Responses to Anonymous Referee #1

MS No.: hess-2020-59

General comments:

The authors attempt to combine (1) UAV aerial surveying data with, (2) volunteered geographic information (VGI) and (3) computational flood simulation (CFS). Combining all three approaches is a useful topic and the authors are encouraged to pursue further fieldwork and research in this area. However, the paper skims the surface of each topic, has poor quality input data, buries the details of data analysis, incorporates a number of poor/dubious practices, and hides the quality of output data inside lumped categories. The conclusion of the paper that a higher resolution DEM produces better CFS results is common sense and hardly new. Other factors that are arguably more important are resolving critical sub grid scale features such as walls, and how these can be incorporated into a coarser (or variable resolution computation grid). The factors above and comments below make it impossible to recommend publication.

Response: Thank you for the comments. We made several changes on the validations and added some materials to make it clearer. Please see the following point-by-point responses.

Specific comments:

1 The paper covers a small spatial area and the limitations of UAV's in this regard is not discussed.

Response: Compared with other surveying and mapping methods, UAVs are more easily deployed to quickly update the 3D spatial information after disasters. However, the flight height of UAVs is limited by the regulations in urban areas. Thus, in consideration of the limitation of flight height and the ground resolution requirements in the study area, the UAV was set to fly at a height of 100 meters to perform vertical surface shooting. Relevant discussions have been added to the revised manuscript.

2 Boundary conditions are the edge of the spatial domain are not considered/discussed.

Response: For the CFS, the rainfall and DEM data are given at each grid center within the simulation domain. At the edge of the domain boundary, the water is allowed to outflow freely. The descriptions above are added to the revised manuscript.

3 A freeway/motorway takes up a substantial proportion of the study domain, but is removed from the DEM without sufficient information on how the DEM was estimated where this was removed, or how roughness/friction parameters were estimated.

Response: The freeway is elevated and supported by the pillars at the centerline of the Keelung Road (shown in the following photo). The freeway is removed for the CFS because flood water is allowed to flow across underneath the viaduct. Since the ground elevations were observed by the UAV at the divisions between the viaduct lanes and the buildings on the roadsides, the DEM underneath the conduct can be estimated. For the CFS, the friction parameters are estimated by the Manning's coefficients subject to land covers (Chow, V.T., 1959). The discussions above have been added to the revised manuscript.

Reference: Chow, V.T. (1959) Open Channel Hydraulics. McGraw-Hill, New York.

Fig. 1 The freeway is elevated and supported by the pillars at the centerline of the Keelung Road

4 Vegetation takes up a substantial proportion of the study domain, but is removed from the DEM without sufficient information on how the DEM was estimated where this was removed, or how roughness/friction parameters were estimated.

Response: The regions of vegetation are detected using the ExG-ExR binary index (Meyer and Neto, 2008) by subtracting the alternate excess red vegetative index (ExR = 1.4r-b) from the excess green vegetation index (ExG = 2g-r-b), where r, g, and b are the chromatic coordinates. To consider the friction effects by the roughness of vegetation, the Manning's coefficient is set as 0.04 for the CFS.

Reference: Meyer, G. E. and Neto, J. C.: Verification of color vegetation indices for automated crop imaging applications. Computers and electronics in agriculture, 63(2), 282-293. https://doi.org/10.1016/j.compag.2008.03.009, 2008.

5 The study only uses 3 ground control points for UAV surveys which is not enough. At least 8 required, with many studies recommending 16+.

Response: The coordinates of the three GCPs were obtained by referring to the publicly released values of Taipei City Government and using the static positioning of Global Navigation Satellite System (GNSS) with positional accuracy in centimeter level. The difference between the coordinates obtained by these two methods can be used to evaluate the accuracy of the ground control points. The 0.5m and 5m DEMs are created and validated according to the initial UAV-based DEM with resolution of 0.03m. We have added more discussion on the GCP requirement in the revised manuscript. The reasons we used only three GCPs are (1) the study area is relative small (0.0637 km2) and the GPS information on the UAV could produce 3D coordinate with certain degree of accuracy; (2) there are exactly three GCPs released by the Taipei City Government in this study area and we also double check the released values with the static positioning of Global Navigation Satellite System (GNSS) with positional accuracy in centimeter level; (3) The number of GCP depends on the surveying areas, flight altitudes, resolutions and application goals. According to the user manual of Pix4D (https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf), a minimum number of 3 GCPs is required. To provide more information to readers, we have added more discussion on the GCP requirement in the revised manuscript.

