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Abstract. Evapotranspiration (ET) accompanied by water and heat transport in the hydrological cycle is a key component in

regulating surface aridity. Existing studies documenting changes in surface aridity have typically estimated ET using semi-

empirical equations or parameterizations of land surface processes, which are based on the assumption that the parameters in

the equation are stationary. However, plant physiological effects and its responses to a changing environment are

dynamically modifying ET, thereby challenging this assumption and limiting the estimation of long-term ET. In this study,15
the latent heat flux (ET in energy units) and sensible heat flux were retrieved for recent decades on a global scale using

machine learning approach and driven by ground observations from flux towers and weather stations. The study resulted in

several findings, namely that the evaporative fraction (EF)—the ratio of latent heat flux to available surface energy—

exhibited a relatively decreasing trend on fractional land surfaces; In particular, the decrease in EF was accompanied by an

increase in long-term runoff as assessed by precipitation (P) minus ET, accounting for 27.06% of the global land areas. The20
signs were indicative of reduced surface conductance, which further emphasized that land-surface vegetation has major

impacts in regulating the water and energy cycles, as well as aridity variability.

1 Introduction

Evapotranspiration (ET) mainly includes two processes: (1) evaporation from soil and plant surfaces and (2) transpiration

from plants to the atmosphere. These processes connect the transfer of moisture and energy in soil, vegetation, and25
atmospheric systems (Miralles et al., 2020; Salvucci et al., 2013; Yang et al., 2020). Quantifying changes in the exchange of

moisture and heat between the land and atmosphere is very important for understanding and characterizing water and energy

cycles, which has implications in various fields such as hydrology, climatology, and agronomy (Hoek van Dijke et al., 2020;

Gentine et al., 2016; Komatsu and Kume, 2020).
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ET is expected to intensify with the warming climate, thereby contributing to the increase in surface aridity stress (Baruga et

al., 2020; Berg et al., 2016; Fu et al., 2014; Trenberth et al., 2014). However, quantification of changes in aridity/wetness

was usually derived from traditional offline drought indices such as the Standardized Precipitation Evapotranspiration Index,

which embedded a semi-empirical equation, e.g., the Penman–Monteith equation, for ET estimation (Dai et al., 2013;

Sheffield et al., 2012). Using potential evaporation rather than actual ET or taking ET output from a climate model as the35
input of traditional offline drought indices, the calculation assumes that soil can always supply moisture to meet the

atmospheric evaporative demand, which is an incorrect assumption for most land surfaces (Greve et al., 2014; Milly and

Dunn, 2016; Yang et al., 2020). Moreover, when using a semi-empirical equation for ET estimation, some parameters such

as soil resistance and stomatal resistance, are assumed to be stationary over time; however, we know that these parameters

are continually changing with environmental conditions (Miralles et al., 2011; Yang et al., 2019; Zhou et al., 2016).40

Why are the soil resistance and stomatal resistance not stationary? Changes in plant stomata and leaf area, with increasing

CO2 concentrations in particular, reshape the allocation of surface energy and affect transpiration (Forzieri et al., 2020;

Sorokin et al., 2017; Mallick et al., 2016; Williams and Torn, 2015). With increasing CO2 concentrations, the density and

opening degree of leaf stomata decrease, while the water-use efficiency and biomass production of plant increase, thus45
modifying transpiration rate (Keenan et al., 2013; Massmann et al., 2019; Rigden et al., 2016; van Der Sleen et al., 2015;

Wagle et al., 2015). Vegetation transpiration occupies most of the amount of ET, so vegetation controls can greatly affect the

variability of land ET (Costa et al., 2010; Jaramillo et al., 2018; Wei et al., 2017; Williams et al., 2012). Moreover, human

activities including agricultural irrigation and land use management, are constantly altering the exchange of water and heat

between terrestrial ecosystems and the atmosphere (Padrón et al., 2020; Teuling et al., 2019). The semi-empirical equations50
of ET and offline drought indices also prove challenging when taking these effects into consideration (Yang et al., 2020).

