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ABSTRACT 

A general analytical model for three-dimensional flow in a three-layered aquifer system with 

a partial penetration well having a variable discharge of pumping is developed by taking 

account of the interface flow on the adjacent layers. This general three-layer system includes 

the conventional aquitard-aquifer-aquitard system as a subset and does not require that the 

permeability contrasts of different layers must be greater than a few orders of magnitude, and 

does not ignore any flow components (either vertical or horizontal) in any particular layer. 

The pumping well of infinitesimal radius is screened at any portion of the middle layer. Three 

widely used top and bottom boundary conditions are considered that can be specified as a 

constant-head boundary (Case1) or a no-flux boundary (Case 2), and a constant-head 

boundary at the top in combination with a no-flux boundary at the bottom (Case 3). Laplace 

domain solutions for dimensionless drawdown are obtained by the use of Hankel 

transformation, and associated time-domain solutions are evaluated numerically. The newly 

obtained solutions include some available solutions for two- or single-layer aquifer systems 

as subsets. The drawdowns for individual layers caused by a well with an exponentially 

decreased discharge are explored as an example of illustration. The results indicate that the 

pumped layer drawdown close to the partially penetrated well is mainly influenced by the 

variable pumping rate. The late-time drawdowns for all layers are remarkably affected by the 

chosen types of top and bottom boundary conditions, and the drawdown for Case 3 is greater 

than that for Case 1 and smaller than that for Case 2. Additionally, the effect of the pumped 

layer anisotropy on drawdowns in the three-layer system is significant, and the anisotropy of 

the unpumped layers significantly affects the drawdown in the whole aquifer system without 
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large contrast of hydraulic conductivity between the unpumped layers and the pumped layer. 

The drawdowns in all three layers are greatly affected by the location and length of well 

screen, and a larger drawdown can be seen at the position that is closer to the middle point of 

the screen of the partially penetrating pumping well. 

Keywords: Three-layer system; Well partial penetration; Variable discharge; Top and bottom 

boundary; Semi-analytical solution.  
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1. Introduction 

Most groundwater flow model concerning a pumping and/or injection well will have the 

pumping and observation wells in the same aquifer (Yeh and Chang, 2013; Houben, 2015). 

For a multi-aquifer system, the pumping and observation wells may be in the same aquifer or 

in different aquifers. As different aquifers in a multi-aquifer system are hydraulically 

connected, pumping in a specific aquifer will inevitably induce hydraulic responses over the 

entire multi-aquifer system, and the observation well in an unpumped aquifer will also record 

the drawdown information associated with pumping in the pumped aquifer. Therefore, the 

questions we need to answer are: How to interpret the drawdown information collected at an 

unpumped aquifer from the pumped aquifer? And furthermore, is that feasible to conduct 

aquifer characterization and to obtain the aquifer hydraulic parameters when the drawdown 

information is collected at an unpumped aquifer from the pumped aquifer? To answer these 

questions, one must first develop a robust groundwater flow model in a fully coupled 

multi-aquifer system. Unfortunately, the present models on this subject are severely limited to 

some demanding and often time unrealistic restrictions.  

The present groundwater flow models related to multi-layer aquifer systems are usually 

established by solving the coupled partial differential equation group of groundwater flow 

explicitly or with a matrix solver (Bakker, 2013; Chen and Morohunfola, 1993; Cihan et al., 

2011; Hantush, 1967; Hunt, 2005; Meonch, 1985; Neuman and Witherspoon, 1969). In those 

models, some strong assumptions are often invoked to simplify the system. For instance, it is 

commonly assumed that the permeability contrasts among two adjacent aquifers are more 

than a few orders of magnitude, thus flow in the much less permeable layer is assumed to be 
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perpendicular to the layering while the flow in the much greater permeability layer is 

assumed to be parallel to the layering (Hantush, 1967; Neuman and Witherspoon, 1969). 

Such a simplification may be acceptable for investigating an aquifer-aquitard system as the 

aquitard/aquifer permeability contrasts can be indeed as large as a few orders of magnitude 

(Hantush, 1964; Lin et al., 2019; Neuman, 1968; Yeh and Chang, 2013). But this assumption 

is baseless for a general multi-aquifer system in which the permeability contrasts among 

different layers are much modest. Another commonly used assumption in present models is 

that mass exchange between two adjacent aquifers can be treated as a volumetric sink/source 

incorporated into the governing equations of flow in each individual layer (the so-called 

Hantush-Jacob assumption) (Hantush and Jacob, 1955). This assumption is also problematic 

in the sense that it does not honor the fact that mass exchange between two adjacent layers 

always occurs at the interfaces of those adjacent layers rather than as a volumetric sink/source 

inside those layers, a treatment that can generate considerable errors, as documented in 

numerous investigations (e.g. Hantush, 1967; Feng and Zhan, 2015; Feng et al., 2019, 2020; 

Zhan and Bian, 2006). A third simplification in present models is to assume a constant 

pumping rate (Hantush, 1964; Yeh and Chang, 2013). The constant pumping rate is desirable 

but is quite difficult to maintain in actual pumping scenarios which almost always involve 

variable pumping rates because of many reasons such as the temporary loss of power, 

increased drawdown in the pumping well with time (which makes it more difficult to lift 

water from the pumping well) and other constrains in conducting pumping tests in the field 

(Chen et al., 2020; Hantush, 1964; Mishra et al., 2013; Sen and Altunkaynak, 2004; Singh, 