6 There is no discussion of flight regulations limiting UAV operations in urban areas and other similar considerations.

Response: In the study area, the flight height is limited under 100 meters according to the UAV operation regulations in urban areas. This statement has been added to the revised manuscript.

7 The study talks about a computational sewer model being used, but provides no details of this and where sewers were or how flow was accounted for.

Response: The pipelines and manholes of the sewer systems are displayed in the following Figure:

Fig. 2 The pipeline and manholes of the sewer systems in the study area.

When rain drops, the overland flow model (OFM) is firstly initiated for surface water routing. Then, the surface runoff travels for a distance and enters the sewer pipes via the street inlets to trigger the sewer flow model (SFM). When the sewer pipes get full, the sewer water surcharges back onto ground surface via the manholes or inlets. In the simulation process, the water exchanged between the two models are determined by weir and orifice functions via one-to-one relationship as shown in the schematic diagram below. These explanation have been added to the revised manuscript.

Fig. 3 Illustration of the water simulation process between ground surface, inlet, sewer pipe and manhole.

8 The study provides very limited details of the CFS model. Other papers are referenced, but no local information is provided on roughness of different terrain types etc that must be used inside the CFS but are local to the study area.

Response: The Manning's coefficient n is used to represent the surface roughness subject to land covers. Since the land covers are mostly concrete and short grass, the value of n slightly varies from 0.03 to 0.04 according to Chow, V.T. (1959). Although the skin friction represented by Manning's n changes little, the form frictions caused by road curbs and building walls can be more significantly presented as DEM resolution increases. The discussions above and more details about the CFS, as shown in the previous comments, have been added to the revised manuscript.

9 The paper provides irrelevant equations and information about DEM reconstruction and camera lens distortion (section 2.1). These are a red herring and completely irrelevant. The authors used Pix4D to do their aerial image processing and have not implemented the equations themselves. Pix4D or Agisoft Metashape are the appropriate software packages for this type of work, but the authors should spend more time discussing the appropriate workflow for data processing. It is likely that they did not follow a recommended workflow since they only used 3 ground control points.

Response: We revised the Section 2.1 by adding necessary information about the determination of roughness and DEM for areas of vegetation and underneath the viaduct. The Pix4D workflow of data processing is displayed in the following Fig. 4 and is identical to the manual suggestions (Pix4D, 2017). The basic theories of collinearity and lens distortion are keep in the manuscript for reader's reference. According to the Pix4D manual, three GCPs have met the basic requirement for UAV image processing and validation. We have added some discussion on the GCP requirement in the revised manuscript.

Pix4D, User Manual v4.1, pp.26. <u>https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf. 2017</u>

Fig. 4 Conceptual flowchart of this study (the VGI photo was adopted from PTT, Taiwan)

10 The timestamp of the photos from 'picture posting time' is not at all defensible. The authors should extract the EXIF information from the photos and look at image capture time. If images were captured with a cell phone then the timestamps should be accurate.

Response: The VGI photos acquired from internet, for example from the PTT in this study, are usually not the original photos and therefore the EXIF information is not available. We checked it using <u>http://metapicz.com</u>. However, we are appreciate for this suggestion and relevant explanation is added to the revised manuscript.

11 The authors did not adequately survey flood depth at locations from the VGI images. They should have gone out with an RTK GPS survey system and a ruler after the flood and measured the spatial location of depth reference points and the associated depth. Not doing this ('flood depth estimated from photos'') is very poor practice.

Response: Our estimation of flood depth form photos are based on some obvious targets such as wheel size of bikes and height of road curbs. The geometry of these targets are standard so that the flood depth can be estimated by mutual comparison.

12 Other errors throughout the paper from lack of attention to detail (see technical comments below) also call the accuracy and research quality of the paper into question.