Existing studies with respect to global ET inferred from flux towers, remote sensing, and reanalysis products have a

relatively short time series and mainly focus on interdecadal climate variability (Jung et al., 2010; Jung et al., 2019; Miralles

et al., 2013). Therefore, it is necessary to infer long-term ET from ground observations to reveal the dynamic changes in ET.

55
In this study, we employed an observation-driven, machine learning approach to estimate latent heat flux (λE) (ET in energy

units) and sensible heat flux (H). This approach utilizes daily observations of temperatures, humidity, and solar radiation

(Gentine et al., 2016). A major advantage is that the retrieval process is purely driven by observations; therefore, it does not

rely on any assumptions of land processes (e.g., values of surface conductance), and it can represent the effects of dynamic

changes in land surface conditions (Reichstein et al., 2019). Moreover, this approach allows for the monitoring of long-term60
changes in λE and H by accounting for shifting environmental conditions. In fact, λE dominates the moisture budget of the

boundary layer, and H determines the growth of the boundary layer (Francesco et al., 2014; Gentine et al., 2011). The ratio

of λE to the sum of λE and H, i.e., (EF), and a proxy for long-term runoff, i.e., precipitation (P) minus ET (P−ET), were also

employed to quantify the surface aridity variability in this study.
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2 Observational data and methodology65

2.1 Flux tower observational data

We collected the half-hourly/hourly observational data and the integrated daily product from the FLUXNET2015 FULLSET

dataset (Pastorello et al., 2020). To control the quality of the observational dataset, this study only used measurements and

good-quality gap-filled data from 212 globally distributed flux towers (Supplementary Fig. S1a). The flux towers used in this

study across various regions and land cover types (Fig. 1). The longest period of data availability is 22 years. This study70
intended to build a machine learning model for retrieving latent heat and sensible heat fluxes on a daily scale. Therefore,

daily-scale data of top-of-atmosphere shortwave, vapor pressure deficit (VPD), mean temperature, and surface wind speed

were collected from the integrated daily product of the FLUXNET2015. Daily maximum and minimum temperatures were

obtained from half-hourly/hourly observational data. Data of daily λE and daily H were collected from the integrated daily

product. The underlying surfaces of the flux towers covered different plant function types. According to the classification75
scheme of International Geosphere-Biosphere Programme, the plant function types include Evergreen Needleleaf Forest

(ENF), Evergreen Broadleaf Forest (EBF), Deciduous Broadleaf Forest (DBF), Mixed Forest (MF), Croplands (CRO),

Grasslands (GRA), Savannas (SAV), Woody Savannas (WSA), Open Shrublands (OSH), and Wetlands (WET).

Figure 1. Data availability of the Fluxnet sites used in this study.80
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2.2 Observational meteorological data

Daily meteorological observational records of precipitation (P), temperature (mean, maximum, and minimum temperatures),

dew point temperature, and wind speed were collected from the Global Summary of the Day (GSOD) during the 1950–2017

period. The quality of the data was controlled through several procedures (Durre et al., 2010; Matsuura et al., 2009; Yin et al.,85
2018). Initially, we divided the weather stations into two groups: the original station group and target station group. We used

20 048 sites in total for the original station group (Supplementary Fig. S1b). Stations that had a time series span of less than

ten years were excluded. The station records with the same geographic coordinates were merged into a single time series.

When multiple sites were within the same 0.1-degree grid, we only selected one site for the target station group. After

filtering, we obtained a total of 9835 stations for the target station group. In the subsequent spatiotemporal analysis, we only90
used weather stations with long-term data from the target station group.