2009; Wen et al., 2017).  
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In theory, numerical modeling can avoid many restrictions mentioned above to 

investigate a multi-aquifer system, but it has some issues that are sometimes not easy to 

resolve. For instance, it is not straightforward to use a numerical model for aquifer 

characterization to obtain the aquifer parameters, particularly when dealing with a 

multi-aquifer system involving many hydraulic parameters for multiple aquifers. When the 

numerical model has to be used for such a purpose, it often involves either trial-and-error or 

automatic optimization procedures to minimize the model-generated drawdown with the 

observed drawdown (Mohanty et al., 2013;Jeong and Park; 2019; Rajaee, et al., 2019). This 

process can sometimes lead to non-uniqueness of inverted aquifer parameters (Rahman et al., 

2020). Another issue associated with numerical model is that without a benchmark analytical 

solution, it is unknown how much numerical errors have been involved in the numerical 

model. For a multi-aquifer system, the numerical errors can be considerable near the 

interfaces of different aquifers where the aquifer parameters change suddenly (Neuman, 1968; 

Louwyck et al., 2012). If one recalls that any numerical approaches (no matter they are 

finite-difference, finite-element, boundary-element, or others) essentially involve some sorts 

of smoothing or average schemes to approximate the mass conservation law in a discrete 

sense, then it is not surprise to know that numerical errors are prone to be large near sharp 

interfaces (Cihan et al., 2011; Neuman, 1968; Li and Neuman, 2007; Loudyi et al., 2007). Of 

course, one can use gradually finer meshes when approaching the interfaces of different 

aquifers to minimize the numerical errors, but such a procedure can sometimes increase the 

computational cost rapidly, particularly when dealing with three-dimensional (3D) flow in a 

multi-aquifer system (Feng et al., 2020; Rajaee, et al., 2019; Rahman et al., 2020; Rühaak et 
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al., 2008). Overall, establishing a sufficiently accurate numerical model for groundwater flow 

in a multi-aquifer system is feasible, but often time requires considerable preparations and 

computational cost.     

Based on above considerations, we are going to establish a robust and generic 3D 

groundwater flow in a three-aquifer system in this investigation. The generality of this work 

is reflected on the following aspects. Firstly, it does not put any constrains on the 

permeability contrasts among different aquifers involved. Such a generality will make this 

work much more appealing to deal with a vast number of cases in actual aquifer setting. It 

also encompasses previous aquifer-aquitard two-layer system and aquitard-aquifer-aquitard 

three-layer systems as subsets. It can even be applied for an extreme two-layer or three-layer 

system such as a fracture-rock two-layer system or a rock-fracture-rock three-layer system 

when flow can occur in both fractures and rock matrix. Furthermore, for the 

rock-fracture-rock three-layer system, the rocks adjacent to the fracture can be either identical 

with the same hydraulic properties or have different lithology and hydraulic properties. The 

two-aquifer system investigated by Feng et al. (2019) is also a subset of this study. Secondly, 

this study honors the mass exchange among different aquifers as an interface flow 

phenomenon, not as a volumetric sink/source term, as in the Hantush-Jacob assumption. 

Thirdly, the pumping rate can be any given function of time instead of being a constant. This 

is a distinctive difference from the three-aquifer study of Feng et al. (2020) involving 

constant pumping rate. Fourthly, three widely used top and bottom boundary conditions are 

considered that can be specified as a constant-head boundary (Case1) or a no-flux boundary 

(Case 2), and a constant-head boundary at the top in combination with a no-flux boundary at 
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the bottom (Case 3). This is also in contrast with Feng et al. (2019, 2020) which cannot 

investigate the combined effects of the top and bottom boundaries simultaneously. In the 

following sections, semi-analytical drawdown solutions in nondimensional forms in a genetic 

three-layer system are obtained by performing Laplace-Hankel transform and eventually the 

real time solutions are calculated by the method of numerical inversion. Finally, as an 

example of illustration, the characteristics of drawdown are thoroughly investigated due to a 

partially penetrated well pumped at an exponentially decreased discharge function. The 

results are discussed extensively and their applications are elaborated as well. 

2. Methodology 

2.1 Mathematical model

 

Fig.1 Schematic diagram of a three-layer aquifer system with a partial penetration well 

 

Fig. 1 displays an infinitesimal-radius well with a variable discharge Q(t) in a general 

three-layer aquifer system of unbound lateral extension. The pumping well is partially 

penetrated in the middle layer of the system with a screen length from d to l shown in this 
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figure. Each layer of constant thickness is homogeneous and anisotropic. Three-dimensional 

flow is included in all layers. The interface flow at the two neighboring layers is linked with 

head and flux continuity conditions. It is noted that three different cases presented by 

Hantush (1960) are concluded, specifically, the boundaries at the top and bottom are 

simultaneously constant-head boundaries (Case 1), no-flux boundaries (Case 2), or a 

combination of a constant-head top boundary and no-flux bottom boundary (Case 3). The 

cylindrical coordinate origin is at the intersection of the well axis and the bottom of the 

middle-pumped layer. 

According to the conceptual model above, the equations that govern the transient 

drawdown distribution for flow to a pumping well can be given by: 

2

2

( ) ( ) ( )ri i i i
zi si

K s r z t s r z t s r z t
r K S

r r r tz

          

, , , , , ,
  (1) 

where s (r, z, t) denotes drawdown at space coordinate (radial distance r [L], vertical distance 

z [L]) and time coordinate (pumping time t [L]); Kr and Kz indicate, respectively, the 

hydraulic conductivities in the radial and vertical direction [L/T]; Ss refers to specific storage 

[1/L], and  i = 1, 2, 3 designate, respectively, the middle-pumped layer, upper layer and 

lower layer.  

