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ABSTRACT 

A general analytical model for three-dimensional flow in a three-layered aquifer system with 

a partial penetration well having a variable discharge of pumping is developed by taking 

account of the interface flow on the adjacent layers. This general three-layer system includes 

the conventional aquitard-aquifer-aquitard system as a subset and does not require that the 

permeability contrasts of different layers must be greater than a few orders of magnitude, and 

does not ignore any flow components (either vertical or horizontal) in any particular layer. 

The pumping well of infinitesimal radius is screened at any portion of the middle layer. Three 

widely used top and bottom boundary conditions are considered that can be specified as a 

constant-head boundary (Case1) or a no-flux boundary (Case 2), and a constant-head 

boundary at the top in combination with a no-flux boundary at the bottom (Case 3). Laplace 

domain solutions for dimensionless drawdown are obtained by the use of Hankel 

transformation, and associated time-domain solutions are evaluated numerically. The newly 

obtained solutions include some available solutions for two- or single-layer aquifer systems 

as subsets. The drawdowns for individual layers caused by a well with an exponentially 

decreased discharge are explored as an example of illustration. The results indicate that the 

pumped layer drawdown close to the partially penetrated well is mainly influenced by the 

variable pumping rate. The late-time drawdowns for all layers are remarkably affected by the 

chosen types of top and bottom boundary conditions, and the drawdown for Case 3 is greater 

than that for Case 1 and smaller than that for Case 2. Additionally, the effect of the pumped 

layer anisotropy on drawdowns in the three-layer system is significant, and the anisotropy of 

the unpumped layers significantly affects the drawdown in the whole aquifer system without 
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large contrast of hydraulic conductivity between the unpumped layers and the pumped layer. 

The drawdowns in all three layers are greatly affected by the location and length of well 

screen, and a larger drawdown can be seen at the position that is closer to the middle point of 

the screen of the partially penetrating pumping well. 

Keywords: Three-layer system; Well partial penetration; Variable discharge; Top and bottom 

boundary; Semi-analytical solution.  

https://doi.org/10.5194/hess-2020-586
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.






1. Introduction 

Most groundwater flow model concerning a pumping and/or injection well will have the 

pumping and observation wells in the same aquifer (Yeh and Chang, 2013; Houben, 2015). 

For a multi-aquifer system, the pumping and observation wells may be in the same aquifer or 

in different aquifers. As different aquifers in a multi-aquifer system are hydraulically 

connected, pumping in a specific aquifer will inevitably induce hydraulic responses over the 

entire multi-aquifer system, and the observation well in an unpumped aquifer will also record 

the drawdown information associated with pumping in the pumped aquifer. Therefore, the 

questions we need to answer are: How to interpret the drawdown information collected at an 

unpumped aquifer from the pumped aquifer? And furthermore, is that feasible to conduct 

aquifer characterization and to obtain the aquifer hydraulic parameters when the drawdown 

information is collected at an unpumped aquifer from the pumped aquifer? To answer these 

questions, one must first develop a robust groundwater flow model in a fully coupled 

multi-aquifer system. Unfortunately, the present models on this subject are severely limited to 

some demanding and often time unrealistic restrictions.  

The present groundwater flow models related to multi-layer aquifer systems are usually 

established by solving the coupled partial differential equation group of groundwater flow 

explicitly or with a matrix solver (Bakker, 2013; Chen and Morohunfola, 1993; Cihan et al., 

2011; Hantush, 1967; Hunt, 2005; Meonch, 1985; Neuman and Witherspoon, 1969). In those 

models, some strong assumptions are often invoked to simplify the system. For instance, it is 

commonly assumed that the permeability contrasts among two adjacent aquifers are more 

than a few orders of magnitude, thus flow in the much less permeable layer is assumed to be 
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perpendicular to the layering while the flow in the much greater permeability layer is 

assumed to be parallel to the layering (Hantush, 1967; Neuman and Witherspoon, 1969). 

Such a simplification may be acceptable for investigating an aquifer-aquitard system as the 

aquitard/aquifer permeability contrasts can be indeed as large as a few orders of magnitude 

(Hantush, 1964; Lin et al., 2019; Neuman, 1968; Yeh and Chang, 2013). But this assumption 

is baseless for a general multi-aquifer system in which the permeability contrasts among 

different layers are much modest. Another commonly used assumption in present models is 

that mass exchange between two adjacent aquifers can be treated as a volumetric sink/source 

incorporated into the governing equations of flow in each individual layer (the so-called 

Hantush-Jacob assumption) (Hantush and Jacob, 1955). This assumption is also problematic 

in the sense that it does not honor the fact that mass exchange between two adjacent layers 

always occurs at the interfaces of those adjacent layers rather than as a volumetric sink/source 

inside those layers, a treatment that can generate considerable errors, as documented in 

numerous investigations (e.g. Hantush, 1967; Feng and Zhan, 2015; Feng et al., 2019, 2020; 

Zhan and Bian, 2006). A third simplification in present models is to assume a constant 

pumping rate (Hantush, 1964; Yeh and Chang, 2013). The constant pumping rate is desirable 

but is quite difficult to maintain in actual pumping scenarios which almost always involve 

variable pumping rates because of many reasons such as the temporary loss of power, 

increased drawdown in the pumping well with time (which makes it more difficult to lift 

water from the pumping well) and other constrains in conducting pumping tests in the field 

(Chen et al., 2020; Hantush, 1964; Mishra et al., 2013; Sen and Altunkaynak, 2004; Singh, 

2009; Wen et al., 2017).  
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In theory, numerical modeling can avoid many restrictions mentioned above to 

investigate a multi-aquifer system, but it has some issues that are sometimes not easy to 

resolve. For instance, it is not straightforward to use a numerical model for aquifer 

characterization to obtain the aquifer parameters, particularly when dealing with a 

multi-aquifer system involving many hydraulic parameters for multiple aquifers. When the 

numerical model has to be used for such a purpose, it often involves either trial-and-error or 

automatic optimization procedures to minimize the model-generated drawdown with the 

observed drawdown (Mohanty et al., 2013;Jeong and Park; 2019; Rajaee, et al., 2019). This 

process can sometimes lead to non-uniqueness of inverted aquifer parameters (Rahman et al., 

2020). Another issue associated with numerical model is that without a benchmark analytical 

solution, it is unknown how much numerical errors have been involved in the numerical 

model. For a multi-aquifer system, the numerical errors can be considerable near the 

interfaces of different aquifers where the aquifer parameters change suddenly (Neuman, 1968; 

Louwyck et al., 2012). If one recalls that any numerical approaches (no matter they are 

finite-difference, finite-element, boundary-element, or others) essentially involve some sorts 

of smoothing or average schemes to approximate the mass conservation law in a discrete 

sense, then it is not surprise to know that numerical errors are prone to be large near sharp 

interfaces (Cihan et al., 2011; Neuman, 1968; Li and Neuman, 2007; Loudyi et al., 2007). Of 

course, one can use gradually finer meshes when approaching the interfaces of different 

aquifers to minimize the numerical errors, but such a procedure can sometimes increase the 

computational cost rapidly, particularly when dealing with three-dimensional (3D) flow in a 

multi-aquifer system (Feng et al., 2020; Rajaee, et al., 2019; Rahman et al., 2020; Rühaak et 
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al., 2008). Overall, establishing a sufficiently accurate numerical model for groundwater flow 

in a multi-aquifer system is feasible, but often time requires considerable preparations and 

computational cost.     