Response: All the technical comments have been reviewed and the corresponding revision have been made (see the responses to technical corrections for detail).

13 Scaling of figures 7 and 8 is poorly selected and shows nothing of the fine scale DEM at ground level which is critical for the flood modelling. The selection of this scaling raises questions as to whether it was selected on purpose to hide a poor quality DEM at ground level.

Response: The scaling of the two figures are based on a continuous classification of DEM automatically generated by a GIS software. The ground levels are not displayed in detail because the height of buildings outweighs the variation of ground levels which results in the stretch of color bar. In order to highlight the details of ground level, the scales of these two figures have been adjusted in the revised manuscript and are displayed as below:

Fig. 5 The processed (a) orthophoto and the DEMs with spatial resolution of (b) 0.5 m (c) 5 m

Fig. 6 Simulated flood extents at different time under DEM resolution of 0.5 m (left) and DEM resolution of 5 m (right).

14 Data in Table 4 have been thresholded by the arbitrary category of water depth over 5 cm deep. This simple thresholding makes it far easier for data to appear correct (i.e. assigned to binary over/under categories). The data should compare actually flood depth (from ground

truth measurements at VGI photo locations compared to observed water levels in photos) with flood simulation depth and quantify the error (discrepancy between the two).

Response: For flood impact assessment, binary scaling of flood depth is commonly used because certain water depths have specific meanings. For example, 0.05m represents the height of ankle, when water depth exceeds it, people experience inconvenience; 0.3m is the depth above which furniture damages start to take place; 0.5m of water depth is the lower bound for compensation application in Taiwan. Therefore, the scalings in Table 4 and Figure 8 are not randomly selected but deliberately arranged to highlight the impacts of flooding.

As to the comparison with observed water level, the lack of onsite measured data is always the issue for CFS validation. This study proposes an approach to extract useful information by image processing technologies from VGI and UAV photos for urban flood modeling. From the comparison of CFS results with VGI photos, the building sidewalls and terrain depressions are demonstrated to have a great influence on flood extent, depth, and occurrence which can only be simulated by the CFS with high-resolution DEM. The original statements have been revised according to the above discussions.

15 The paper is well written in some sections, and poorly in others. Many sections would benefit from a rewrite, information being removed, information being added, or information being moved to other sections. This is beyond the scope of what is expected from a reviewer, hence I have only listed some of the obvious errors, suggestions, and grammatical corrections in the technical corrections below. Hopefully these will help the authors to rework the paper to become a high-quality conference paper, or with very thorough reworking and further analysis it may possible for it to be eventually published as a journal article. However, it may be faster for the authors to record another more thorough dataset (in a more suitable location) to analyse for a future journal paper.

Response: The original manuscript has been thoroughly revised by adding necessary information, removing unnecessary parts, arranging the text structures, and correcting the errors in grammar and methodology according to the suggestions by the reviewers. Hopefully, these revisions will make this paper more acceptable for publication in HESS.

Line	Previous version	Correction	Response
Title	Using unmanned aerial vehicle and volunteered geographic information to sophisticate urban flood modelling	Using an unmanned aerial vehicle and volunteered geographic information for sophisticated urban flood modelling	Revised accordingly.
15	simulation (CFS) to reconstruct the flash flood event occurred in 14 June 2015, GongGuan, Taipei.	simulation (CFS) to reconstruct the flash flood event that occurred on the 14 th of June 2015 in GongGuan, Taipei.	Revised accordingly.
17	acquired from social network are served to establish and validate the CFS model,	acquired from social networks are used to establish and validate the CFS model.	Revised accordingly.

