employs innovative methods to study a topic 

that is very relevant to HESS. The manuscript is generally well-written, the methods 

are sound, and the result presentation is clear. I suggest considering the following 

comments in the revision:  

Thank you so much for your helpful comments. These comments significantly 

improved this manuscript. We revised the manuscript (traced in blue-coloured text) and 

reply to each comment as follows. We hope that these responses and revisions meet 

your expectations. 

 

(1): The minimum drainage area of this study is 50km2 (Line 131). How is this cutoff 

selected? I wonder if there are gages with smaller drainage basins, and how would the 

method work with relatively low flows? You can also compare the flood estimation 

accuracy as a function of drainage area size based on the gages used in the study.  

Reply: This is very helpful. The cut off is an empirical value and is selected based on 

the definition of a small catchment in some studies (Djodjic et al., 2021;Niadas, 

2005;Tsegaw et al., 2019). These catchments were not considered for model 

development as the floods in the very small catchments (which usually are regarded as 



flash floods) have different characteristics from larger river floods. Flash floods usually 

last less than 6h and are difficult to describe using the traditional design flood 

estimation techniques. We cited these references and clarified this point in the revised 

manuscript.  

 

Figure R5 R-BIAS of (a) 100-year, (b) 50-year; (c) 20-year; and (d) 10-year flows in 

different catchment size. 

As per your kind suggestion, we compare the flood estimation accuracy under different 

catchment sizes. As shown in Figure R5, both over and underestimations were found 

from small to large catchments. The range of RBIAS in the small catchment is typically 

wider than that in the large catchments. This reveals that design floods in small 

catchments are more difficult to estimate than in large catchments. We added these 

points to the revised manuscript.  

 

(2): Can you provide insights into which of the four factors contributes the most to 

improving the system’s estimation skills? The contribution is relatively easy to quantify 

with the traditional methods like multivariate regression, but it is not immediately clear 

with machine-learning methods that work like black boxes. I understand a quantitative 



analysis of this is non-trivial and is out of the scope of this study; a brief discussion 

could serve as a future work/direction.  

Reply: Yes. The RF model can identify the factor importance by using the out-of-bag 

(OOB) samples approach (samples not selected by the bootstrap method). Once an RF 

is developed, the error of OOB samples (𝐸𝑂𝑂𝐵) can be computed as Eq. (R1).  

𝐸𝑂𝑂𝐵 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

𝑛
𝑖=1                                                (R1) 

Where n is the total number of OOB samples; 𝑦𝑖̂ is the predicted value of RF. 

Each factor in the OOB samples is permuted one at a time, and the permuted 𝐸𝑂𝑂𝐵 can 

be computed with the permuted OOB samples and the trained RF model. The RF 

estimates the factor importance by comparing the difference between original and 

permuted 𝐸𝑂𝑂𝐵 while all others are unchanged. The results of factor importance are 

shown in Figure R6 (a), and we found that catchment area, annual precipitation, and 

latitude and longitude are the top four factors that contribute most to the results. This 

rank was further validated using the SVM model (in Figure R6 (b)) where we found 

that the SVM model performances were stable after the four top factors were considered 

for model development. We discuss more about this point in the revised manuscript.  

 

Figure R6 (a) Factor importance evaluated by RF model and (b) the impact of 

catchment descriptors for SVM regression 

(3): The introductions of SVM and RF in section 3.4.2 and 3.4.3 are out of this study’s 

context. I suggest including details on how these methods are implemented with the 

flood and other ancillary data in this study.  



Reply: Thanks for your kind suggestions. We have added more description of the SVM 

and RF models especially on how these methods are implemented in section 3.4.2 and 

3.4.3 as follows. 

(1) SVM  

SVM has shown advantages in solving complicated non-linear problems in the field of 

hydrology. The adopted SVM regression model was proposed by Drucker et al. (1997) 

and successfully used in forecasting of flood, drought, groundwater etc. For a given 

training dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑁 , 𝑦𝑁)}, where N is the number of training 

samples, the overall goal of SVM regression is to find a function 𝑓(𝑥) that has at most 

ε deviation from the observed 𝑦𝑖. Thus, the SVM regression model can be described 

as a convex optimization problem as Eq. (26).  

min
𝑤,𝑏

1

2
‖𝑤‖2                                                        (26) 

s. t. {
𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜀

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀
,      

where w and b are hyperplane parameters and 𝜀 is the insensitive loss. 