Other procedures for controlling data quality were also implemented. Any implausible values, such as negative precipitation

or a maximum temperature lower than the minimum temperature, were excluded. Monthly mean, maximum, and minimum

temperatures, as well as precipitation were derived from daily observations at the original stations. Daily precipitation data95
were also compiled from records in the Global Historical Climatology Network (GHCN-Daily). The daily records of every

weather station that had the same coordinates as the GHCN-Daily in the GSOD were compared, and the missing daily

records were supplemented using the GHCN-Daily archives. Monthly data were calculated when the number of missing days

within a month was no more than seven days. Additionally, missing monthly data from the target stations were interpolated

from the original weather stations using the Kriging method in Python-based ArcGIS software.100

2.3 Top-of-atmosphere shortwave radiation model

Daily top-of-atmosphere shortwave radiation converted from the hourly top-of-atmosphere shortwave radiation was forced

to drive the ANN model for predicting the daily λE (H) at each of the target weather stations. The amount of incoming

shortwave radiation at any location/time at the top-of-atmosphere was a function of Earth–Sun geometry, which has been

defined as: i) latitude (i.e., location); ii) hour of day (due to the rotation of the earth); and iii) day of year (due to the tilted105
axis of the earth and its elliptical orbit around the sun). Several models for the top-of-atmosphere fluxes based on these

inputs were available at varying levels of precision. The time-location model (Margulis, 2017) is shown as follows.
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where the cosine of the solar zenith angle is as follows:

 coscoscossinsincos 0  (2)110

https://doi.org/10.5194/hess-2020-590
Preprint. Discussion started: 21 November 2020
c© Author(s) 2020. CC BY 4.0 License.



5





  DOY)(172
365
2πcos

180
23.45πδ (3)

24
12T2πτ h  (4)





  DOY)(186
365
2π0.017cos1d (5)

Here, 0 is the solar zenith angle,  is the declination angle,  is latitude,  is the hour angle, DOY represents the day of

year, d represents the distance between the sun and Earth normalized by the mean distance, and hT represents solar hour of115

the day.

2.4 Artificial neural network model training

A pure artificial neural network (ANN) was proven to have good performance in retrieving land surface fluxes, or in some

cases, even better performance than that of hybrid models (Chen et al., 2020; Haughton et al., 2018; Zhao et al., 2019). In

this study, we trained a multi-layer feedforward neural network model that consisted of an input layer, hidden layers, and an120
output layer to predict daily λE and H at the globally distributed weather stations. To identify the sensitivities of latent heat

and sensible heat fluxes to different variables in the retrieval, ANN model was tested using different variable combinations

as input (Supplementary Table S1). Top-of-atmosphere shortwave, relative humidity, surface wind speed, and the mean,

maximum, and minimum temperatures were determined to be the inputs of the neural network (Supplementary Table S2). In

the process of training ANN model, input data were randomly divided into three subsets using the percentages of 80%, 10%,125
and 10% for training, validation, and testing, respectively. The mean squared error (MSE) was used to evaluate the

performance of the neural network in the process of adjusting weight. The root mean squared error (RMSE) and pearson

correlation coefficient (R) between the predicted λE (H) and observed λE (H) were used to evaluate the retrieval

performance of the trained ANN model. The neural network was determined to have two hidden layers and 15 neurons per

hidden layer. A tangent sigmoid transfer function was used in the hidden layers, and a linear transfer function was used in130
the output layer. To avoid over-fitting, the training was stopped when the MSE could be reduced no further after traversing

the entire dataset. The maximum number of training times and training accuracy goal were set to 500 epochs and 0.0001,

respectively. Once one of the parameters exceeded the set threshold, model training was stopped.

2.5 EF linked to surface resistance ( sr ) and aerodynamic resistance ( ar )

Here, we show that a long-term decline in EF can be strongly impacted by an increase in sr . The latent heat flux is as135

follows.
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where vL is the latent heat of vaporization, E is evaporation flux,  is air density, sT is near-surface air temperature,

)( ssat Te is saturated vapor pressure at the surface, ae is actual air vapor pressure, ar is aerodynamic resistance, and sr is

surface resistance. EF can be expressed as follows.140
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We used the linearized Clausius–Clapeyron relation (Eq. (8) and Eq. (9)) to simplify Eq. (7).
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water vapor. Furthermore, pc is the specific heat capacity, which is 4216 J kg-1 K-1 when the temperature is 0 °C.
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The incremental variation of
H
VPD is small because both variations of VPD and H are proportional to the temperature150

variation. EF can be expressed as follows:
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Hence, sr is a function of EF.
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A decline in the EF can be induced by an increase in the surface resistance, sr . Annual EF ranged from 0 to 1, and the155

variations in EF (∆EF) were closely related to plant physiological effects. The range of influence from ar on ∆EF was

relatively small, while the range of influence from sr on ∆EF was relatively larger.