Based on above considerations, we are going to establish a robust and generic 3D 

groundwater flow in a three-aquifer system in this investigation. The generality of this work 

is reflected on the following aspects. Firstly, it does not put any constrains on the 

permeability contrasts among different aquifers involved. Such a generality will make this 

work much more appealing to deal with a vast number of cases in actual aquifer setting. It 

also encompasses previous aquifer-aquitard two-layer system and aquitard-aquifer-aquitard 

three-layer systems as subsets. It can even be applied for an extreme two-layer or three-layer 

system such as a fracture-rock two-layer system or a rock-fracture-rock three-layer system 

when flow can occur in both fractures and rock matrix. Furthermore, for the 

rock-fracture-rock three-layer system, the rocks adjacent to the fracture can be either identical 

with the same hydraulic properties or have different lithology and hydraulic properties. The 

two-aquifer system investigated by Feng et al. (2019) is also a subset of this study. Secondly, 

this study honors the mass exchange among different aquifers as an interface flow 

phenomenon, not as a volumetric sink/source term, as in the Hantush-Jacob assumption. 

Thirdly, the pumping rate can be any given function of time instead of being a constant. This 

is a distinctive difference from the three-aquifer study of Feng et al. (2020) involving 

constant pumping rate. Fourthly, three widely used top and bottom boundary conditions are 

considered that can be specified as a constant-head boundary (Case1) or a no-flux boundary 

(Case 2), and a constant-head boundary at the top in combination with a no-flux boundary at 
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the bottom (Case 3). This is also in contrast with Feng et al. (2019, 2020) which cannot 

investigate the combined effects of the top and bottom boundaries simultaneously. In the 

following sections, semi-analytical drawdown solutions in nondimensional forms in a genetic 

three-layer system are obtained by performing Laplace-Hankel transform and eventually the 

real time solutions are calculated by the method of numerical inversion. Finally, as an 

example of illustration, the characteristics of drawdown are thoroughly investigated due to a 

partially penetrated well pumped at an exponentially decreased discharge function. The 

results are discussed extensively and their applications are elaborated as well. 

2. Methodology 

2.1 Mathematical model

 

Fig.1 Schematic diagram of a three-layer aquifer system with a partial penetration well 

 

Fig. 1 displays an infinitesimal-radius well with a variable discharge Q(t) in a general 

three-layer aquifer system of unbound lateral extension. The pumping well is partially 

penetrated in the middle layer of the system with a screen length from d to l shown in this 
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figure. Each layer of constant thickness is homogeneous and anisotropic. Three-dimensional 

flow is included in all layers. The interface flow at the two neighboring layers is linked with 

head and flux continuity conditions. It is noted that three different cases presented by 

Hantush (1960) are concluded, specifically, the boundaries at the top and bottom are 

simultaneously constant-head boundaries (Case 1), no-flux boundaries (Case 2), or a 

combination of a constant-head top boundary and no-flux bottom boundary (Case 3). The 

cylindrical coordinate origin is at the intersection of the well axis and the bottom of the 

middle-pumped layer. 

According to the conceptual model above, the equations that govern the transient 

drawdown distribution for flow to a pumping well can be given by: 

2

2

( ) ( ) ( )ri i i i
zi si

K s r z t s r z t s r z t
r K S

r r r tz

          

, , , , , ,
  (1) 

where s (r, z, t) denotes drawdown at space coordinate (radial distance r [L], vertical distance 

z [L]) and time coordinate (pumping time t [L]); Kr and Kz indicate, respectively, the 

hydraulic conductivities in the radial and vertical direction [L/T]; Ss refers to specific storage 

[1/L], and  i = 1, 2, 3 designate, respectively, the middle-pumped layer, upper layer and 

lower layer.  

The initial conditions of the aquifer system can be written as: 

 , ,0 0is r z    (2) 

The boundary of the aquifer system at infinity yields: 

( ) 0is z t , ,   (3) 

The pumping well of infinitesimal diameter is partially penetrated in the middle layer, 

the wellbore boundary condition is subject to (Hantush, 1964, Liang et al, 2018): 
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  (4) 

in which  Q t  represents the well discharge of pumping [L3T-1], B1 refers to the thickness of 

the middle-pumped aquifer [L]. It is notable that an assumption of the well discharge 

uniformly distributed along the screened section of the partially penetrating well is used 

herein. This, of course, is a simplification for the sake of mathematical modeling. Fortunately, 

this simplification is proven to be sufficiently accurate for regions that are not extremely 

close to the pumping well (within a few well radii) (Chang and Yeh, 2013).  

As an example of illustration, the pumping rate used in this study varies exponentially 

with the pumping time in the form (Hantush, 1964b, 1966; Wen et al., 2017): 

   1
tQ t Q Q Q e      (5) 

which is based on lots of field data and available works (Chen et al., 2020; Feng et al., 2019; 

Sen and Altunkaynak, 2004). The symbol Q and Q1 represent the final (constant) and initial 

well discharge, respectively [L3T-1], and α designates decay constant obtained from the 

measured data of pumping [T-1].  

The inner well-face boundary conditions at the upper and lower unpumped layers yield: 

32

0 0
lim lim 0
 


 

 r r

ss
r r

r r
  (6) 

And the boundary condition at the interface between the middle-pumped aquifer and the 

adjacent upper layer (z = B1) requires that: 

   1 2 1, , , , ,s r z t s r z t z B    (7) 

and 
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,1 ,2 1

, , , ,
,z z

s r z t s r z t
K K z B

z z

 
 

 
  (8) 

The continuity of hydraulic connection between the middle-pumped layer and the lower 

unpumped layer (z = 0) can be written as: 

   1 3, , , , , 0s r z t s r z t z    (9) 

and 

   1 3
1 3

, , , ,
, 0z z

s r z t s r z t
K K z

z z

 
 

 
  (10) 

The top boundary condition at the upper unpumped layer (z = B2) and the bottom 

boundary condition at the lower unpumped layer (z = B3) of the aquifer system can be, in the 

manner of Hantush (1960) and Moench (1985), expressed in three ways. 

For Case 1, the constant-head boundaries at both top and bottom boundaries can be 

respectively written as 

 2 2, , 0,s r z t z B    (11) 

and 

 3 3, , 0,s r z t z B     (12) 

For Case 2, the no-flux boundary at both top and bottom boundaries yield 

 2
2

, ,
0,

s r z t
z B

z


 


  (13) 

and 

 3
3

, ,
0,

s r z t
z B

z


  


  (14) 

For Case 3, the constant-head boundary at the top and the no-flux boundary at the bottom are 

respectively 

 2 2, , 0,s r z t z B    (15) 

and 
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3

, ,
0,

s r z t
z B

z


  


  (16) 

It should be remarked that the adopted three different types of top and bottom 

boundaries expressed in Eqs. (11)–(16) are commonly encountered in practice. In some cases, 

the upper layer is covered with ponded water, the upper and lower layers are, respectively, 

overlain and underlain a layer of a highly transmissivity, or the induced drawdown at the 

top/bottom boundary is not affected by pumping. Under such conditions, the constant-head 

condition can be imposed at the boundary. On the other hand, if there is an impermeable layer 

below the lower layer or above the upper layer, the no-flux boundary can be adopted 

correspondingly. As for the relevant literature, one may consult Baker (2006), Chen et al. 

(2020), Feng et al. (2019, 2020), Feng and Zhan (2015, 2016, 2019), Hantush (1960, 1964), 

Hemker and Maas (1987), Hunt (2005), Moehch (1985), Neuman and Witherspoon (1969), 

Sepúlveda (2008), Wang et al. (2015) and Wen et al. (2011, 2013). 

2.2 Dimensionless solutions 

2.2.1 Dimensionless equations 

Table 1 Dimensionless variables and parameters 

1/Dr r B  /ri ri SiK S   1 1 2 1/    

1/Dl l B  /zi zi SiK S   2 2 3 2/    

1/Dz z B  2 2 1/DB B B  1 14 /Di r is K B s Q 

1/Dd d B  3 3 1/DB B B  2
1 1 1/D S rS B K  

2
1 1/D rt t B  1/Dri ri r    2 2( ) /i Dri Dzip     

2 2 1/z zK K   1/Dzi zi r     1 2 2 3 31D DB B     

1 1 /DQ Q Q  3 3 2/z zK K    2 2 2 3 31D DB B     
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When dealing with complex hydrodynamic systems such as this study, 

nondimensionalization has the advantage of untangling parameter correlation thus reducing 

the number of independent free parameters controlling the system, thus is employed here.  