The SVM regression is formulated as follows by adding two slack variables in Eq. (27). 

min
𝑤,𝑏,𝜉𝑖,ξ̂𝑖

1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖+𝜉𝑖)

𝑁
𝑖=1                                         (27) 

 s. t. {

𝑓(𝑥𝑖) − 𝑦i ≤ ε + ξ𝑖

𝑦i − 𝑓(𝑥𝑖) ≤ ε + ξ̂𝑖

ξi ≥ 0, ξ̂i ≥ 0, 𝑖 = 1,2, … , N

 

where ξ𝑖 and ξ̂𝑖 are the two slack variables; and C is a parameter that controls the 

trade-off between the support line and training samples. The solution of Eq. (27) is 

described in Garmdareh et al. (2018);Gizaw and Gan (2016).    

(2) RF 

RF regression is a representative type of ensemble machine learning model. Unlike 

SVM, which makes decisions based on a single trained model, RF is based on the 



average result of numerous independent regression tree models (RTM). In RF, N 

subsets were selected using a Bootstrap aggregating method from the whole training 

samples, where n is the number of subsets. For each subset T 

= {(𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑛, 𝑦𝑛)}, an RTM is developed by minimizing the loss as Eq. 

(28).  

𝑚𝑖𝑛
1

𝑛
∑ ∑ (𝑝𝑚 − 𝑦𝑖)𝑥𝑖∈𝑅𝑚

𝑀
𝑚=1                                          (28) 

Where x is the input; and y is the observed training target; M is the amount of leaf of an 

RTM; R is the subset of whole model inputs; 𝑝𝑚 is the predicted value of leaf m.  

In each RTM, the factors were randomly selected for model development and the final 

prediction of the RF model is calculated as the average of the results of different RTMs. 

This strategy means RF usually has good performance in terms of reducing overfitting, 

outliers and noise (Zhao et al., 2020;Zhao et al., 2018).  

The out-of-bag (OOB) samples (samples not selected by the bootstrap method) are 

applied to test its accuracy. Once an RF is developed, the error of OOB samples can be 

computed as Eq. (29).  

𝐸𝑂𝑂𝐵 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

𝑛
𝑖=1                                              (29) 

Where n is the total number of OOB samples; 𝑦𝑖̂ is the predicted value of RF. 

Each factor in the OOB samples is permuted one at a time, and the permuted 𝐸𝑂𝑂𝐵 can 

be computed with the permuted OOB samples and the trained RF model. The RF 

estimates the factor importance by comparing the difference between the original and 

permuted 𝐸𝑂𝑂𝐵while all others are unchanged. RF has been successfully applied for 

tasks such as flood assessment, discharge prediction and ranking of hydrological 

signatures (Zhao et al., 2018;Hutengs and Vohland, 2016;Li et al., 2016), including 

RFFA at regional scales (Desai and Ouarda, 2021) .  

 



(4): Section 3.5, both metrics used for validation, i.e. the RMSNE and RBIAS, focus 

on evaluating the deviation of the results to the truth. I suggest adding other metrics 

(such as the KGE and NSE) that account for the correlation, bias, and scattering at the 

same time.  

Reply: Thanks for your kind comments. The most important for RFFA is the deviation 

of the simulated at-site discharge to the truth. Therefore, RMSNE and RBIAS are 

widely used in RFFA evaluation and easy to compare with other regional studies. KGE 

and NSE are widely used for evaluation in time-series problems. We calculated the 

NSE and KGE value under different return periods as shown in Table R3.  

Table R3 Result for different return period flood estimation 

Return periods Metrics in the testing period 

Mean BIAS Mean RMSNE Mean KGE Mean NSE 

10 -0.165  0.664  0.586 -0.177 

20 -0.168  0.672  0.580 -0.174 

50 -0.166  0.684  0.573 -0.189 

100 -0.174  0.708  0.552 -0.394 

 

We found that NSE shows conflicting results with the other three metrics. This is 

mainly because the mean flow of a subgroup is used as a benchmark in the NSE 

calculation. The stations in this research were delineated based on the K-means method 

and twelve catchment descriptors. The deviation of the at-site discharge to the mean 

observed flow of the subgroup cannot be regarded as a good benchmark. We found that 

very few RFFA studies adopted KGE and the KGE metric shows similar results with 

the RBIAS and RMSNE in this research. Therefore, we still used RMSNE and RBIAS 

for evaluation. 

(5): There are a few places where acronyms are used without definition, e.g. line 71. 

They all need to be defined the first time they appear in the text. 



Reply: Thanks. We revised it according to your kind suggestion in the revised 

manuscript.  
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