The initial conditions of the aquifer system can be written as: 

 , ,0 0is r z    (2) 

The boundary of the aquifer system at infinity yields: 

( ) 0is z t , ,   (3) 

The pumping well of infinitesimal diameter is partially penetrated in the middle layer, 

the wellbore boundary condition is subject to (Hantush, 1964, Liang et al, 2018): 
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 
 

1

1

0
,1

0

lim
2

0 0

r
r

l z B

Q ts
r d z l

r K l d

z d



 


    
 

  

  (4) 

in which  Q t  represents the well discharge of pumping [L3T-1], B1 refers to the thickness of 

the middle-pumped aquifer [L]. It is notable that an assumption of the well discharge 

uniformly distributed along the screened section of the partially penetrating well is used 

herein. This, of course, is a simplification for the sake of mathematical modeling. Fortunately, 

this simplification is proven to be sufficiently accurate for regions that are not extremely 

close to the pumping well (within a few well radii) (Chang and Yeh, 2013).  

As an example of illustration, the pumping rate used in this study varies exponentially 

with the pumping time in the form (Hantush, 1964b, 1966; Wen et al., 2017): 

   1
tQ t Q Q Q e      (5) 

which is based on lots of field data and available works (Chen et al., 2020; Feng et al., 2019; 

Sen and Altunkaynak, 2004). The symbol Q and Q1 represent the final (constant) and initial 

well discharge, respectively [L3T-1], and α designates decay constant obtained from the 

measured data of pumping [T-1].  

The inner well-face boundary conditions at the upper and lower unpumped layers yield: 

32

0 0
lim lim 0
 


 

 r r

ss
r r

r r
  (6) 

And the boundary condition at the interface between the middle-pumped aquifer and the 

adjacent upper layer (z = B1) requires that: 

   1 2 1, , , , ,s r z t s r z t z B    (7) 

and 
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   1 2
,1 ,2 1

, , , ,
,z z

s r z t s r z t
K K z B

z z

 
 

 
  (8) 

The continuity of hydraulic connection between the middle-pumped layer and the lower 

unpumped layer (z = 0) can be written as: 

   1 3, , , , , 0s r z t s r z t z    (9) 

and 

   1 3
1 3

, , , ,
, 0z z

s r z t s r z t
K K z

z z

 
 

 
  (10) 

The top boundary condition at the upper unpumped layer (z = B2) and the bottom 

boundary condition at the lower unpumped layer (z = B3) of the aquifer system can be, in the 

manner of Hantush (1960) and Moench (1985), expressed in three ways. 

For Case 1, the constant-head boundaries at both top and bottom boundaries can be 

respectively written as 

 2 2, , 0,s r z t z B    (11) 

and 

 3 3, , 0,s r z t z B     (12) 

For Case 2, the no-flux boundary at both top and bottom boundaries yield 

 2
2

, ,
0,

s r z t
z B

z


 


  (13) 

and 

 3
3

, ,
0,

s r z t
z B

z


  


  (14) 

For Case 3, the constant-head boundary at the top and the no-flux boundary at the bottom are 

respectively 

 2 2, , 0,s r z t z B    (15) 

and 
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 3
3

, ,
0,

s r z t
z B

z


  


  (16) 

It should be remarked that the adopted three different types of top and bottom 

boundaries expressed in Eqs. (11)–(16) are commonly encountered in practice. In some cases, 

the upper layer is covered with ponded water, the upper and lower layers are, respectively, 

overlain and underlain a layer of a highly transmissivity, or the induced drawdown at the 

top/bottom boundary is not affected by pumping. Under such conditions, the constant-head 

condition can be imposed at the boundary. On the other hand, if there is an impermeable layer 

below the lower layer or above the upper layer, the no-flux boundary can be adopted 

correspondingly. As for the relevant literature, one may consult Baker (2006), Chen et al. 

(2020), Feng et al. (2019, 2020), Feng and Zhan (2015, 2016, 2019), Hantush (1960, 1964), 

Hemker and Maas (1987), Hunt (2005), Moehch (1985), Neuman and Witherspoon (1969), 

Sepúlveda (2008), Wang et al. (2015) and Wen et al. (2011, 2013). 

2.2 Dimensionless solutions 

2.2.1 Dimensionless equations 

Table 1 Dimensionless variables and parameters 

1/Dr r B  /ri ri SiK S   1 1 2 1/    

1/Dl l B  /zi zi SiK S   2 2 3 2/    

1/Dz z B  2 2 1/DB B B  1 14 /Di r is K B s Q 

1/Dd d B  3 3 1/DB B B  2
1 1 1/D S rS B K  

2
1 1/D rt t B  1/Dri ri r    2 2( ) /i Dri Dzip     

2 2 1/z zK K   1/Dzi zi r     1 2 2 3 31D DB B     

1 1 /DQ Q Q  3 3 2/z zK K    2 2 2 3 31D DB B     

 
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When dealing with complex hydrodynamic systems such as this study, 

nondimensionalization has the advantage of untangling parameter correlation thus reducing 

the number of independent free parameters controlling the system, thus is employed here.  