Using the defined nondimensional variables listed in Table 1, Eqs. (1)-(16) become the 

following equations in the dimensionless forms as:   

2 2

2 2

1Di Di Di Di
Dri Dzi

D D DD D

s s s s

r r tr z
 

    
      

 (17) 

 , ,0 0Di D Ds r z    (18) 

( ) 0Di D Ds z t , ,   (19) 

 1

0

0 1

lim 2

0 0

D D

D DD
D D D Dr

D D D

D D

l z

Q ts
r d z l

r l d

z d



 


    
 

  

  (20) 

   11 1 D Dt
D DQ t Q e      (21) 

2

0
lim 0
D

D
Dr

D

s
r

r





  (22) 

3

0
lim 0
D

D
Dr

D

s
r

r





  (23) 

   1 2, , , , , 1D D D D D D D D Ds r z t s r z t z    (24) 

   1 2
1

, , , ,
, 1D D D D D D D D

D
D D

s r z t s r z t
z

z z


 
 

 
  (25) 

   1 3, , , , , 0D D D D D D D D Ds r z t s r z t z    (26) 

   1 3
2

, , , ,
, 0D D D D D D D D

D
D D

s r z t s r z t
z

z z


 
 

 
  (27) 

Case 1,  

 2 2, , 0,D D D D D Ds r z t z B    (28) 

 3 3, , 0,D D D D Ds r z t z B     (29) 

Case 2,  
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2

, ,
0,D D D D

D D

s r z t
z B

z


 


  (30) 

 3
3

, ,
0,D D D D

D D
D

s r z t
z B

z


  


  (31) 

Case 3, 

 2 2, , 0,D D D D D Ds r z t z B    (32) 

 3
3

, ,
0,D D D D

D D
D

s r z t
z B

z


  


  (33) 

in which the subscript ‘ D ’ designates nondimensional terms. 

2.2.2 Dimensionless solutions for Case 1 

With the help of the constant-head boundary at the top and bottom expressed in Eqs. (28) 

and (29), the drawdown solutions in the three layers can be derived by performing 

Laplace-Hankel transform, the detailed derivations are shown in Appendix A. 

The dimensionless drawdown for the middle-pumped layer in Laplace space yields 

        1 2 11 1 12 1 00
ˆ ˆ ˆ, , 4 ,0, ,1, /      


    D D D D D Ds u z p u r p f u r p f J r d   (34a) 

where 

     
 

1 1

2
1 1

ˆcosh ,ˆ , , 2 D D D
D D

Dz D D

u z
u z p

l d

   


 





  (34b) 

1

0

0

D D D D

D D D D

D D D D

z l l z

d z l

d z z d


  

  
   

  (34c) 

 
       

 
1 1 1 1

1
1

sin 1 cosh cosh 1 sinh
ˆ ,

sinh
D D D D

D D

l z z d
u z

   
 


           (34d) 

       11 1 1 2 1 1 1 2sinh 1 cosh cosh cosh 1 sinh sinhD Df z z                    (34e) 

     12 1 1 2 2 1 1 2sinh cosh cosh cosh sinh sinhD Df z z            (34f) 

         
         

1 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

       

       
  (34g) 

in which J0(ꞏ) represents the zero-order and first kind Bessel function, p and λ refer, 
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respectively, to the variables of the transformations of Laplace and Hankel, and, accordingly, 

over bar and over hat sign indicate , respectively, the Laplace and Hankel domain parameter, 

ˆ
Du  provided by Feng et al. (2019) indicates the Hantush (1964) solution in Laplace-Hankel 

domain for a partially penetration well with variable discharge in a single confined aquifer.  

The dimensionless solution of drawdown in the upper unpumped layer yields 

 
            2 2

2 3 3 2 2 1 1 00
1

sinh
ˆ ˆ8 cosh ,0, ,1, cosh sinh


      


        D D

D D D D D

B z
s B u r p u r p J r  (35) 

The semi-analytical solution of dimensionless drawdown in the lower unpumped layer is 

written as 

 
        3 3

3 31 1 2 2 00
1

sinh
ˆ ˆ8 ,0, ,1, cosh 1


    


        D D

D D D D D

B z
s u r p g u r p B J r d  (36a) 

where 

   31 1 2 2 1 2 2 1cosh 1 cosh sinh 1 sinhD Dg B B                (36b) 

2.2.3 Dimensionless solutions for Case 2 

If the boundaries at the top and bottom of the aquifer system satisfy the no-flux 

boundary written in Eqs.(30)-(31), one can follow the procedures listed in Appendix A and 

develop the semi-analytical solutions of dimensionless drawdown in individual layer of the 

three-layer aquifer system. The drawdown solution in Laplace-domain in the middle-pumped 

layer yields 

        1 2 21 1 22 2 00
ˆ ˆ ˆ ˆ, , 4 ,0, ,1, /      


    D D D D D Ds u z p u r p f u r p f J r d   (37a) 

where 

       21 1 2 1 1 1 1 2sinh 1 cosh cosh cosh 1 sinh sinhD Df z z                     (37b) 

     22 1 1 2 2 1 1 2sinh cosh cosh cosh sinh sinhD Df z z             (37c) 
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2 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

        

       
   (37d) 

The drawdown solution in Laplace domain in the upper unpumped layer yields 

 
       2 2

2 2 3 3 00
2

cosh
ˆ ˆ8 sinh ,0, ,1,


   


        D D

D D D D D

B z
s B u r p u r p M J r   (38) 

in which 2 3 3 1 3 3 1sinh( ) cosh( ) cos( )sinh( )D DM B B      .    

The drawdown solution in Laplace domain in the lower unpumped layer can be 

expressed as 

 
        3 3

3 32 1 2 2 00
2

cosh
ˆ ˆ8 ,0, ,1, sinh 1


   


         D D

D D D D D

B z
s u r p g u r p B J r   (39a) 

where 

   32 1 2 2 1 2 2 1sinh 1 cosh cosh 1 sinhD Dg B B                (39b) 

2.2.4 Dimensionless solutions for Case 3 

By analogy, with the use of the constant-head boundary at the top and the no-flux 

boundary at the bottom, which are, respectively, described by Eq. (32) and Eq. (33), one can 

develop the nondimensional drawdown solutions in Laplace space for the middle (pumped) 

layer as:  

     1 2 31 1 32
3

4ˆ ˆ ˆ ˆ, , ,0, ,1,D D D D Ds u z p u r p f u r p f  


       (40a) 

where 

       31 1 2 1 1 1 1 2sinh 1 sinh sinh cosh 1 sinh sinhD Df z z                     (40b) 

     32 1 1 2 2 1 1 2sinh sinh sinh cosh cosh coshD Df z z            (40c) 

         
         

3 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 cosh 2 1 1 cosh

2 1 1 cosh 2 1 1 cosh

        

       

        

       
  (40d) 

and, for the upper unpumped layer, one has 
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       2 2

2 2 3 3 00
3

sinh
ˆ ˆ8 sinh ,0, ,1,


   


        D D

D D D D D

B z
s B u r p u r p N J r   (41) 

in which 2 3 3 1 3 3 1sinh( ) cosh( ) cosh( )sinh( )D DN B B      . 

and, for the lower pumped layer, one has 

 
        3 3

3 33 1 2 2 00
3

cosh
ˆ ˆ8 ,0, ,1, cosh 1


   


         D D

D D D D D

B z
s u r p g u r p B J r  (42a) 

where 

   33 1 2 2 1 2 2 1cos 1 cosh sinh 1 sinhD Dg B B               (42b) 

2.3 Special cases 

2.3.1 Special cases in a three-layer aquifer 

If removing the effect of the radial flow in the upper and lower unpumped layer (Kr2 = 

Kr3 = 0, 2 2 0r Dr   , 3 3 0r Dr   , 2
2 2/ Dzp   and 2

3 3/ Dzp  ), the developed solutions 

of Eqs. (33) – (41) agree with the solutions for a conventional aquitard-aquifer-aquitard 

system with the assumption of only considering the vertical flows in the unpumped layers, as 

in previous works of Hantush (1960), Moench (1985) and Chen et al. (2020). The condition 

for this assumption is that the permeability of the middle-pumped aquifer is usually larger at 

least two orders of magnitude than that of the upper and lower aquitards.  

