
Authors’ response to interactive comment by Anonymous Reviewer #2  

Overall Comments: The paper proposes a machine learning based approach to estimate 

design floods globally. It includes three stages. First is using Anderson-Darling test and 

Bayesian MCMC method to choose suitable distribution and estimate parameters. Then 

at-site frequency curve will be sure. Second is clustering these stations into subgroups 

by a L-means model based on 12 globally available catchment descriptors. Third is 

developing a regression model in each subgroup for regional design flood estimation 

using the same descriptors. 11793 stations’ data is used to predict regional flood and a 

support vector machine regression provide the highest prediction performance with root 

mean square normalized error of 0.708 for 100-year return period flood estimation and 

relative mean relative biases of all climate types being less than 20%. This paper 

proposes a large-scale regional flood estimation method by machine learning which 

covers 11793 stations globally. The method performance is also satisfactory compared 

with previous work. However, there are still some shortcomings. Some explanations 

should be complemented and the negative value of RBIAS should be analysed more.  

We thank the reviewer for his/her valuable comments and suggestions that have 

undoubtedly helped us improve our manuscript. We revised the manuscript (corrections 

noted in blue-colored text) and reply to each comment as follows. We hope that these 

responses and revisions meet your expectations. 

 

Specific Comments:  

(1): Page 6: “... These explanatory factors can be grouped into four categories as 

follows: ...”. A correlation analysis of all factors can be done to make sure they have 

weak correlation with each other.  

Reply: This is very helpful. We analysed the correlation of all factors and the result is 

shown in Table R1. According to the criteria proposed by Evans (1996), no factor pairs 



show a strong correlation (Pearson’s correlation coefficient > 0.6). We clarified this 

point in the revised manuscript.  

Table R1 correlation analysis of all factors 
 

CA SL AP PS AT TR CN DC LF PD LA LO 

CA 1.00  -0.15  -0.12  0.24  0.07  0.08  0.03  0.02  0.15  -0.13  -0.09  -0.02  

SL -0.15  1.00  0.17  0.01  -0.29  -0.27  -0.30  0.01  -0.07  -0.13  0.06  -0.02  

AP -0.12  0.17  1.00  0.00  0.39  -0.48  -0.01  0.02  -0.05  0.08  -0.27  0.13  

PS 0.24  0.01  0.00  1.00  0.39  -0.23  0.22  0.02  -0.03  -0.01  -0.36  0.08  

AT 0.07  -0.29  0.39  0.39  1.00  -0.57  0.50  0.00  -0.26  0.15  -0.70  0.27  

TR 0.08  -0.27  -0.48  -0.23  -0.57  1.00  -0.12  0.02  0.20  -0.07  0.56  -0.42  

CN 0.03  -0.30  -0.01  0.22  0.50  -0.12  1.00  -0.01  -0.32  0.16  -0.29  -0.03  

DC 0.02  0.01  0.02  0.02  0.00  0.02  -0.01  1.00  0.13  0.00  0.00  -0.02  

LF 0.15  -0.07  -0.05  -0.03  -0.26  0.20  -0.32  0.13  1.00  -0.05  0.18  -0.09  

PD -0.13  -0.13  0.08  -0.01  0.15  -0.07  0.16  0.00  -0.05  1.00  0.01  0.07  

LA -0.09  0.06  -0.27  -0.36  -0.70  0.56  -0.29  0.00  0.18  0.01  1.00  -0.40  

LO -0.02  -0.02  0.13  0.08  0.27  -0.42  -0.03  -0.02  -0.09  0.07  -0.40  1.00  

 

(2): Page 9: “... The adopted Anderson-Darling test and Bayesian MCMC method are 

briefly described as follows. ...”. A brief introduction of distributions is necessary. For 

example, Pearson type three distribution is used widely in China.  

Reply: Thanks for your kind suggestion. We added more description about the adopted 

distributions in the revised manuscript.  

Line 70: Studies have suggested alternate distributions, such as , GEV, generalized 

logistic (GENLOGIS), Pearson type III (P3), whilst lognormal (LN3) distributions are 

mandated for use in the US (Committee, 1981). 

Line 210: Table 3 describes the tested hypothetical distributions which have been 

widely recommended in flood frequency analysis in different countries. For example, 

the generalized pareto distribution performs better in populated regions of Australia and 



P3 is recommended as the national standard distribution for flood frequency analysis in 

China (Gao et al., 2019;Vogel et al., 1993;Wang et al., 2015). 

 

(3): Page 11: “... The adopted Bayesian MCMC method was proposed by Reis and 

Stedinger (2005) and is reported to provide better parameter estimates than the MOM 

and MLE approaches in some studies ...”. L-moment method is a valid method on 

estimating the parameters. Bayesian MCMC method should compare with it.  

Reply: I agree with you. The L-moment method is also a valid technique for estimating 

the parameters. 