Using the defined nondimensional variables listed in Table 1, Eqs. (1)-(16) become the 

following equations in the dimensionless forms as:   

2 2

2 2

1Di Di Di Di
Dri Dzi

D D DD D

s s s s

r r tr z
 

    
      

 (17) 

 , ,0 0Di D Ds r z    (18) 

( ) 0Di D Ds z t , ,   (19) 

 1

0

0 1

lim 2

0 0

D D

D DD
D D D Dr

D D D

D D

l z

Q ts
r d z l

r l d

z d



 


    
 

  

  (20) 

   11 1 D Dt
D DQ t Q e      (21) 

2

0
lim 0
D

D
Dr

D

s
r

r





  (22) 

3

0
lim 0
D

D
Dr

D

s
r

r





  (23) 

   1 2, , , , , 1D D D D D D D D Ds r z t s r z t z    (24) 

   1 2
1

, , , ,
, 1D D D D D D D D

D
D D

s r z t s r z t
z

z z


 
 

 
  (25) 

   1 3, , , , , 0D D D D D D D D Ds r z t s r z t z    (26) 

   1 3
2

, , , ,
, 0D D D D D D D D

D
D D

s r z t s r z t
z

z z


 
 

 
  (27) 

Case 1,  

 2 2, , 0,D D D D D Ds r z t z B    (28) 

 3 3, , 0,D D D D Ds r z t z B     (29) 

Case 2,  
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 2
2

, ,
0,D D D D

D D

s r z t
z B

z


 


  (30) 

 3
3

, ,
0,D D D D

D D
D

s r z t
z B

z


  


  (31) 

Case 3, 

 2 2, , 0,D D D D D Ds r z t z B    (32) 

 3
3

, ,
0,D D D D

D D
D

s r z t
z B

z


  


  (33) 

in which the subscript ‘ D ’ designates nondimensional terms. 

2.2.2 Dimensionless solutions for Case 1 

With the help of the constant-head boundary at the top and bottom expressed in Eqs. (28) 

and (29), the drawdown solutions in the three layers can be derived by performing 

Laplace-Hankel transform, the detailed derivations are shown in Appendix A. 

The dimensionless drawdown for the middle-pumped layer in Laplace space yields 

        1 2 11 1 12 1 00
ˆ ˆ ˆ, , 4 ,0, ,1, /      


    D D D D D Ds u z p u r p f u r p f J r d   (34a) 

where 

     
 

1 1

2
1 1

ˆcosh ,ˆ , , 2 D D D
D D

Dz D D

u z
u z p

l d

   


 





  (34b) 

1

0

0

D D D D

D D D D

D D D D

z l l z

d z l

d z z d


  

  
   

  (34c) 

 
       

 
1 1 1 1

1
1

sin 1 cosh cosh 1 sinh
ˆ ,

sinh
D D D D

D D

l z z d
u z

   
 


           (34d) 

       11 1 1 2 1 1 1 2sinh 1 cosh cosh cosh 1 sinh sinhD Df z z                    (34e) 

     12 1 1 2 2 1 1 2sinh cosh cosh cosh sinh sinhD Df z z            (34f) 

         
         

1 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

       

       
  (34g) 

in which J0(ꞏ) represents the zero-order and first kind Bessel function, p and λ refer, 
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respectively, to the variables of the transformations of Laplace and Hankel, and, accordingly, 

over bar and over hat sign indicate , respectively, the Laplace and Hankel domain parameter, 

ˆ
Du  provided by Feng et al. (2019) indicates the Hantush (1964) solution in Laplace-Hankel 

domain for a partially penetration well with variable discharge in a single confined aquifer.  

The dimensionless solution of drawdown in the upper unpumped layer yields 

 
            2 2

2 3 3 2 2 1 1 00
1

sinh
ˆ ˆ8 cosh ,0, ,1, cosh sinh


      


        D D

D D D D D

B z
s B u r p u r p J r  (35) 

The semi-analytical solution of dimensionless drawdown in the lower unpumped layer is 

written as 

 
        3 3

3 31 1 2 2 00
1

sinh
ˆ ˆ8 ,0, ,1, cosh 1


    


        D D

D D D D D

B z
s u r p g u r p B J r d  (36a) 

where 

   31 1 2 2 1 2 2 1cosh 1 cosh sinh 1 sinhD Dg B B                (36b) 

2.2.3 Dimensionless solutions for Case 2 

If the boundaries at the top and bottom of the aquifer system satisfy the no-flux 

boundary written in Eqs.(30)-(31), one can follow the procedures listed in Appendix A and 

develop the semi-analytical solutions of dimensionless drawdown in individual layer of the 

three-layer aquifer system. The drawdown solution in Laplace-domain in the middle-pumped 

layer yields 

        1 2 21 1 22 2 00
ˆ ˆ ˆ ˆ, , 4 ,0, ,1, /      


    D D D D D Ds u z p u r p f u r p f J r d   (37a) 

where 

       21 1 2 1 1 1 1 2sinh 1 cosh cosh cosh 1 sinh sinhD Df z z                     (37b) 

     22 1 1 2 2 1 1 2sinh cosh cosh cosh sinh sinhD Df z z             (37c) 
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          
         

2 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

        

       
   (37d) 

The drawdown solution in Laplace domain in the upper unpumped layer yields 

 
       2 2

2 2 3 3 00
2

cosh
ˆ ˆ8 sinh ,0, ,1,


   


        D D

D D D D D

B z
s B u r p u r p M J r   (38) 

in which 2 3 3 1 3 3 1sinh( ) cosh( ) cos( )sinh( )D DM B B      .    