Additionally, the transient dimensionless solutions in the three-layer aquifer system 

caused by a partially penetrating constant-rate pumping well in the middle layer can be 

obtained from Eqs. (34) – (42) by setting Q1D = 1, and as far as the author knows, these 

solutions have not been developed in the existing studies.  

2.3.2 Special cases in a two-layer aquifer 

If the lower unpumped layer is absence, one has BD3 = 0, 2 0  , and  1 2 2 2 1DB     , 
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the dimensionless drawdown solutions in a two-layer aquifer having a constant-head and 

no-flow boundary at the top (Case 2 and Case3) can be, respectively, developed from Eqs. 

(37) – (42) and the detailed expression can be, respectively, given by: 

Case 2: for the pumped layer, one has 

       1 1 1 2 2
2

ˆ ,1,ˆ ˆ , , 2 cosh sinh 1D
D D D D D

u r p
s u z p z B   


    

  (43) 

and for the upper unpumped layer, one has 

     2 2 2 1
2

ˆ ,1,ˆ 2 cosh sinhD
D D D

u r p
s B z 


    

  (44) 

with  

       2 1 1 2 2 1 1 2 21 sinh 1 1 sinh 1D DB B                       (45) 

Case 3: for the pumped layer, one has 

       1 1 2 2 1
1

ˆ ,1,ˆ ˆ , , 2 cosh 1 coshD
D D D D D

u r p
s u z p B z   


       (46) 

and for the upper unpumped layer, one has 

     2 1 2 2
3

ˆ ,1,ˆ 2 sinh sinhD
D D D

u r p
s B z 


    

  (47) 

with 

       3 1 1 2 2 1 1 2 21 cosh 1 1 cosh 1D DB B                       (48) 

These solutions of drawdown agree with the solutions of Feng et al. (2019), describing 

flow in a two-layer aquifer system pumped by a partial penetration well of a variable/constant 

discharge subject to a zero-drawdown and no-flux conditions at the top boundary.  

Further, if Q1D = 1, 2 2 0r Dr    and 2
2 2/ Dzp  , the drawdown solutions of Eqs. (43) 

– (45) are equal to the solutions having different expressions developed by Feng and Zhan 

(2015), that can be applied to investigate the drawdown caused by a pumping well of partial 
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penetration in an aquitard-aquifer system where the horizontal flow in the upper layer is 

neglected and a zero-drawdown condition can be imposed at the top boundary.  

2.3.3 Special cases in a single-layer aquifer 

If ignoring the leakage effect between two adjacent layers, the present pumped layer 

drawdown solutions can reduce to the solution of Hantush (1964) for flow in a confined 

aquifer due to a partially penetrated well with constant pumping rate (Q1D = 1).  When the 

pumped layer is fully penetrated by a well with an exponentially decreasing discharge and 

leakage is not considered, Eqs. (34b)–(34d) collapse to the drawdown solution of Wen et al. 

(2017). Additionally, the classical solution of Theis is also included in the new obtained 

solution when Q1D = 1. 

2.4 Numerical inversion of the solutions 

So far, the Laplace-domain solutions of nondimensional drawdown for diverse cases are 

developed. In this study, a numerical integration algorithm (Ogata, 2005) with the method 

using the zeros of the Bessel functions as nodes can be performed to calculate the infinite 

integral associated with the transformation of Hankel, and the method of de Hoog algorithm 

(De Hoog et al., 1982) is able to be applied to solve the transformation of Laplace. Finally, 

one can obtain the solutions in time domain by successively using the two method of 

numerical inversion of Hankel transform and Laplace transform respectively. The verification 

and validation of the method have been proven and more details can be found in the study of 

Feng et al. (2020) and Liang et al. (2018), which is not discussed herein. 

3 Results 

The dimensionless drawdown response due to a partial penetration well pumped at an 

https://doi.org/10.5194/hess-2020-586
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.






exponentially decreasing discharge is explored in the following from a number of 

perspectives. Default values for realistic aquifers are used in the following analysis: B1 = 20m; 

B2 = 30m; B3 = 10m; Kr1 = Kz1 = 10-4 ms-1; Kr2 = Kz2 = 10-6 ms-1; Kr3 = Kz3 = 10-6 ms-1; Ss1 = 

2×10-5 m-1 ; Ss2 = 10-3 m-1 ; Ss3 = 10-6 m-1; Q1 = 0.005m3s-1; Q = 0.002m3s-1. One can see that 

the upper and lower unpumped layers have the same hydraulic properties of aquitard 

composed of clay soil for simplicity, and middle pumped layer may be composed of sand 

soils in reality. Under this circumstance, the three-layer system becomes a commonly 

investigated three-layer aquitard-aquifer-aquitard system (Hantush, 1960; Moench, 1985; 

Wen et al, 2011; Chen et al., 2020), which will be analyzed for comparison with existing 

works, though the presented solution applies to a general three-layer aquifer systems with no 

restrictions on the hydraulic parameter (e.g. permeability, specific storage) and the thickness 

of each layer. Aquifer anisotropy and different permeability contrasts among individual layers 

will also be explored to show the importance of considering both vertical and horizontal 

flows for each of the three layers, no matter the layer is pumped or unpumped. 

3.1 Comparison with available solutions 
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Fig.2 Comparison of the type curves for pumped layer provided by the newly developed 

solution for Case 3 and other existing solutions for a full penetration well (a) and a partial 

penetration well (b) with rD = 0.1, zD = 0.5, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 

2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

Fig. 2 (a) illustrates the drawdown responses of the pumped layer at rD = 0.1 and zD = 

0.5 caused by a full penetration pumping well (lD =1, dD = 0) in an aquitard-aquifer-aquitard 

system (Case 3 in this study, Hantush, 1960), an aquitard-aquifer system (Feng and Zhan, 

2015, Feng et al. 2019), and a confined aquifer system (Theis, 1935, Wen et al., 2017). Fig. 2 

(b) shows the pumped aquifer drawdown at the same location as Fig. 2 (a) due to a partial 

penetration pumping well (lD = 0.75, dD = 0.25) in present solution for Case 3, solutions of 

Feng and Zhan (2015) and Feng et al. (2019) for a leaky confined aquifer system, and 

Hantush (1964) for a nonleaky-confined aquifer system. Both the cases of constant (Q1D =1) 

and variable discharge (Q1D =2.5, αD = 0.8) are taken into account in this figure. 