3 Results and discussion

3.1 ANN model retrievals

Cross-validations of the ANN model were first performed. Taking one set of cross-validation as an example, the correlation160
coefficient (R) between the predicted daily λE and the observed daily λE is 0.782 and the R between the predicted daily H

and the observed daily H is 0.768, and both the correlations are significant at the p<0.001 level (Fig. 2). Furthermore, the

ANN model was cross-validated in different verification sets whose samples were randomly selected from a type of plant

function type (Supplementary Fig. S2). The abilities of the trained ANN model for predicting latent heat and sensible heat

fluxes were different for various plant function types. With the exception of OSH (R = 0.680, p < 0.05), the R of the daily-165
scale λE of DBF, MF, SAV, GRA, CRO, and WET were all greater than 0.80, and all correlation coefficients were

statistically significant at the p < 0.001 level. A common feature of these plant function types was that they belonged to the

ecosystems with relatively open bodies of water or high vegetation coverage, while the water transfer of OSH from the land

to the atmosphere was easily limited by soil moisture. Therefore, the R for OSH was relatively low (R = 0.656) and this is

because the total evapotranspiration in OSH is mainly controlled by the evaporation process which is easily restricted by the170
soil water supply capacity; however, the correlation was also significant at the p < 0.05 level. With respect to the estimation

of daily H, the R of estimating H in other plant function types was greater than 0.716, and all were statistically significant at

the 0.001 level. In addition, the trained ANN model also shows good simulation ability under some other ecosystems with

relatively sparse vegetation cover such as savannas (SAV), grasslands(GRA), croplands(CRO), and wetlands(WET)

(Supplementary Fig. S3). In summary, in addition to OSH, the accuracy of retrieving λE is high in GRA, CRO, WET, and175
various forest ecosystems, and these ecosystems were characterized by sufficient water supply or dense vegetation cover. For

the estimation of H, except for the estimation of H in farmland, the correlations of predicted and observed H in all

ecosystems are correlated at the p < 0.001 level, especially in forest ecosystems. It needs to be emphasized that the
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magnitude of R could be affected by the number of samples, and the sample number of each verification set in the cross-

validations is large (n > 12 000).180

Figure 2. Density scatter plot of the cross-validation. Samples of five flux towers were randomly retained as verification set.

The uncertainty and bias characteristics of the ANN model retrievals were further analyzed on both daily and monthly scales.

On the daily scale, the correlation coefficients between predicted λE (verse H) and observed λE (verse H) were 0.78~0.79

(0.77~0.78) (p < 0.001) (Supplementary Fig. S4). The RMSE of λE (H) ranged from 26.05 to 26.32 W m-2 (28.61 to 29.15 W185
m-2). More than 80% of the 212 flux towers had a correlation greater than 0.70. As for the RMSE, 85% and 89% of the daily

λE (H) were less than 30 W m-2, respectively. It was obvious that flux towers with large biases were mainly located on the

coast of Australia and the west coast and Great Lakes region of the United States, as well as the Mediterranean region, all of

which are strongly impacted by advection from neighboring bodies of open water. The bias of the monthly scale estimates

was smaller than that of the daily scale estimates. More than 89% and 90% of the sites had an R greater than 0.70190
(Supplementary Fig. S5). Meanwhile, more than 88% and 89% of the sites showed an RMSE of less than 30 W m-2 in λE

and H, respectively. Similar to the spatial distribution of biases on a daily scale, flux towers with large biases were located

on the coast of Australia, the Great Lakes region, and the Mediterranean region. Finally, global daily-scale latent heat and

sensible heat fluxes were predicted by the ANN model. The spatial distributions of mean annual λE and H were shown in

Supplementary Fig. S6. The mean annual ET in the FLUXCOM ranged from 0 to 1400 mm (Jung et al., 2010), while the195
mean annual ET of this study ranged from 0 to 1416 mm during the 1982−2008 period (Supplementary Fig. S7). In different

large-scale latitude intervals, the temporal changes of λE estimated by the ANN and λE in the FLUXCOM are significantly

correlated at the p < 0.05 (Supplementary Fig. S8). This study were primarily concerned with the direction and magnitude of

long-term trends, and thus, relative bias could be tolerated.