The drawdown solution in Laplace domain in the lower unpumped layer can be 

expressed as 

 
        3 3

3 32 1 2 2 00
2

cosh
ˆ ˆ8 ,0, ,1, sinh 1


   


         D D

D D D D D

B z
s u r p g u r p B J r   (39a) 

where 

   32 1 2 2 1 2 2 1sinh 1 cosh cosh 1 sinhD Dg B B                (39b) 

2.2.4 Dimensionless solutions for Case 3 

By analogy, with the use of the constant-head boundary at the top and the no-flux 

boundary at the bottom, which are, respectively, described by Eq. (32) and Eq. (33), one can 

develop the nondimensional drawdown solutions in Laplace space for the middle (pumped) 

layer as:  

     1 2 31 1 32
3

4ˆ ˆ ˆ ˆ, , ,0, ,1,D D D D Ds u z p u r p f u r p f  


       (40a) 

where 

       31 1 2 1 1 1 1 2sinh 1 sinh sinh cosh 1 sinh sinhD Df z z                     (40b) 

     32 1 1 2 2 1 1 2sinh sinh sinh cosh cosh coshD Df z z            (40c) 

         
         

3 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 cosh 2 1 1 cosh

2 1 1 cosh 2 1 1 cosh

        

       

        

       
  (40d) 

and, for the upper unpumped layer, one has 
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 
       2 2

2 2 3 3 00
3

sinh
ˆ ˆ8 sinh ,0, ,1,


   


        D D

D D D D D

B z
s B u r p u r p N J r   (41) 

in which 2 3 3 1 3 3 1sinh( ) cosh( ) cosh( )sinh( )D DN B B      . 

and, for the lower pumped layer, one has 

 
        3 3

3 33 1 2 2 00
3

cosh
ˆ ˆ8 ,0, ,1, cosh 1


   


         D D

D D D D D

B z
s u r p g u r p B J r  (42a) 

where 

   33 1 2 2 1 2 2 1cos 1 cosh sinh 1 sinhD Dg B B               (42b) 

2.3 Special cases 

2.3.1 Special cases in a three-layer aquifer 

If removing the effect of the radial flow in the upper and lower unpumped layer (Kr2 = 

Kr3 = 0, 2 2 0r Dr   , 3 3 0r Dr   , 2
2 2/ Dzp   and 2

3 3/ Dzp  ), the developed solutions 

of Eqs. (33) – (41) agree with the solutions for a conventional aquitard-aquifer-aquitard 

system with the assumption of only considering the vertical flows in the unpumped layers, as 

in previous works of Hantush (1960), Moench (1985) and Chen et al. (2020). The condition 

for this assumption is that the permeability of the middle-pumped aquifer is usually larger at 

least two orders of magnitude than that of the upper and lower aquitards.  

Additionally, the transient dimensionless solutions in the three-layer aquifer system 

caused by a partially penetrating constant-rate pumping well in the middle layer can be 

obtained from Eqs. (34) – (42) by setting Q1D = 1, and as far as the author knows, these 

solutions have not been developed in the existing studies.  

2.3.2 Special cases in a two-layer aquifer 

If the lower unpumped layer is absence, one has BD3 = 0, 2 0  , and  1 2 2 2 1DB     , 
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the dimensionless drawdown solutions in a two-layer aquifer having a constant-head and 

no-flow boundary at the top (Case 2 and Case3) can be, respectively, developed from Eqs. 

(37) – (42) and the detailed expression can be, respectively, given by: 

Case 2: for the pumped layer, one has 

       1 1 1 2 2
2

ˆ ,1,ˆ ˆ , , 2 cosh sinh 1D
D D D D D

u r p
s u z p z B   


    

  (43) 

and for the upper unpumped layer, one has 

     2 2 2 1
2

ˆ ,1,ˆ 2 cosh sinhD
D D D

u r p
s B z 


    

  (44) 

with  

       2 1 1 2 2 1 1 2 21 sinh 1 1 sinh 1D DB B                       (45) 

Case 3: for the pumped layer, one has 

       1 1 2 2 1
1

ˆ ,1,ˆ ˆ , , 2 cosh 1 coshD
D D D D D

u r p
s u z p B z   


       (46) 

and for the upper unpumped layer, one has 

     2 1 2 2
3

ˆ ,1,ˆ 2 sinh sinhD
D D D

u r p
s B z 


    

  (47) 

with 

       3 1 1 2 2 1 1 2 21 cosh 1 1 cosh 1D DB B                       (48) 

These solutions of drawdown agree with the solutions of Feng et al. (2019), describing 

flow in a two-layer aquifer system pumped by a partial penetration well of a variable/constant 

discharge subject to a zero-drawdown and no-flux conditions at the top boundary.  

Further, if Q1D = 1, 2 2 0r Dr    and 2
2 2/ Dzp  , the drawdown solutions of Eqs. (43) 

– (45) are equal to the solutions having different expressions developed by Feng and Zhan 

(2015), that can be applied to investigate the drawdown caused by a pumping well of partial 
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penetration in an aquitard-aquifer system where the horizontal flow in the upper layer is 

neglected and a zero-drawdown condition can be imposed at the top boundary.  

2.3.3 Special cases in a single-layer aquifer 

If ignoring the leakage effect between two adjacent layers, the present pumped layer 

drawdown solutions can reduce to the solution of Hantush (1964) for flow in a confined 

aquifer due to a partially penetrated well with constant pumping rate (Q1D = 1).  When the 

pumped layer is fully penetrated by a well with an exponentially decreasing discharge and 

leakage is not considered, Eqs. (34b)–(34d) collapse to the drawdown solution of Wen et al. 

(2017). Additionally, the classical solution of Theis is also included in the new obtained 

solution when Q1D = 1. 