No matter what the well discharge is, under the circumstance of a full penetration well, 

the early-time drawdown for almost all study agree with one another except for the (modified) 
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Hantush (1960) solution. The results are slightly larger than that of (modified) Hantush (1960) 

for an aquitard-aquifer-aquitard system if using the Hantush-Jacob approximation and the 

assumption of only considering the radial flow in the pumped layer and vertical flow in the 

unpumped aquitard. Because the leakage effect is regarded as a sink/source term introduced 

in the pumped aquifer governing equation in Hantush (1960), it is no strange to see a smaller 

drawdown in early time, as demonstrated in Fig. 2. The drawdown of Theis (1935) and Wen 

et al. (2017) with a full penetration well in Fig. 2 (a) or Hantush (1964) with a partial 

penetration well in Fig. 2 (b) is always larger than the others with the increasing of pumping 

time due to no leakage from adjacent layers. The intermediate time-drawdown in a leaky 

confined aquifer is greater than that in an aquitard-aquifer-aquitard system, which may be 

caused by less leakage into the pumped aquifer derived entirely from the upper aquitard 

storage. The late-time steady-state drawdowns can be found in two-layer and three-layer 

aquifer system and their values are almost the same as each other. Moreover, the time to 

approach the steady state for two-layer aquifer system (Feng and Zhan, 2015, Feng et al., 

2019) is much earlier than that for three-layer aquifer system (Hantush, 1960, present study 

for Case 3), this is to be understood that the water from top boundary of the aquifer system of 

two-layer is also much quicker to supply the pumped aquifer because the pumped aquifer 

drawdown is not influenced by the storage of the lower layer in the aquifer system of 

three-layer. 

Comparison of the dimensionless drawdown solution induced by a full penetration 

pumping well obtained by this study for Case 3 and (modified) Hantush (1960), one can only 

see the difference at early and intermediate times when tD is smaller than about 102, as 
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demonstrated in Fig. 2 (a). This can be attributed to the following aspects. Firstly, the 

Hantush-Jacob approximation is used in (modified) Hantush (1960). Secondly, the flow in the 

radial direction of aquitard and flow in the vertical direction of the pumped aquifer are not 

taken into consideration in (modified) Hantush (1960). However, the present study takes 

account of the horizontal and vertical flows in each layer, as we as treat the leakage across the 

two adjacent layers as continuity boundary conditions rather than a simplified volumetric 

sink/source term, accordingly, our general analytical model can reflect the actual leakage 

process. Therefore, one can conclude that the use of the Hantush-Jacob approximation should 

be deliberated, especially at the early pumping time for a fully penetrating well. One can see 

from Fig. 2 (b) that the storage of lower unpumped aquitard primarily affects the drawdown 

distribution for the three-layer aquifer system of Case 3 at the intermediate pumping time, 

signifying that the hydraulic parameters of lower aquitard can be estimated by using the 

observed data at this stage. In additional, more comparative analysis for the pumped aquifer 

drawdown in a confined aquifer with a pumping well of full penetration (Theis, 1935, Wen et 

al. (2017) or of partial penetration (Hautush, 1964) and in a two-layer aquifer with a 

full/partial penetration well (Feng and Zhan, 2015, Feng et al., 2019) can be found in the 

work of Feng et al. (2019), which is not repeated herein. 

It should be remarked that the typical curves of drawdown versus pumping time have 

two inflection points during the decaying period of pumping rate, and more discussion and 

explanation for this feature can be found in Wen et al. (2017). At last, one can see from Fig. 2 

(a) in comparison with Fig. 2 (b) that the pumped layer drawdown due to a partial penetration 

pumping well is greater than that a full penetration pumping well at the same value of 
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pumping time, indicating that the effect of well partial penetration needs to be considered. 

3.2 Effect of various top and bottom boundaries 

 

 

 

Fig.3 The typical curves of dimensionless drawdown versus dimension time in the pumped 
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layer and unpumped layers under different top and bottom boundary (a) for Case1 (b) for 

Case 2 and (c) for Case 3 with rD = 0.1, zD = 0.5, lD = 1.0, dD = 0, κ1 = κ2 = 10-2, αDz2 = αDr2 = 

2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

Fig. 3 shows the changes of drawdown at rD = 0.1 in the middle pumped layer (zD = 0.5), 

in the upper layer (zD = 1.2) and in the lower unpumped layer (zD = -0.4) for Case 1 (a), Case 

2 (b), and Case 3 (c) under the condition of a well of full penetration (lD = 1, dD = 0). The 

solution of Hantush (1960) is included in this figure for comparison purposes and the case of 

no leakage (Wen et al., 2017) is also considered as a reference. The curves of drawdown 

versus time for the pumped layer obtained by this study and Hantush (1960) have almost the 

same feature during the entire pumping stage and their deviations are mainly occurred at the 

stage of 10-2 < tD < 101, as illustrated in the subgraphs of Fig.3 with three different cases. 

Additionally, as for the drawdown response in the two unpumped layers, one can find from 

Fig.3 that the drawdown developed by this study is always larger than that of Hantush (1960) 

as the pumping time goes by and a relatively stable error between them can be found at late 

time. This is due to fact that the influence of radial flow in the unpumped layer is ignored by 

Hantush (1960). What is more, Fig. 3 (b) and Fig. 3 (c) demonstrate that the drawdown for 

the lower unpumped layer is nearly identical to that for the pumped layer if only taking 

account of the vertical flow in the unpumped layer. In other words, whether the radial flow in 

the unpumped layer is overlooked or not, one can see that from the comparison of drawdowns 

in the pumped layer with that in the unpumped layer for Case 2 and Case 3. 
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Fig.4 Comparison of the typical curves of dimensionless drawdown versus dimension time in 

the pumped layer and unpumped layers under diverse cases with rD = 0.1, zD = 0.5, lD = 0.75, 

dD = 0.25, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 

= 1.5, BD3 = 0.5. 

 

In order to compare the drawdowns under different boundaries at the top and bottom of 

the aquifer system, Fig. 4 displays the drawdown changes at rD = 0.1 in the pumped layer (zD 

= 0.5) and in the unpumped layers (zD = 1.2 and zD = -0.4) for all three cases with a partial 

penetration pumping well (lD = 0.75, dD = 0.25). Notably, the no leaky case (modified, 

Hantush, 1964) is plotted as a reference in this figure. Fig. 4 shows that the influence of the 

type of top and boundary can be ignored in exploring drawdown at the early and intermediate 

pumping time, however, its influence on the late-time drawdown behavior is obvious, and 

one can find that the drawdowns for Cases 1 and 3 reach steady state at late pumping stage 

because of the unlimited water supply stemmed from the top zero-drawdown boundary. In 

addition, the late-time drawdown for Case 3 is greater than that for Case 1 and smaller than 
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that for Case 2. This is due to the fact that the constant-head boundary at the top and bottom 

in Case 1 can give steady and unlimited supply of water, thus leading to the smallest 

drawdown among three cases. In another aspect, the no-flux top and bottom boundaries in 

Case 2 cannot furnish any supply of water, thus the largest drawdown can be seen among 

three cases in this figure.  

Fig. 4 also illustrates that the drawdown for Case 2 increases indefinitely with pumping 

time and finally parallels with that of the no leakage case. This is caused by the no-flow 

boundary at the top and bottom. Furthermore, one cannot see the inflection point of the type 

curves for the unpumped layer, indicating that the influence of variable discharge mainly 

affects the pumped layer drawdown. This is because the drawdown response for the 

unpumped layer appears nearly at the end of the intermediate time and the influence of 

variable discharge is very small and can be neglected at this stage, thus the inflection point 

cannot be found. 
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Fig.5 Comparison of the nondimensional drawdown behavior in the pumped layer and 

unpumped layers under diverse cases (a) the curves for sD VS rD at tD = 104, (b) the curves for 

sD VS zD at rD = 0.1with lD = 0.75, dD = 0.25, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 

= 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

To further investigate the influence of various top and bottom boundaries on drawdown, 

Fig. 5 is plotted to demonstrate the drawdown responses in all layers using typical curves of 

(a) sD versus rD (zD = 0.5, 1.2 and -0.4 at tD =104; (b) sD versus zD at rD = 0.1 with a partial 

penetration pumping well (lD = 0.75, dD = 0.25). Fig. 5 (a) shows that the late-time drawdown 

at any radial distance rD for Case 3 is greater than that for Case 1 and smaller than that for 

Case 2, and so does the pumping induced influence of the range for different cases, which is 

according with the above analysis of drawdown illustrated in Fig.4. It is interesting to find 

from Fig. 5 (a) that the drawdown in the pumped layer is nearly the same as that in the lower 

unpumped layer for Case 3 at rD > 10, and the same phenomenon can be observed from Fig. 5 