Technical corrections:

	respectively.		
19	The results show that	The results show that the	Revised accordingly.
	flood scenario	flood scenario	
26	Flash flooding	Flash flooding resulted	Revised accordingly.
	resulted from	from extremely heavy	
4.7	extreme heavy rainfall	rainfall	
41	DEM data are derived	DEM data are derived from	Revised accordingly.
50	by airborne Lidar	airborne Lidar	D 1 1 1
50	two raising techniques	two rising techniques	Revised accordingly.
	namely unmanned	namely unmanned aerial	
52	(DEM) derived by	(DEM) derived from	Povisod accordingly
55	(DEW) derived by	(DEW) derived from	Revised accordingry.
	nerformances in urban	similar performance in urban	
58	study of 2013 Boulder	study of the 2013 Boulder	Revised accordingly
50	flood	flood	ite vised accordingly.
64	The DEM generated by	Presumably this should be:	The original statements is not
0.	UAV can be served as	"The DEM generated from	clear and has been revised as
	the boundary conditions	UAV aerial imagery can be	"The DEM generated from UAV
	to increase the spatial	used as the boundary	provides detail terrain of an urban
	resolution of CFS	conditions to increase the	area which significantly increases
		spatial resolution of CFS"	the spatial resolution of CFS
			compared to traditional practices"
		However, I have no idea	Because the ground levels are
		what they are talking about	given in grid unit in CFS, there
		with 'boundary conditions	exists an invisible wall between
		to increase the spatial	two adjacent grids with different
		resolution of CFS?? DEM	elevations. When DEM resolution
		resolution is arbitrary and	varies, the heights of these walls
		LIDAR data are recompled	vary as well that affects the inter-
		and output Boundary	cell water communications
		conditions at the edges of	
		the spatial extent of the	
		computational domain	
		should be properly	
		addressed and this	
		information is not clear in	
		the paper.	
74	rain gauge are shown	rain gauge are shown in	Revised accordingly.
	in the Fig. 2. The	Fig. 2. The DEM derived	
	DEM derived by UAV	from UAV aerial imagery	
	and the flood photos	and the flood photos	
	collected from VGI are	collected from VGI are	
	served to establish and	used to establish and	
	validate the CFS,	validate the CFS.	
82.06	respectively	Remove this section They	We revised the sentences and
02-90		do not independently	mentioned the process is based on
		implement this technique.	the Pix4D but the basic theory of

97	DJI Phantom 2 Vision+ (Da-Jiang Innovations) which weights 1.2 kg and has a camera with 4384×2466 pixels.	They simply use Pix4D and the actual algorithms contained within are far more complex than the information provided in this section. Focus on the workflow for image processing in Pix4D. DJI Phantom 2 Vision+ (Da-Jiang Innovations) which weighs 1.2 kg and has a camera with resolution of 4384×2466 pixels.	the collinearity condition are keep in the manuscript for readers' reference. Revised accordingly.
105- 108		3x GCPs is not nearly enough!	According to the Pix4D manual, three GCPs have met the basic requirement for DEM processing (Pix4D, 2017). We have added more discussion on the GCP requirement in the revised manuscript.
109- 116		Remove the section on lens distortion. Completely irrelevant to the study. Again Pix4D calculates and accounts for lens distortion. They do not do it themselves. Remove table 2 about the camera on the UAV. It is irrelevant and does not generalise to the equipment used by other researchers.	We revised the sentences and mentioned the process is based on the Pix4D but the basic theory of the lens distortion are keep in the manuscript for readers' reference.
118	The vegetation such as shrubs and grasses is detected by	Vegetation such as shrubs and grass were detected by	Revised accordingly.
117- 125		I am dubious about their psudo NDVI method of vegetation detection from RGB imagery and the thresholding to detect the viaduct. How 'removed' elements were then accounted for is not stated. Interpolation how? What roughness values were assigned to the unknown terrain? How was water drainage accounted for on building roofs? Down pipes	The regions of vegetation are detected using the ExG-ExR binary index (Meyer and Neto, 2008) by subtracting the alternate excess red vegetative index (ExR = $1.4r-b$) from the excess green vegetation index (ExG = $2g-r-b$), where r, g, and b are the chromatic coordinates. To consider the friction effects by the roughness of vegetation, the Manning's coefficient is set as 0.04 for CFS. The water accumulated on rooftops because