2.4 Numerical inversion of the solutions 

So far, the Laplace-domain solutions of nondimensional drawdown for diverse cases are 

developed. In this study, a numerical integration algorithm (Ogata, 2005) with the method 

using the zeros of the Bessel functions as nodes can be performed to calculate the infinite 

integral associated with the transformation of Hankel, and the method of de Hoog algorithm 

(De Hoog et al., 1982) is able to be applied to solve the transformation of Laplace. Finally, 

one can obtain the solutions in time domain by successively using the two method of 

numerical inversion of Hankel transform and Laplace transform respectively. The verification 

and validation of the method have been proven and more details can be found in the study of 

Feng et al. (2020) and Liang et al. (2018), which is not discussed herein. 

3 Results 

The dimensionless drawdown response due to a partial penetration well pumped at an 
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exponentially decreasing discharge is explored in the following from a number of 

perspectives. Default values for realistic aquifers are used in the following analysis: B1 = 20m; 

B2 = 30m; B3 = 10m; Kr1 = Kz1 = 10-4 ms-1; Kr2 = Kz2 = 10-6 ms-1; Kr3 = Kz3 = 10-6 ms-1; Ss1 = 

2×10-5 m-1 ; Ss2 = 10-3 m-1 ; Ss3 = 10-6 m-1; Q1 = 0.005m3s-1; Q = 0.002m3s-1. One can see that 

the upper and lower unpumped layers have the same hydraulic properties of aquitard 

composed of clay soil for simplicity, and middle pumped layer may be composed of sand 

soils in reality. Under this circumstance, the three-layer system becomes a commonly 

investigated three-layer aquitard-aquifer-aquitard system (Hantush, 1960; Moench, 1985; 

Wen et al, 2011; Chen et al., 2020), which will be analyzed for comparison with existing 

works, though the presented solution applies to a general three-layer aquifer systems with no 

restrictions on the hydraulic parameter (e.g. permeability, specific storage) and the thickness 

of each layer. Aquifer anisotropy and different permeability contrasts among individual layers 

will also be explored to show the importance of considering both vertical and horizontal 

flows for each of the three layers, no matter the layer is pumped or unpumped. 

3.1 Comparison with available solutions 

 
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 

Fig.2 Comparison of the type curves for pumped layer provided by the newly developed 

solution for Case 3 and other existing solutions for a full penetration well (a) and a partial 

penetration well (b) with rD = 0.1, zD = 0.5, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 

2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

Fig. 2 (a) illustrates the drawdown responses of the pumped layer at rD = 0.1 and zD = 

0.5 caused by a full penetration pumping well (lD =1, dD = 0) in an aquitard-aquifer-aquitard 

system (Case 3 in this study, Hantush, 1960), an aquitard-aquifer system (Feng and Zhan, 

2015, Feng et al. 2019), and a confined aquifer system (Theis, 1935, Wen et al., 2017). Fig. 2 

(b) shows the pumped aquifer drawdown at the same location as Fig. 2 (a) due to a partial 

penetration pumping well (lD = 0.75, dD = 0.25) in present solution for Case 3, solutions of 

Feng and Zhan (2015) and Feng et al. (2019) for a leaky confined aquifer system, and 

Hantush (1964) for a nonleaky-confined aquifer system. Both the cases of constant (Q1D =1) 

and variable discharge (Q1D =2.5, αD = 0.8) are taken into account in this figure. 

No matter what the well discharge is, under the circumstance of a full penetration well, 

the early-time drawdown for almost all study agree with one another except for the (modified) 
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Hantush (1960) solution. The results are slightly larger than that of (modified) Hantush (1960) 

for an aquitard-aquifer-aquitard system if using the Hantush-Jacob approximation and the 

assumption of only considering the radial flow in the pumped layer and vertical flow in the 

unpumped aquitard. Because the leakage effect is regarded as a sink/source term introduced 

in the pumped aquifer governing equation in Hantush (1960), it is no strange to see a smaller 

drawdown in early time, as demonstrated in Fig. 2. The drawdown of Theis (1935) and Wen 

et al. (2017) with a full penetration well in Fig. 2 (a) or Hantush (1964) with a partial 

penetration well in Fig. 2 (b) is always larger than the others with the increasing of pumping 

time due to no leakage from adjacent layers. The intermediate time-drawdown in a leaky 

confined aquifer is greater than that in an aquitard-aquifer-aquitard system, which may be 

caused by less leakage into the pumped aquifer derived entirely from the upper aquitard 

storage. The late-time steady-state drawdowns can be found in two-layer and three-layer 

aquifer system and their values are almost the same as each other. Moreover, the time to 

approach the steady state for two-layer aquifer system (Feng and Zhan, 2015, Feng et al., 

2019) is much earlier than that for three-layer aquifer system (Hantush, 1960, present study 

for Case 3), this is to be understood that the water from top boundary of the aquifer system of 

two-layer is also much quicker to supply the pumped aquifer because the pumped aquifer 

drawdown is not influenced by the storage of the lower layer in the aquifer system of 

three-layer. 

Comparison of the dimensionless drawdown solution induced by a full penetration 

pumping well obtained by this study for Case 3 and (modified) Hantush (1960), one can only 

see the difference at early and intermediate times when tD is smaller than about 102, as 
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demonstrated in Fig. 2 (a). This can be attributed to the following aspects. Firstly, the 

Hantush-Jacob approximation is used in (modified) Hantush (1960). Secondly, the flow in the 

radial direction of aquitard and flow in the vertical direction of the pumped aquifer are not 

taken into consideration in (modified) Hantush (1960). However, the present study takes 

account of the horizontal and vertical flows in each layer, as we as treat the leakage across the 

two adjacent layers as continuity boundary conditions rather than a simplified volumetric 

sink/source term, accordingly, our general analytical model can reflect the actual leakage 

process. Therefore, one can conclude that the use of the Hantush-Jacob approximation should 

be deliberated, especially at the early pumping time for a fully penetrating well. One can see 

from Fig. 2 (b) that the storage of lower unpumped aquitard primarily affects the drawdown 

distribution for the three-layer aquifer system of Case 3 at the intermediate pumping time, 

signifying that the hydraulic parameters of lower aquitard can be estimated by using the 

observed data at this stage. In additional, more comparative analysis for the pumped aquifer 

drawdown in a confined aquifer with a pumping well of full penetration (Theis, 1935, Wen et 

al. (2017) or of partial penetration (Hautush, 1964) and in a two-layer aquifer with a 

full/partial penetration well (Feng and Zhan, 2015, Feng et al., 2019) can be found in the 

work of Feng et al. (2019), which is not repeated herein. 