(a) for the drawdowns of Case 3 in the two unpumped layers and pumped layer for Case 3 if 

rD > 40.  
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Additionally, the drawdowns along the vertical direction in whole aquifer system under 

various top and bottom boundaries are shown in Fig. 5 (b). To clarify, the pumping well of 

partial penetration is fixed in the middle of the pumped layer having a screen length of 0.5. It 

can be found that the drawdowns along the vertical direction for all three cases coincide with 

one another at early and intermediate pumping time (tD = 1 and 102), however, the 

discrepancies among them are significant at a relatively late time of pumping (tD = 104). An 

interesting observation from Fig. 5 (b) can be included that the drawdowns for Case 1 and 

Case 2 have symmetry with the axis zD = 0.5 at the entire pumping time, which are caused by 

the identical top and bottom boundaries of the two cases and the same thickness and 

hydraulic parameters of the unpumped layers. However, the late-time drawdown for Case 3 

has no symmetry and the lower layer drawdown is always smaller than that in the upper layer 

at correspondingly position of symmetry, this implies that the lower layer drawdown is 

influenced in a greater degree by pumping for Case 3. Besides, the largest drawdown at the 

axis of symmetry can be seen during the pumping period for all three cases, as expected. In 

general, one can conclude from Fig. 5 that the late-time drawdown is always affected by the 

type of top and bottom boundaries at any position within the three-layer aquifer system. 

Therefore, except for the location of piezometer (r and z), one had better clarify the types of 

top and bottom boundaries, if the late-time drawdown data are used for the estimation of 

parameters of the aquifer system of three-layer. 

3.3 Effect of the variable pumping rate 

Firstly, it points out that Case 3 is hereafter used as an example for demonstration 

purpose. It would be easy to analyze drawdown for Case 1 and Case 2 in a similar way when 
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there is a need. One can know through the above analysis that the pumped aquifer drawdown 

is mainly influenced by the variable discharge. Fig. 6 shows only the pumped aquifer 

drawdown for Case 3 under different αD at rD = 0.1, 0.3 and 0.6. Note that αD = ∞ represents 

the final constant pumping rate. One can see that the differences among the type curves for 

different decay constants can be seen only at intermediate time. A greater αD implies that the 

well discharge declines much faster to reach the final constant pumping rate, resulting in 

smaller drawdowns during the intermediate stage. Additionally, the inflection point of the 

curve of drawdown versus time near the pumping well is more obvious than that at a distance 

further away from the pumping well. This means that the effect of variable discharge 

decreases gradually with the increase of the radial distances and eventually disappears 

completely at some distances far enough. From previous study of Wen et al. (2017), one can 

use the point of inflection appeared at the stage of the declined pumping discharge at 

intermediate time to estimate aquifer parameters. Under this circumstances, Fig. 6 suggests 

that the observed data of drawdown near the pumping well would be a good choice. 
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Fig.6 Dimensionless drawdown response in the pumped layer and unpumped layers under 

different αD for Case 3 with zD = 0.5, lD = 0.75, dD = 0.25,κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, 

αDz3 = αDr3 = 2 × 10-4, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

3.4 Effect of the unpumped layer thickness  

Fig. 7 shows the drawdown characteristics for the pumped (zD = 0.5) and unpumped 

layer (zD = 1.1, -0.1) at rD = 0.1 with a partial penetration well (lD = 0.75, dD = 0.25) for 

various unpumped layer thickness (BD = BD3 = BD2  1). Note that the no leakage case (or an 

impermeable unpumped layer) is also taken into consideration in this figure for comparison. 

The early and intermediate-drawdowns for both pumped aquifer and unpumped layers are not 

influenced by the change of the thickness of the unpumped layer, but the larger the thickness 

of the unpumped layer, the larger late-time drawdown can be found. In addition, Fig. 7 also 

illustrates that the pumped aquifer drawdown is significantly influenced by the leakage from 

adjacent layer if compared to the case of no leakage. 

 

Fig.7 Dimensionless drawdown response in the pumped layer and unpumped layers under 
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different thickness of the unpumped layers (BD = BD2 - 1 = BD3) for Case 3 with rD = 0.1, zD = 

0.5, lD = 0.75, dD = 0.25, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, 

Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

3.5 Effect of anisotropy 

Because of the generality of the established solution, one can easily explore the 

influence of anisotropy for each layer on the drawdown in this three-layer system. To be sure, 

two schemes of the aquifer system are considered for comparison. The drawdown change in 

the classical aquitard-aquifer-aquitard scheme (termed scheme A herein) will show in the 

following figures (a), and the drawdown response will also be illustrated in the following 

figures (b) for another scheme (termed scheme B herein) of a general aquifer system of 

three-layer, having the permeability values of the upper and lower layers being one order of 

magnitude smaller (instead of two orders of magnitude smaller as in the default setting) than 

that of the middle-pumped layer. 
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Fig.8 The nondimensional drawdown response in the pumped layer and unpumped layers 

under different anisotropy of the pumped layer (KD1 = Kz1/Kr1) for Case 3 with rD = 0.1, αD = 

0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5, lD = 0.75, dD = 0.25, KD2 = Kz2/Kr2 = KD3 = Kz3/Kr3 = 0.2, 

where (a) Kr = Kr2 = Kr3 = 4×10-6m/s, (b) Kr = Kr2 = Kr3 = 4×10-5m/s. 

 

Fig. 8 shows the response of drawdown for Case 3 in the pumped layer (zD = 0.5) and in 

the upper and lower layers (zD = 1.25, -0.25) at rD = 0.1 with a partial penetration well (lD = 

0.75, dD = 0.25) for various anisotropy of the pumped layer (KD1 = Kz1/Kr1). Note that KD1 = 1 

refers to the isotropic case, which is included as a reference.  

One can see from Fig. 8 that the entire aquifer system for scheme A and scheme B is 

affected by the change of the pumped layer anisotropy almost during the entire pumping time. 

The pumped layer drawdown decreases with an increase of the anisotropy ratio and a larger 

KD1 results in larger drawdowns for the upper and lower unpumped layers. Comparing the 

drawdowns for scheme A shown in Fig. 8 (a) and for scheme B listed in Fig. 8 (b), one can 

see that the drawdown for scheme A is always larger than that for scheme B. This is because 
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the difference of the permeability of the unpumped layers and pumped layer for scheme B is 

not as significant as that for scheme A, and the capacity of water supply of the unpumped 

layers for scheme B is much stronger than that for scheme A. Therefore, it is much easier to 

obtain the water supply from the top boundary, thus a smaller drawdown is seen as illustrated 

in Fig. 8 (b). Overall, the pumped layer anisotropy is of great importance to ascertaining the 

drawdown behavior of the entire three-layer aquifer system.  

 

 

Fig.9 The nondimensional drawdown change in the pumped layer and unpumped layers 

under different anisotropy of the unpumped layers ( KD = Kz2/Kr2 = Kz3/Kr3) for Case 3 with 
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rD = 0.1, αDz2 = αDz3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5, KD1 = Kz1/Kr1 = 0.5, 

Kr2 = Kr3, lD = 0.75, dD = 0.25, in which (a) κ1 = κ2 = 0.04, αDr2 = αDr3 = 4 × 10-5, Kz = Kz2 = 

Kz3 = 2×10-6m/s and (b) κ1 = κ2 = 0.4, αDr2 = αDr3 = 4 × 10-4, Kz = Kz2 = Kz3 = 2×10-5m/s.  