200
3.2 Attribution of trends in climate variables
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The trends in climate variables were estimated for two reasons: (1) to quantify the changes in the atmospheric water supply,

and (2) to estimate the trends in VPD, air temperature, and wind speed to understand the characteristics of changes in

atmospheric evaporative demand. The annual precipitation exhibited increasing trends ranging from 3 to 40 mm per decade

in western Europe, the United States, Southeast Asia, and Australia. Meanwhile, the annual precipitation exhibited205
decreasing trends, mainly ranging from -3 to -30 mm per decade in the northern Eurasian continent, savanna region of Brazil,

and South Africa (Fig. 3a). Especially in recent 2001–2017 period, precipitation has shown a more obvious upward trend

than before in a wide area of the global land (Supplementary Fig. S9). Increases in air temperature and the water holding

capacity of the atmosphere were the primary causes for the significant increase in precipitation (Byrne et al., 2015), except

for certain regions (e.g., Russia) with insufficient moisture advection from an ocean or regional ET.210

Figure 3. Long-term trends in annual precipitation, vapor pressure deficit (VPD), wind speed, mean temperature, maximum

temperature, and minimum temperature. Values are not shown for Greenland or Sahara Desert. Small gray squares show

locations of weather stations used to interpolate global patterns.
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With respect to the side of atmospheric water demand, the VPD primarily presented an increasing trend because of an215
increase in air temperature and a decrease in relative humidity, especially in the subtropics; this was consistent with the

expectations of atmospheric dynamics and the influence of free-tropospheric warming (Fig. 3b). Additional variables

influencing the evaporative demand, such as the mean, maximum, and minimum temperatures, mostly presented increasing

trends on the global scale, with the exception of a few areas, such as the United States/Canadian Corn Belt, Mexico, and

northern Europe, which showed signs of cooling due to land use management such as agricultural irrigation (Thiery et al.,220
2017) (Fig. 3d−f). Therefore, both rising air temperatures and increased VPD under climate warming indicate a trend of

increasing drag force of evaporation and transpiration. In addition, the mean surface wind speed—a meteorologic factor

associated with evaporation—showed an overall decreasing trend (i.e., global stilling) except in the Amazon, Argentina,

Australia, and Mongolia (Fig. 3c).

3.3 Long-term trends in EF, ET, and P–ET225

When the annual EF ranges from 0 (full aridity stress) to 1 (no aridity stress), it is an indicator of surface aridity linked to

soil moisture availability and vegetation phenology, as well as the physiological effects of CO2 on vegetation (Francesco et

al., 2014; Lemordant et al., 2018; Swann et al., 2016). The decreasing trend in the EF varied from 0 to 0.05 per decade and

was prevalent in several land areas (Fig. 4a), except in areas with the most humid tropical rainforests (i.e., the Amazon, West

Africa, New Guinea Island, and Southeast Asia) and dense agricultural irrigation areas, including central North America and230
Punjab in India (Supplementary Fig. S10). Changes in the EF at different latitudinal intervals were consistent with the “dry

gets drier, wet gets wetter” paradigm in the tropical areas (Chou et al., 2009; Liu et al., 2013). The observed increase in EF

further suggested a wet trend in the western Sahel, where an increase in rainfall was reported recently (Biasutti, 2019; Dong

et al., 2015). It was systematically determined that the EF has declined across large swaths of the globe over the past several

decades, which emphasized that this is a persistent long-term trend, not a short-term phenomenon (Fig. 5a–c). As the235
climate has warmed, a decrease in the EF reflected an increase in surface resistance (see Methodology), which can be

controlled by one of two factors—either an increase in stomatal resistance associated with the physiological effects of CO2

or a decrease in soil moisture. Therefore, if we find that soil moisture or surface runoff increases while the EF decreases, this

is a signal that surface resistance has increased.