It should be remarked that the typical curves of drawdown versus pumping time have 

two inflection points during the decaying period of pumping rate, and more discussion and 

explanation for this feature can be found in Wen et al. (2017). At last, one can see from Fig. 2 

(a) in comparison with Fig. 2 (b) that the pumped layer drawdown due to a partial penetration 

pumping well is greater than that a full penetration pumping well at the same value of 

https://doi.org/10.5194/hess-2020-586
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.






pumping time, indicating that the effect of well partial penetration needs to be considered. 

3.2 Effect of various top and bottom boundaries 

 

 

 

Fig.3 The typical curves of dimensionless drawdown versus dimension time in the pumped 
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layer and unpumped layers under different top and bottom boundary (a) for Case1 (b) for 

Case 2 and (c) for Case 3 with rD = 0.1, zD = 0.5, lD = 1.0, dD = 0, κ1 = κ2 = 10-2, αDz2 = αDr2 = 

2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

Fig. 3 shows the changes of drawdown at rD = 0.1 in the middle pumped layer (zD = 0.5), 

in the upper layer (zD = 1.2) and in the lower unpumped layer (zD = -0.4) for Case 1 (a), Case 

2 (b), and Case 3 (c) under the condition of a well of full penetration (lD = 1, dD = 0). The 

solution of Hantush (1960) is included in this figure for comparison purposes and the case of 

no leakage (Wen et al., 2017) is also considered as a reference. The curves of drawdown 

versus time for the pumped layer obtained by this study and Hantush (1960) have almost the 

same feature during the entire pumping stage and their deviations are mainly occurred at the 

stage of 10-2 < tD < 101, as illustrated in the subgraphs of Fig.3 with three different cases. 

Additionally, as for the drawdown response in the two unpumped layers, one can find from 

Fig.3 that the drawdown developed by this study is always larger than that of Hantush (1960) 

as the pumping time goes by and a relatively stable error between them can be found at late 

time. This is due to fact that the influence of radial flow in the unpumped layer is ignored by 

Hantush (1960). What is more, Fig. 3 (b) and Fig. 3 (c) demonstrate that the drawdown for 

the lower unpumped layer is nearly identical to that for the pumped layer if only taking 

account of the vertical flow in the unpumped layer. In other words, whether the radial flow in 

the unpumped layer is overlooked or not, one can see that from the comparison of drawdowns 

in the pumped layer with that in the unpumped layer for Case 2 and Case 3. 
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 

Fig.4 Comparison of the typical curves of dimensionless drawdown versus dimension time in 

the pumped layer and unpumped layers under diverse cases with rD = 0.1, zD = 0.5, lD = 0.75, 

dD = 0.25, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 

= 1.5, BD3 = 0.5. 

 

In order to compare the drawdowns under different boundaries at the top and bottom of 

the aquifer system, Fig. 4 displays the drawdown changes at rD = 0.1 in the pumped layer (zD 

= 0.5) and in the unpumped layers (zD = 1.2 and zD = -0.4) for all three cases with a partial 

penetration pumping well (lD = 0.75, dD = 0.25). Notably, the no leaky case (modified, 

Hantush, 1964) is plotted as a reference in this figure. Fig. 4 shows that the influence of the 

type of top and boundary can be ignored in exploring drawdown at the early and intermediate 

pumping time, however, its influence on the late-time drawdown behavior is obvious, and 

one can find that the drawdowns for Cases 1 and 3 reach steady state at late pumping stage 

because of the unlimited water supply stemmed from the top zero-drawdown boundary. In 

addition, the late-time drawdown for Case 3 is greater than that for Case 1 and smaller than 
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that for Case 2. This is due to the fact that the constant-head boundary at the top and bottom 

in Case 1 can give steady and unlimited supply of water, thus leading to the smallest 

drawdown among three cases. In another aspect, the no-flux top and bottom boundaries in 

Case 2 cannot furnish any supply of water, thus the largest drawdown can be seen among 

three cases in this figure.  

Fig. 4 also illustrates that the drawdown for Case 2 increases indefinitely with pumping 

time and finally parallels with that of the no leakage case. This is caused by the no-flow 

boundary at the top and bottom. Furthermore, one cannot see the inflection point of the type 

curves for the unpumped layer, indicating that the influence of variable discharge mainly 

affects the pumped layer drawdown. This is because the drawdown response for the 

unpumped layer appears nearly at the end of the intermediate time and the influence of 

variable discharge is very small and can be neglected at this stage, thus the inflection point 

cannot be found. 