		etc? How were walls and other important aspects accounted for?	there are usually parapet walls with about 1 meter height on the rooftops around the borders of buildings in Taiwan. When the DEM resolution is high enough, the elevations of parapet walls can be represented by the grid- based mesh system in CFS and the water detention on the rooftops can be simulated. The rougher the grid/DEM resolutions, the faster the stored water will evacuate through the gaps between two adjacent grid cells.
130- 134	Based upon the Act, the VGI data used in this study are collected from the most famous Bulletin Board System (BBS) in Taiwan named PTT. There are 8 photos collected from PTT posted during 15:20~16:30 on 14 June 2015. From these photos, we visually identified 8 locations in the study area as shown in Fig. 6. The timestamp and the virtual water depths in these photos are served to validate the CFS model. Although the timestamp when photos were posted on internet may	Based upon the Act, the VGI data used in this study were collected from the most well-known Bulletin Board System (BBS) in Taiwan named PTT. There were 8 photos collected from PTT posted during 15:20~16:30 on 14 June 2015. From these photos, we visually identified 8 locations in the study area as shown in Fig. 6. The timestamp and the virtual water depths in these photos were used to validate the CFS model. Although the timestamp when photos were posted on the internet may	Revised accordingly.
135-137		Photo capture timestamps could be extracted from EXIF information stored within the image data. Most images have this info. Sometimes GPS data will also be contained in EXIF information. This should be checked. Flood depth estimation from photos is very poor	The photos acquired from PTT were not the original photos and the EXIF information were not available. We checked with http://metapicz.com/

		practice. Field surveying after floods should be used to measure water depths corresponding to observations from photos.	
139- 150		It is not clear where the sewer system is within the computational domain. It is also not clear how boundary conditions at the edges of the computation domain are accounted for (i.e. flow in and out of the domain). The sewer system will also connect out of the computational domain, the effects of which should be accounted for.	The sewer system is displayed in the response to specific comments #7. The surface water and pipe flow are allowed to flow freely at the edges of the computation domain.
153- 157		Three GCPs are not enough! Agisoft recommends 10- 15+ <u>https://www.agisoft.com/inde</u> <u>x.php?id=34</u> More GCPs are needed if also used for independent validation of DEM and Orthomosaic spatial accuracy.	This recommendation is for another software "PhotoScan", not the one "Pix4D" used in this study. According to Pix4D's manual, three GCPs are enough. We have added more discussion on the GCP requirement.
159- 161		This is methods not results.	The sentence "to discover the influence of DEM" has been moved to method section 2.3.
159	DEM resolution on flood simulation, the gird meshes of the CFS	DEM resolution on flood simulation, the grid m e s h e s of the CFS	"grid" has been corrected.
163	in which the VGI points out of the 8 locations are marked if the simulated flood depths exceed 0.05 m.	in which the VGI points of the 8 locations are marked if the simulated flood depth exceeds 0.05 m.	Revised accordingly.
163- 169		This >0.05 m depth criteria is completely arbitrary and is a way to divide the data into two lumped categories (flood vs no flood) which makes their results appear artificially better. They should compare simulated with measured depth directly and quantify the error properly.	See the responses to specific comment #14 for detail.

173	"This implies that, when DEM resolution decreases, the topography becomes rugged, the friction increases, and the flood water travels slower."	Not really! How was sub grid scale roughness accounted for? Should this say: "This implies that, when DEM resolution increases, the topography becomes rugged, the friction increases, and the simulated flood water travels slower."	Because the ground levels are given in grid unit in CFS, there exists an invisible wall between two adjacent grids with different elevations. When DEM resolutions decrease, these walls become higher which result in larger blocking effects that reduce inter-cell water communications. This phenomenon explains why the flood water travels slower in
176-182	The timestamps and estimated water depths (WD) are obtained from the VGI photos in Fig. 6, and the flood durations at the eight VGI points when the water depth exceeds 0.05 m are determined based on the CFS results. It is seen that the timestamps of VGI photos all lie within the simulated flood duration at the points with observed WD larger than 0.05 m (points #1, #2, #4, #7, and #8). At the rest points, the simulated and observed WDs are both smaller than 0.5 m. This good agreement between observation and simulation reveals that the flood model is accurate in rebuilding the process of flood transport under both DEM resolutions.	This arbitrary lumping into >0.05 m depth does not correspond to 'good agreement'. They should measure flood depths properly, not just estimate them, then quantify the error (predicted – observed). There is also presumably a typo of "WDs are both smaller than 0.5 m" which likely should be "WDs are both smaller than 0.05 m".	The typo has been corrected.
200	For disaster emergency response	For disaster emergency response at regional	Revised accordingly.
	in regional scale, flood simulation under coarse grid resolution is enough to gain a fast and overall	scales, flood simulation under coarse grid resolution is enough to gain a fast and overall understanding of flood patterns.	