 

Fig. 9 demonstrates the drawdown changes for Case 3 in an anisotropic pumped layer 

(zD = 0.5, KD1 = 0.5 and Kr1 = 10-4 m/s) and anisotropic upper and lower layers (zD = 1.25 and 

-0.25) for various anisotropy ratios of unpumped layer (KD = KD2 = Kz2 / Kr2 = KD3 = Kz3 / Kr3) 

at rD = 0.1 with a pumping well of partial penetration (lD = 0.75 and dD = 0.25). It should be 

mentioned that the vertical permeability of the unpumped layer is to be kept on hold in Fig. 9, 

where (a) Kz = Kz2 = Kz3 = 2×10-6m/s and (b) Kz = Kz2 = Kz3 = 2×10-5m/s. The case of an 

isotropic unpumped layer (KD = 1) is considered in both subgraphs, and the case of ignoring 

the radial flow in unpumped layer is depicted as well for comparison in Fig. 9. One can 

obviously see from Fig. 9 that the influence of various anisotropy ratios on the pumped layer 

drawdowns almost coincide with the case of the unpumped layer with no horizontal low for 

scheme A if KD ≥ 0.5. However, when KD is 0.1 for scheme A, the anisotropy of the 

unpumped layers significantly affects the pumped layer drawdown at the late pumping time 

as demonstrated in Fig. 9 (a). The influence of the unpumped layers anisotropy on the 

pumped layer drawdown for scheme B is more obvious than that for scheme A at 

intermediate and late times, it can be seen from Fig. 9 (b). In addition, no matter what the 

value of anisotropy KD is, the change of KD has an appreciable influence on the unpumped 

layer drawdowns for both scheme A and scheme B. Finally, one still can conclude from Fig. 9 

that the drawdown for scheme A is generally larger than that for scheme B at the same 

position within the aquifer system of three-layer and at the same pumping time. Overall, the 
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radial and vertical flows in the unpumped layer (effect of anisotropy) should be considered in 

determining drawdown responses around the pumping well, especially to the general case 

without large contrast of hydraulic conductivity among the unpumped layers and the pumped 

layer.   

3.6 The effect of well partial penetration 

 

 

Fig. 10 Drawdown responses in the pumped layer and unpumped layers (Case 3) with rD = 

0.1, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, 

BD3 = 0.5 (a) for different well screen length, in which lD = 1.0 (b) for various depth of well 
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screen within the middle pumped layer, where lD - dD = 0.5. 

 

     One of the main contributions in this study is that the established general analytical 

model considered the effect of the well partial penetration, Fig. 10 shows the drawdown 

changes for Case 3 (rD = 0.1) in the middle-pumped layer (zD = 0.5) and unpumped layers (zD 

= 1.25 and -0.25). Especially, Fig. 10 (a) is for various well screen length and lD = 1.0, and 

Fig. 10 (b) is for different vertical position of well screen within the middle-pumped layer 

and the well screen length is fixed (lD - dD = 0.5). It can be seen from Fig. 10 that the length 

and position of well screen have remarkable effect on the drawdown for all three layers. A 

larger well screen length means that the middle drawdown of pumped layer is closer to the 

position of well screen and the stored water is much easier to be released, resulting in a larger 

drawdown of pumped layer, similarly, a smaller drawdown for the upper layer and a greater 

drawdown for the lower unpumped layer can be seen in Fig. 10 (a) for Case 3. Additionally, 

one can conclude from the above analysis shown in Fig. 5 (b) that the closer to the center of 

the pumped well, the larger drawdown can be seen for all three layers, and the drawdown for 

the lower layer is relatively larger than the late-time drawdown for the upper layer at the 

same distance measured from the interface between the pumped layer and unpumped layer 

for Case 3. The center point of the well screen for three different lD = 1.0, 0.8 and 0.6 is 

respectively at zD = 0.75, 0.55 and 0.35, respectively. Thus, the pumped layer drawdown (zD 

= 0. 5) with lD = 0.6 is larger than that with lD = 1.0 and smaller than that with lD = 0.8, in the 

same way, the upper unpumped layer drawdown (zD = 1.25) with lD = 0.8 is larger than that 

with lD = 0.6 and smaller than that with lD = 1.0, and the lower unpumped layer drawdown 
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(zD = -0.25) with lD = 0.8 is larger than that with lD = 1.0 and smaller than that with lD = 0.6. 

Besides that, whatever the pumping well is located at the pumped layer, the pumping induced 

drawdown in the lower unpumped layer is larger than that in the upper layer for Case 3. 

4. Discussion 

Based upon the presented solution, firstly, one can perform quantitative evaluation of the 

dimensionless drawdown at any points within the general three-layer aquifer system with a 

partial penetration pumping well in the middle layer. It is worth emphasizing again that the 

developed solution not only has no any restrictions on the values of the thickness, hydraulic 

conductivity, and specific storage for all three layers, but that for the length and location of 

the well screen fixed in the pumped layer, thus, the generality of the obtained solution is the 

main contribution of this study. Secondly, it is convenient to explore the influences of 

variable discharge of pumping, aquifer thickness, anisotropy, well partial penetration, and the 

type of top and bottom boundary on the groundwater flow problems in the aquifer system of 

three-layer. Besides that, the present solutions have a powerful potentiality within 

geotechnical engineering, petroleum engineering and groundwater resource development. 

Another important application of the proposed solution is to identify the hydraulic parameters 

of each layer with adopting the method of parameter estimation in conjunction with field 

data.  

Because the responses for a special case of aquitard-aquifer-aquifer system is mainly 

explored for comparison with existing solutions, some suggestions can be obtained for using 

the developed solutions in such a three-layer aquifer from the above analysis herein. First of 

all, the well structure (screen position and length) in the pumped layer and the thickness of all 
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layers should be clearly determined. Secondly, the type of boundary at the top and bottom of 

the aquifer system should be clarified with the use of the observed data of late-time 

drawdown for parameter estimation. Thirdly, the feature of inflection point for the curve of 

drawdown against time due to the effect of variable discharge can be used to estimate the 

pumped layer parameters, and in such a case the in situ data of drawdown in vicinity of the 

pumping well need to be collected. Fourthly, the data of early-time drawdown for unpumped 

layers are suggested to determine their specific storage respectively, the datum of late-time 

drawdown for unpumped layers can be applied to estimate their values of hydraulic 

conductivities respectively. 

However, a few limitations of this study are also need to be addressed. Firstly, the effects 

of finite radius and wellbore storage on flow cannot be investigated in this study because of 

the assumption of infinitesimal radius of the pumping well. Secondly, the three-dimensional 

transient responses in three-layer aquifer system have not been discussed with the condition 

of constant-drawdown pumping, other type of variable-rate pumping (e.g. sinusoidal 

pumping, piecewise-linear pumping), etc. Thirdly, the heterogeneity of the aquifer and 

varying/non-uniform thickness of each layer are not taken into consideration. Fourthly, the 

slope of each layer and the influence of finite or non-uniform well skin are not considered as 

well. Fifthly, the effect of a finite or irregular lateral boundary is not analyzed. The 

investigation for these subjects is much needed in details in the future.  

5. Summary and conclusions 

A general semi-analytical dimensionless drawdown solution in an anisotropic aquifer 

system of three-layer caused by a partial penetration well pumped at a variable discharge is 
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developed by means of Laplace-Hankel transformation taking account of the interface flow. 

Most importantly, three widely used types of boundary conditions at the top and bottom are 

considered that include a zero-drawdown boundary for Case1 or a no-flow boundary for Case 

2, and a constant-head boundary at the top in combination with a no-flux boundary at the 

bottom for Case 3. The time-domain solutions are evaluated by performing numerical 

inversion of the transformations of Laplace and Hankel. The present solutions encompass 

some previously known solutions caused by a full or partial penetration pumping well in an 

aquifer system of two-layer or single-layer as subsets. The three-dimensional transient 

drawdown in the entire aquifer system pumped by a partial penetration well having a 

discharge with exponentially decaying function in the middle layer is explored as an example 

of illustration. From this study, one can conclude the following main findings: 

(1) The pumped layer drawdown for Hantush (1960) with neglecting vertical flow in the 

pumped layer and horizontal flow in the unpumped layer and the use of the Hantush-Jacob 

approximation is greater that of this work for Case 2, especially at the early pumping time for 

a fully penetrating well, and the unpumped layers drawdown for Hantush (1960) are greater 

than that for present study. 