240
The evolution of El Niño–Southern Oscillation (ENSO) can greatly influence the global hydrological cycle and patterns of

aridity/wetness (Miralles et al., 2013; Nalley et al., 2019), and thus we analyzed the patterns of EF in different ENSO phases

based on the multivariate ENSO index (MEI). However, no significant changes in EF trends were detected between different

ENSO phases, with the exception of La Niña having a significant impact on the aridity in East Asia (Fig. 5d–f). The EF

simulated by Earth System Models under the RCP8.5 scenario (the scenario with the highest CO2 emissions) also presented a245
decreasing trend in most global land areas, even if the trend in the models appeared to be stronger than that of the trend
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estimated by the data-driven EF (Fig. 6a). This further suggested that increasing CO2 concentrations have an impact on the

EF, and the observed decrease in EF was consistent with that of the prediction of the model. However, the climate model

missed several areas where agricultural practices led to an increase in EF, as well as in the tropical rainforest where there

was a deviation in peak precipitation (Yin et al., 2013).250

Figure 4. Long-term trends in evaporative fraction (EF), evapotranspiration (ET), and precipitation (P) minus ET (P−ET).

Daily ET is converted from daily latent heat flux retrieved by ANN model. Red curve represents median variation of

different latitudes.

As the climate has warmed, the ET has shown a significant increasing trend, ranging from 0 to 0.03 mm per day per year255
(Fig. 4b), especially in the main regions with tropical rainforests (e.g., the Amazon, West Africa, and Southeast Asia), the

coast of Australia, and areas with a high density of agricultural irrigation (e.g., northern India, Central Asia, and Central
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America). The increase in ET was primarily induced by the radiative effect of a warming climate, which could compensate

for the observed decrease in EF (ET = EF × Rn). Signs of decline in ET at a rate of 0 to -0.03 mm per day per year were

found on fractional land surfaces, such as North America, South Africa, and the Mediterranean, which was consistent with260
the predictions made by the RCP8.5 climate model (Fig. 6b).

Figure 5. Spatial patterns of EF trends during different periods. (a–c) EF trends during various historical periods. (d–f) EF

trends during El Niño period, a neutral case, and La Niña period, respectively.

P−ET, a proxy for long-term runoff, assumes that changes in storage due to human activity are negligible and are closely265
linked to water availability and soil moisture trends (Alkama et al., 2013; Sophocleous et al., 2002). Therefore, long-term

runoff presented a significant increasing trend, with the exception of a decrease in northern Eurasia (Fig. 4c). To further

verify the retrieved P–ET trend, we compared the P–ET trend with the observed runoff trend during the same periods in

small- to medium-sized watersheds (5~1000 km2) (Supplementary Fig. S11). The P–ET and observed runoff presented
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different trends in eastern Australia, which could be attributed to a decrease in runoff caused by human activities because270
there are clusters of cities in this area where the observed runoff was strongly affected by human activities (Bosmans et al.,

2017). Nevertheless, similarities could also be found in the P–ET and observed runoff trends. In western Europe and eastern

North America, both the P–ET and observed runoff showed an increasing trend, and both the Mediterranean region and

South Africa showed a decreasing trend. The RCP8.5 model also predicted an overall increasing trend in P−ET (Fig. 6c),

while a decrease was predicted (but not observed) in the western United States and western Europe. Additionally, an275
increased P−ET was predicted (but not widely observed) in northern Eurasia.

Figure 6. Annual changes in (a) EF, (b) ET, and (c) P−ET in CMIP5 RCP 8.5 Earth System Models with all anthropogenic

forcing (e.g., land use and land cover changes, aerosols, and ozone). Changes are quantified by difference in years

2070−2099 of simulation and years 1941−1970.