	understanding of flood		
205	pattern.		D'1 1'1
205	cFS in urban area is a challenging	CFS in urban areas is a challenging	Revised accordingly.
206	Aided by the rapid growing	Aided by the rapidly growing	Revised accordingly.
208	we adopt the UAV and VGI to sophisticate CFS modeling in the reconstruction of a flash flood event occurred	we use UAV and VGI data for sophisticated CFS modeling to reconstruct a flash flood event that occurred	Revised accordingly.
215	applicable in acquiring necessary data for high-resolution CFS.	applicable for acquiring the necessary data for high-resolution CFS.	Revised accordingly.
Table 1		Sloppy typos. Possibly indicative of many more hidden errors. "San Paulo" -> "São Paulo" "Daintree, New Zealand" -> "Daintree, Australia"	Table 1 has been deleted.
Table 2		Irrelevant. All other researchers will have different cameras and don't care about the specific camera used. Just discuss the workflow for image processing in PIX4D where camera parameters were determined and imagery is de-warped before further processing.	Although other researchers will have different cameras but we believe that this information is fundamental information for similar applications that should pay proper attention.
Table 3		When generating a georeferenced orthomosaic or DEM from aerial imagery and Structure from Motion (SfM) techniques, more GCPs are needed for orthorectification and DEM generation than just 3 validation points. Yes, the UAV has a rough GPS location, but it is not RTK or PPK accuracy and should only be used for aligning images. Or if accurate DEMs are not required then at least discuss this. It is particularly critical for vertical elevations and	The coordinates of the three GCPs were obtained by referring to the publicly released values by Taipei City Government and We further used the static positioning of Global Navigation Satellite System (GNSS) with positional accuracy in centimeter level to double check these values. The difference between the coordinates obtained by these two methods can be used to evaluate the accuracy of the ground control points. We have added more discussion on the GCP requirement in the revised manuscript

	generation of DEMs to use	
	enough GCPs distributed	
	throughout the study site.	
Table	This is not a 'comparison	The thresholds are deliberate
4	between CFS and VGI	arranged to assess the flood
•	results' This is arbitrary	impacts Please see the responses
	thresholding to make data	to specific comments #14 for
	correspondence look better	details
	Just show predicted vs	details.
	observed and quantify the	
	differencel	
Eigung	Their workflow doorn't	The DivAD workflow of data
rigure	Their worknow doesn't	The PIX4D worknow of data
3	make a lot of sense and	processing is identical to the
	doesn't follow the same	suggestions in references. we
	sequence/layout as most	have added more discussion on
	other people who use Pix4D	the GCP requirement in the
	or Agisoft Metashape for	revised manuscript.
	SFM.	
	Also, how do they claim to	
	use only 3 GCPs for 'Point	
	cloud with absolute 3D	
	coordinates', then at the	
	next step also do 'Accuracy	
	assessment'? Independent	
	GCPs from those used for	
	georeferencing are needed	
	for accuracy assessment.	
Figure	This is irrelevant to the	Figure 4 has been deleted.
4	study. They have not	
	independently implemented	
	these algorithms, but are just	
	using Pix4D, so no point	
	showing any diagrams like	
	this.	
Figure	Motorway takes up a large	The freeway is elevated and
5	part of the DEM, as does	supported by the pillars at the
	vegetation. It is not at all	centerline of the Keelung Road.
	clear how this is accounted	Since the elevations of the pillars are
	for after it is 'removed'.	higher than the surrounding road
	The 3 GCPs are not enough.	surface, it has no impact on the flow.
	nor are they properly	The freeway is removed for CFS
	distributed throughout the	because flood water is allowed to
	study domain	now across underneath the viaduct.
	There are unknown edge	observed by the UAV from the
	effects in the	divisions between the two viaduct
	orthomosaic/DEM Usually	lanes and those between viaducts and
	a UAV is set to fly a	the buildings on the roadsides, the
	regular grid with zig-zag	DEM underneath the conduct can be
	lines with 80% front	estimated.
	overlan of images and 60%	As for the overlap rate, the front
	overup of muges and 0070	