We compared the 100-year return period flow calculate by L-moments and Bayesian 

MCMC methods. As shown in Figure R3, the 100-year return period flows calculated 

by the two methods are similar (Pearson’s correlation coefficient = 0.99).  

 

Figure R3 result of 100-year flow calculated by the Bayesian MCMC versus L-

moment 

We further tested the results of 100-year flow estimation in the training and validation 

periods using different design floods calculated by L-moments and Bayesian MCMC 

methods. We found that the methods of at-site flood estimation will not affect the results, 

R² = 0.9959
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and both are valid methods for flood regional flood frequency analysis. Some studies 

have shown that at-site quantiles are estimated using at-site L-moments which are 

known to be inferior to regional flood quantiles (Martins and Stedinger, 2000). 

Compared with L-moments, the Bayesian MCMC method can provide credible 

intervals for flood estimation. Therefore, we adopted the Bayesian MCMC method in 

this study. 

Table R2 Results of 100-year flood using different methods for local flood estimation 

Methods 
Training Testing 

Mean BIAS Mean RMSE Mean BIAS Mean RMSE 

L-moment -0.175 0.692 -0.171 0.698 

Bayesian MCMC -0.179 0.703 -0.174 0.708 

 

(4): Page 11: “... The detail of the Bayesian MCMC method is comprehensively 

described in the research of Reis and Stedinger (2005) ...”. Although its numerical 

method will be complicated, a brief explanation is still essential.  

Reply: Thanks. We added a detailed description of the Bayesian MCMC in the section 3.2.2 

and as follows.  

The adopted Bayesian inference consisted of three steps as follows:  

(a): Prior distribution and likelihood function calculation. The first step is to determine 

the prior distribution for Bayesian analysis. As non-prior knowledge (i.e. population 

distribution function) was considered, a non-informative Normal distribution was 

selected as a prior distribution. The likelihood function 𝑓(𝑞|𝜃) can be computed as 

Eq. (15).  

 𝑓(𝑞|𝜃) =  ∏ 𝑓(𝑞𝑖; 𝜃)𝑛
𝑖=1                                             (15) 

Where: 𝑞 = (𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛) are the given samples and 𝜃 is a parameter vector;  



(b): Posterior distribution calculation. The posterior distribution 𝑓(𝜃|𝑞) is computed 

using Bayesian inference as in Eq. (16). As the integral in Eq. (16) cannot be solved 

analytically, the Metropolis-Hastings MCMC method was used to generate samples 

from the posterior distribution. 

𝑓(𝜃|𝑞) =
𝑓(𝑞|𝜃)𝜋(𝜃)

∫ 𝑓(𝑞|𝜃)𝜋(𝜃) ⅆ𝜃
                                              (16) 

Where 𝜋(𝜃) is the density function of the prior distribution; 

(c): parameter and design flood estimations. The final parameters 𝜃 can be calculated 

by the expected value of the posterior distribution; The probability density function of 

design flood Q can be described as Eq. (17). 

𝑓(𝑄|𝑞) = ∫ 𝑓(𝑄|𝜃)𝑓(𝜃|𝑞)𝑑𝜃
Θ

                                       (17) 

The three common methods for estimating the parameters of at-site flood frequency 

curves are based on moments (MOM), maximum likelihood (MLE) and Bayesian 

inference. Compared with MOM and MLE, the Bayesian approach can provide 

credibility intervals for the estimated design flood. The details of the adopted approach 

is comprehensively described in the research of Reis and Stedinger (2005) and the 

calculation is implemented based on a Bayesian MCMC function (nsRFA package) in 

the R software.  

 

(5): Page13: “... SVM regression has shown advantages in solving complicated non-

linear problems in the field of hydrology ...”. As a major method of this article, the 

introduction of SVM may be too simple. More detailed description can be added.  

Reply: This is very helpful. We added more descriptions about the implementation of SVM 

in Section 3.4.2 and as follows. 

SVM has shown advantages in solving complicated non-linear problems in the field of 

hydrology. The adopted SVM regression model was proposed by Drucker et al. (1997) 

and successfully used in forecasting of flood, drought, groundwater etc. For a given 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006WR005525#wrcr11092-disp-0002


training dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑁 , 𝑦𝑁)}, where N is the number of training 

samples, the overall goal of SVM regression is to find a function 𝑓(𝑥) that has at most 

ε deviation from the observed 𝑦𝑖. Thus, the SVM regression model can be described 

as a convex optimization problem as Eq. (26).  

min
𝑤,𝑏

1

2
‖𝑤‖2                                                        (26) 

s. t. {
𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜀

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀
,      

where w and b are hyperplane parameters and 𝜀 is the insensitive loss. 