280
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3.4 Signs of covariation in long-term EF and runoff

The signs of covariation in normalized ET, i.e., EF, and normalized P−ET, i.e., 1−ET/P, were further investigated to

determine the patterns of surface aridity. We superimposed the EF trend, indicative of changes in aridity stress (e.g.,

temperature and soil moisture) or plant physiological effects (see Methodology), and the 1−ET/P trend, which was indicative

of changes in long-term runoff. Land areas with a decreased EF and an increased long-term 1−ET/P were indicative of285
significant plant physiological effects of CO2. This was because a long-term relative decline in ET with increasing runoff

was mainly attributed to plant physiological control. A decline in the EF caused by a decrease in surface conductance could

be offset by an increase in the EF caused by the effects of climate warming. Nevertheless, in 27.06% of the global land areas,

the EF has declined and has been accompanied by an increase in long-term runoff, which has been observed in most of North

America, parts of South America, the Mediterranean, Africa, Australia, and Southeast China (Fig. 7). These signals further290
emphasized that surface vegetation and its response to a changing environment have a great influence on water cycle

regulation and surface aridity variability.

Figure 7. Signs of covariation in EF and 1–ET/P. Right panel shows area percentage of different signs.

295
In addition, an increase in the EF was accompanied by a long-term decrease in runoff, which accounted for 17.34% of the

land areas, which was mainly due to changes in agricultural irrigation and land use management in places such as Punjab in

India, Central Asia, and downstream Amazon where there is a high density of irrigation. The land areas in which both the EF

and long-term runoff had an increasing trend were typically located in humid regions and accounted for 10.60% of the land

surface area. With an increase in the EF and 1–ET/P, the humid areas of the Amazon, West Africa, Southeast Asia, and the300
coast of Australia have become increasingly wet (Fig. 7). The wet trend in the western Sahel was also captured by the

increases in both EF and 1–ET/P. Additionally, 45.00% of the global land areas showed a decreasing trend in EF and

1−ET/P, and aridity stress posed a larger risk to these regions. In the arid regions of the Amazon, (e.g., the savanna region of

Brazil), the EF and 1–ET/P both exhibited a decreasing trend that corresponded with an arid trend. The Mediterranean region,
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northern Eurasia, and South Africa were also expected to become more arid, which was consistent with existing aridity305
observations and predictions (Padrón et al., 2020; Samaniego et al., 2018; Zhou et al., 2019).

4 Summary

This study provided a strategy for retrieving large-scale ET, as well as provided a quantification of the changes in surface

aridity/wetness using machine learning approach driven by ground observations from globally distributed flux towers and

weather stations. The results had important implications for understanding changes in surface aridity and provided310
constraints for future climate model predictions. Although we attempted to infer latent heat and sensible heat fluxes from in

situ ground observations and used various data quality control methods to reduce uncertainty, the quality of the observational

data from the flux towers and weather stations could have influenced the retrievals.

In the absence of surface regulation of plant physiological effect and changes in biomass, a warming climate was expected to315
intensify ET at a rate roughly governed by the Clausius–Clapeyron relation. However, a long-term relative decrease in

normalized ET accompanied by increasing runoff was found in 27.06% of the global land areas, which was indicative of a

reduction in surface conductance. The findings in this study further emphasized that vegetation controls have strong impacts

in regulating the water cycle and surface aridity variability. Climate models have captured some of these changes; however,

they have also exhibited large regional discrepancies. Therefore, representations of land use management and plant320
physiological effects are essential for improved future predictions with respect to the water, energy, and carbon cycles.

Data/code availability. The data and codes of each step in this study is available upon request. The eddy-covariance data are325
available at http://fluxnet.fluxdata.org/. The Global Summary of the Day and the Global Historical Climatology Network

datasets are collected from the NOAA at https://www.ncdc.noaa.gov/data-access. The data of Global Runoff Data Center are

available at https://www.bafg.de/GRDC/EN/01_GRDC/13_dtbse/database_node.html. Global irrigation data are available at

http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm. The Multivariate ENSO Index (MEI) is available at

https://www.esrl.noaa.gov/psd/enso/mei/.330
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