	side overlap of images (more overlap is better). This then generates a DEM and orthomosaic where the edges are low accuracy (due to insufficient overlap), with edge areas being cropped out of the final orthomosaic and DEM. Here there is a strange scattering of points and rough boundaries at the edges of the orthomosaic which raises questions about the accuracy of the orthomosaic, DEM and the UAV flight paths used. The orthomosaic and DEM are cropped in figure 6 and beyond (which is good), however the anomalies in figure 5 are not accounted	overlap is 85% while side overlap is 75%. The coverage of each photo is shown in the following figure. We have added these information in the revised manuscript.
	for.	photos
Figure 6	Check EXIF information for photo capture time. This information may be scrubbed from images automatically by PTT, but is worth checking. Photo locations should be surveyed with RTK GPS and depth measured with a ruler by comparing water level on reference objects such as walls, buildings, bike tires etc.	The photos acquired from PTT were not the original photos and the EXIF information were not available.
Figure 7	The colour scheme and graduation does not resolve the finer scale features needed for CFS. It would be better with a logarithmic scale. Or just from 5-6 m and buildings will all be one colour. Potentially the colour scheme was selected to hide a poor quality underlying DEM.	The color scheme has been changed to highlight the details in DEM with different resolutions.
Figure 8	Again poor selection of DEM scale. Lumped flood bins used	The scaling of the figure has been adjusted to highlight the DEM details on ground level. The

	rather than a continuous colour bar. Why? To hide problems? Or just poor choice of data representation? Where are the sewers and manholes? How are they accounted for? Why did they choose to run the study in an area where the motorway blocks so much of the computational domain?	scaling of flood depth is arranged on specific purposes. The figures displayed sewer and manholes are added. Details can be found in the responses to specific comments #7, #13, and #14.
Figure 9	Validation? Upstream flow into computational domain? Which is better? Results of 0.5m or 5m simulation? No real way to prove it as no external validation. The VGI data is hardly proof. Even if 0.5m grid is more accurate (as everyone expects) this is not news. Finer grid usually gives better computational results.	Figure 9 shows the comparison of CFS results with different DEM resolutions. The validation of CFS results is not the point here because the flood model has been validated elsewhere in previous papers. In fact, the CFS results in both cases show good agreement with the VGI photos. Indeed, finer grid gives better CFS results is a common sense, but how to prove it is another story. The founding in this study is symbolic because it is the first time CFS can actually be conducted with 0.5m DEM resolutions with the aid of UAV and demonstrate its strength in considering building sidewalls and terrain depressions on water transport.

Further specific suggestions:

Section	Suggestion	Response
Abstract	Quantify the accuracy, rather than saying	Revised accordingly.
	'more accurately'.	
1 Introduction	DEM resolution is important, but the proper	The considerations of wall and bridge
	representation of sub grid scale features is	pillars and the roughness
	often more important (e.g. wall, stop-banks,	parameterization can be found in the
	culverts, bridges etc). How these are	responses to specific comments #3,
	represented in a coarse DEM is critical.	#4, and #8.
	Multi resolution DEMs are possible. Also	The computational time for the CFS
	discuss how roughness is parameterised. I.e.	are 1,127 mins and 16 mins (with Intel
	if a modelling cell contains vegetation vs	I7 processor at 4.2 GHz) for the cases
	rocks vs concrete.	with 0.5m and 5.0m grid size,
	This is also relevant at the end of the results	respectively.

	section where it talks about computational	
	efficiency and grid resolution.	
1 Introduction	Discusses DEMs from UAVs and LIDAR.	Revised accordingly.
	See technical correction above about	
	explicitly stating 'UAV aerial imagery'.	
	LIDAR can also be flown on UAVs.	
4 Conclusions	4 Summary and conclusions	Revised accordingly.