The SVM regression is formulated as follows by adding two slack variables in Eq. (27). 

min
𝑤,𝑏,𝜉𝑖,ξ̂𝑖

1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖+𝜉𝑖)

𝑁
𝑖=1                                         (27) 

 s. t. {

𝑓(𝑥𝑖) − 𝑦i ≤ ε + ξ𝑖

𝑦i − 𝑓(𝑥𝑖) ≤ ε + ξ̂𝑖

ξi ≥ 0, ξ̂i ≥ 0, 𝑖 = 1,2, … , N

 

where ξ𝑖 and ξ̂𝑖 are the two slack variables; and C is a parameter that controls the 

trade-off between the support line and training samples. The solution of Eq. (27) is 

described in Garmdareh et al. (2018);Gizaw and Gan (2016).    

 

(6): Page 13: “... RF regression is a representative type of ensemble machine learning 

model ...”. Math is the best language of science. Several mathematical formulas of RF 

will help readers to understand it abstractly.  

Reply: Thanks. We added mathematical formulas of RF in Section 3.4.3 as follows. 

RF regression is a representative type of ensemble machine learning model. Unlike 

SVM, which makes decisions based on a single trained model, RF is based on the 

average result of numerous independent regression tree models (RTM). In RF, N 

subsets were selected using a Bootstrap aggregating method from the whole training 

samples, where n is the number of subsets. For each subset T 



= {(𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑛, 𝑦𝑛)}, an RTM is developed by minimizing the loss as Eq. 

(28).  

𝑚𝑖𝑛
1

𝑛
∑ ∑ (𝑝𝑚 − 𝑦𝑖)𝑥𝑖∈𝑅𝑚

𝑀
𝑚=1                                          (28) 

Where x is the input; and y is the observed training target; M is the amount of leaf of an 

RTM; R is the subset of whole model inputs; 𝑝𝑚 is the predicted value of leaf m.  

In each RTM, the factors were randomly selected for model development and the final 

prediction of the RF model is calculated as the average of the results of different RTMs. 

This strategy means RF usually has good performance in terms of reducing overfitting, 

outliers and noise (Zhao et al., 2020;Zhao et al., 2018).  

The out-of-bag (OOB) samples (samples not selected by the bootstrap method) are 

applied to test its accuracy. Once an RF is developed, the error of OOB samples can be 

computed as Eq. (29).  

𝐸𝑂𝑂𝐵 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

𝑛
𝑖=1                                            (29) 

Where n is the total number of OOB samples; 𝑦�̂� is the predicted value of RF. 

Each factor in the OOB samples is permuted one at a time, and the permuted 𝐸𝑂𝑂𝐵 can 

be computed with the permuted OOB samples and the trained RF model. The RF 

estimates the factor importance by comparing the difference between the original and 

permuted 𝐸𝑂𝑂𝐵while all others are unchanged. RF has been successfully applied for 

tasks such as flood assessment, discharge prediction and ranking of hydrological 

signatures (Zhao et al., 2018;Hutengs and Vohland, 2016;Li et al., 2016), including 

RFFA at regional scales (Desai and Ouarda, 2021) .  

 

(6): Page 18: “... Figure 7 (a) Factor importance evaluated by RF model and (b) the 

impact of catchment descriptors for regression ...”.  



Reply: Thanks. We revised this figure as follows to make it easier for readers to 

understand.  

 

Figure 7 (a) Factor importance evaluated by RF model and (b) the impact of catchment 

descriptors for SVM regression 

 

(7): Page 19: “... The negative value of RBIAS reflected some overestimation which 

mainly occurred due to low discharge in small catchments ...”. It is normal to 

underestimate 100-year return period floods, but why all the RBIAS indexes are 

negative? RBIAS index is just a relative index so the absolute value of discharge should 

not take much effect on the index. Please analyze more about it. 

Reply: This is very helpful. We analysed the relationship between R-BAIS and catchment 

size in the revised manuscript.  

As shown in Figure R4, both over and underestimations were found from small to large 

catchments. The range of RBIAS in small catchments is typically wider than that in the 

large catchments. This reveals that design floods in small catchments are more difficult to 

estimate than in large catchments. The mean RBIAS represents the overall model 

performance of a subgroup and it is highly dependent on the nature of the model and the 

estimated at-site design floods. Some studies have suggested that the decreasing (increasing) 

trends of observed discharge can lead to overestimation (underestimation) of flood 

quantiles if such nonstationarity is not taken into consideration in an RFFA (Kalai et al., 

2020;O’Brien and Burn, 2014). The negative value of mean RFFA may be caused by the 

overall decreasing trend for global discharge. This negative value is also consistent with 



some similar studies using machine learning models in RFFA (Desai and Ouarda, 2021;Shu 

and Ouarda, 2008). We have analysed this point in the discussion section.   

 

Figure R4 R-BIAS of (a) 100, (b) 50; (c) 20; and (d) 10-year return period flood in 

different catchment sizes. 
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