(2) The effect of variable discharge describing an exponential decline function of 

pumping time mainly affects the drawdown of the pumped layer, and a noticeable feature of 

inflection points can be seen at the stage of the decay of well discharge and the region nearby 

the well of pumping. 

(3) The type of boundary at the top and bottom of the aquifer system has no influence on 

the early- and intermediate-drawdown, but the drawdown at late pumping time for Case 3 is 
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greater than that for Case 1 and smaller than that for Case 2 in all three layers.  

(4) A smaller anisotropy ratio (meaning a smaller vertical/horizontal permeability ratio) 

of the pumped layer results in a larger pumped layer drawdown and a smaller unpumped 

layer drawdown over the whole pumping times. The anisotropy of the unpumped layers (KD) 

mainly affects the drawdown in the unpumped layer and a larger anisotropy ratio (KD) leads 

to a larger drawdown of unpumped layer.  

(5) The anisotropy of the unpumped layers significantly affects the drawdown in the 

aquifer system without large contrast of hydraulic conductivity between the unpumped layers 

and the pumped layer during entire pumping period. 

(6) The drawdown nearby the pumping well in all three layers are significantly affected 

by the length and position of well screen in the pumped layer at the entire time, and a larger 

drawdown can be seen at the position of a smaller distance to the midpoint of the well screen. 
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Appendix A. Derivations of solutions for different cases 

The Laplace and Hankel transformation technique are sequentially applied to Eqs. (17) – 

(33), one can obtain the following Laplace-Hankel domain governing equations of flow in the 

middle-pumped aquifer 

2 2
1 1

1 12 0
1

ˆ 1ˆ lim
D

D D
D D

r
Dz DD

s s
s r

rz


 

 
 


  (A1) 

with 
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0

0 1

2
lim

0 0

D D

D
D D D Dr

D D D

D D

l z

Q ps
r d z l

r l d

z d



 


    
 

  

 (A2) 

and the variable discharge used in this study is expressed in Eq. (5), one can obtain, 

  1 11 D

D

Q
Q p

p p 


 


  (A3) 

Substituting Eq. (A3) into Eq. (A2) results in 

1 1
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0 1

12 1
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D

D D

D D
D D D Dr

D D D D

D D

l z

s Q
r d z l

r l d p p

z d



 


           
  

   (A4) 

To derive the solution of Eq. (A1), using the method proposed by Neuman (1974), the 

dimensionless drawdown for the middle-pumped layer ( 1Ds ) can be divided into the following 

form and written in Laplace-Hankel space as: 

1
ˆ ˆ ˆ

D D Ds u v    (A5) 

in which ˆ
Du  designates the Laplace-Hankel domain drawdown solution in a confined aquifer 

caused by a partial penetration pumping well, and the final expression of ˆ
Du  written in Eq. 

(33) can be obtained by complying with the analogous process adopted by Feng and Zhan 

(2019). ˆ
Dv  satisfies Eqs. (17) and (24)-(27). 
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Under this circumstance, the governing equation of ˆ
Dv  becomes 

2
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   By analogy, the governing equations of the upper and lower unpumped layer are 

respectively rewritten as 

2
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and 
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The interface boundary conditions at zD = 1 given in Eqs. (24) and (25) become 

     2
ˆ ˆ ˆ,1, ,1, ,1, 1D D D Du p v p s p z    ，   (A10) 

   2
1

ˆ ˆ, , , ,
, 1D D D D

D
D D

v z p s z p
z

z z

 


 
 

 
  (A11) 

And considering the boundary conditions at zD = 0 expressed in Eqs. (26) and (27), one 

can obtain 

     3
ˆ ˆ ˆ, , , , , , , 0D D D D D D Du z p v z p s z p z       (A12) 

   3
2

ˆ ˆ, , , ,
, 0D D D D D D

D
D D

v r z p s r z p
z

z z


 
 

 
  (A13)

Finally, the top and bottom boundary conditions given in Eqs. (28)-(33) can be rewritten 

as: 

For Case 1,  

 2 2
ˆ , , 0,D D D D Ds r z p z B    (A14) 

 3 3
ˆ , , 0,D D D Ds r z p z B     (A15) 

For Case 2,  
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and 

for Case 3, 

 2 2
ˆ , , 0,D D D D Ds r z p z B    (A18) 

 3
3

ˆ , ,
0,D D D

D D
D

s r z p
z B

z
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The general solution for Eq. (A6) is 

  1 1
1 2

ˆ , , D Dz z
D Dv z p c e c e      (A20) 

Substituting Eq. (A20) into Eq. (A5), one can write 

  1 1
1 1 2

ˆ ˆ , , D Dz z
D D Ds u z p c e c e       (A21) 

The general solutions of Eqs. (A7) and (A8) for flow in the upper and lower unpumped 

layers can be expressed, respectively, as 

2 2
2 3 4

ˆ D Dz z
Ds c e c e     (A22)  

and 

3 3
3 5 6

ˆ D Dz z
Ds c e c e     (A23) 

Using the continuity boundary conditions of Eqs. (A10)-(A13) leads to 

  1 1 2 2
1 2 3 4

ˆ ,1, 0Du p c e c e c e c e            (A24) 

 1 1 2 2
1 2 1 3 4 0c e c e c e c e          (A25) 

  1 2 5 6
ˆ ,0, 0Du p c c c c        (A26) 

and 

 1 2 2 5 6 0c c c c      (A27) 
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Applying the top and bottom boundary conditions Eqs. (A10)-(A13), one can write 

Case 1,  

2 2 2 2
3 4 0D DB Bc e c e     (A28) 

3 3 3 3
5 6 0D DB Bc e c e      (A29) 

Case 2,  

2 2 2 2
3 4 0D DB Bc e c e     (A30) 

3 3 3 3
5 6 0D DB Bc e c e      (A31) 

and  

Case 3, 

2 2 2 2
3 4 0D DB Bc e c e     (A32) 

3 3 3 3
5 6 0D DB Bc e c e      (A33) 

Solving equations consisting of expressions (A24)–(A27) and (A28)–(A29), the 

coefficients that need to be determined for Case 1 are 

     
   

1
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1
1 1 1 2 2 1 2
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and 
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  (A34b) 

with c3, c4, c5, and c6 written by c1 and c2. 
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1
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2
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2
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where 
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Similarly, solving equations including Eqs. (A20)–(A24) and Eqs. (A28)–(A29), the 

related coefficients used in Case 2 yield 

     
     

1
2 2 1 1 1 2

1
2 1 1 2 2 1 2

ˆ ,0, cosh cosh sinh sinh2
ˆ ,1, cosh cosh sinh sinh

D

D

u r p e
c

u r p

      

      

        
       

  (A35a) 

     
     

1
2 2 1 1 1 2

2
2 1 1 2 2 1 2

ˆ ,0, cosh cosh sinh sinh2
ˆ ,1, cosh cosh sinh sinh

D

D

u r p e
c

u r p

      

      

         
       

  (A35b) 

     2 1 1
3 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A35c) 

     2 1 1
4 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A35d) 

     5 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A35e) 

     6 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A35f) 

         
         

2 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

        

       
  (A35g) 

In the same way, one can solve the equations using Eqs. (A20)–(A24) and (A27), the 

results for Case 3 are 
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Finally, substituting the obtained coefficients for various cases above into Eq. (A21) – 

Eq. (A23) respectively, and performing inverse Hankel transform can be, after some 

mathematical manipulation details, written in Eqs. (29) – (37). So far, semi-analytical 

solutions in the pumped and unpumped layers are derived. 
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