 
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 

Fig.5 Comparison of the nondimensional drawdown behavior in the pumped layer and 

unpumped layers under diverse cases (a) the curves for sD VS rD at tD = 104, (b) the curves for 

sD VS zD at rD = 0.1with lD = 0.75, dD = 0.25, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 

= 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

To further investigate the influence of various top and bottom boundaries on drawdown, 

Fig. 5 is plotted to demonstrate the drawdown responses in all layers using typical curves of 

(a) sD versus rD (zD = 0.5, 1.2 and -0.4 at tD =104; (b) sD versus zD at rD = 0.1 with a partial 

penetration pumping well (lD = 0.75, dD = 0.25). Fig. 5 (a) shows that the late-time drawdown 

at any radial distance rD for Case 3 is greater than that for Case 1 and smaller than that for 

Case 2, and so does the pumping induced influence of the range for different cases, which is 

according with the above analysis of drawdown illustrated in Fig.4. It is interesting to find 

from Fig. 5 (a) that the drawdown in the pumped layer is nearly the same as that in the lower 

unpumped layer for Case 3 at rD > 10, and the same phenomenon can be observed from Fig. 5 

(a) for the drawdowns of Case 3 in the two unpumped layers and pumped layer for Case 3 if 

rD > 40.  
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Additionally, the drawdowns along the vertical direction in whole aquifer system under 

various top and bottom boundaries are shown in Fig. 5 (b). To clarify, the pumping well of 

partial penetration is fixed in the middle of the pumped layer having a screen length of 0.5. It 

can be found that the drawdowns along the vertical direction for all three cases coincide with 

one another at early and intermediate pumping time (tD = 1 and 102), however, the 

discrepancies among them are significant at a relatively late time of pumping (tD = 104). An 

interesting observation from Fig. 5 (b) can be included that the drawdowns for Case 1 and 

Case 2 have symmetry with the axis zD = 0.5 at the entire pumping time, which are caused by 

the identical top and bottom boundaries of the two cases and the same thickness and 

hydraulic parameters of the unpumped layers. However, the late-time drawdown for Case 3 

has no symmetry and the lower layer drawdown is always smaller than that in the upper layer 

at correspondingly position of symmetry, this implies that the lower layer drawdown is 

influenced in a greater degree by pumping for Case 3. Besides, the largest drawdown at the 

axis of symmetry can be seen during the pumping period for all three cases, as expected. In 

general, one can conclude from Fig. 5 that the late-time drawdown is always affected by the 

type of top and bottom boundaries at any position within the three-layer aquifer system. 

Therefore, except for the location of piezometer (r and z), one had better clarify the types of 

top and bottom boundaries, if the late-time drawdown data are used for the estimation of 

parameters of the aquifer system of three-layer. 

3.3 Effect of the variable pumping rate 

Firstly, it points out that Case 3 is hereafter used as an example for demonstration 

purpose. It would be easy to analyze drawdown for Case 1 and Case 2 in a similar way when 
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there is a need. One can know through the above analysis that the pumped aquifer drawdown 

is mainly influenced by the variable discharge. Fig. 6 shows only the pumped aquifer 

drawdown for Case 3 under different αD at rD = 0.1, 0.3 and 0.6. Note that αD = ∞ represents 

the final constant pumping rate. One can see that the differences among the type curves for 

different decay constants can be seen only at intermediate time. A greater αD implies that the 

well discharge declines much faster to reach the final constant pumping rate, resulting in 

smaller drawdowns during the intermediate stage. Additionally, the inflection point of the 

curve of drawdown versus time near the pumping well is more obvious than that at a distance 

further away from the pumping well. This means that the effect of variable discharge 

decreases gradually with the increase of the radial distances and eventually disappears 

completely at some distances far enough. From previous study of Wen et al. (2017), one can 

use the point of inflection appeared at the stage of the declined pumping discharge at 

intermediate time to estimate aquifer parameters. Under this circumstances, Fig. 6 suggests 

that the observed data of drawdown near the pumping well would be a good choice. 

 

https://doi.org/10.5194/hess-2020-586
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.






Fig.6 Dimensionless drawdown response in the pumped layer and unpumped layers under 

different αD for Case 3 with zD = 0.5, lD = 0.75, dD = 0.25,κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, 

αDz3 = αDr3 = 2 × 10-4, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

3.4 Effect of the unpumped layer thickness  

Fig. 7 shows the drawdown characteristics for the pumped (zD = 0.5) and unpumped 

layer (zD = 1.1, -0.1) at rD = 0.1 with a partial penetration well (lD = 0.75, dD = 0.25) for 

various unpumped layer thickness (BD = BD3 = BD2  1). Note that the no leakage case (or an 

impermeable unpumped layer) is also taken into consideration in this figure for comparison. 

The early and intermediate-drawdowns for both pumped aquifer and unpumped layers are not 

influenced by the change of the thickness of the unpumped layer, but the larger the thickness 

of the unpumped layer, the larger late-time drawdown can be found. In addition, Fig. 7 also 

illustrates that the pumped aquifer drawdown is significantly influenced by the leakage from 

adjacent layer if compared to the case of no leakage. 

 

Fig.7 Dimensionless drawdown response in the pumped layer and unpumped layers under 
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different thickness of the unpumped layers (BD = BD2 - 1 = BD3) for Case 3 with rD = 0.1, zD = 

0.5, lD = 0.75, dD = 0.25, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, 

Q1D = 2.5, BD2 = 1.5, BD3 = 0.5. 

 

3.5 Effect of anisotropy 

Because of the generality of the established solution, one can easily explore the 

influence of anisotropy for each layer on the drawdown in this three-layer system. To be sure, 

two schemes of the aquifer system are considered for comparison. The drawdown change in 

the classical aquitard-aquifer-aquitard scheme (termed scheme A herein) will show in the 

following figures (a), and the drawdown response will also be illustrated in the following 

figures (b) for another scheme (termed scheme B herein) of a general aquifer system of 

three-layer, having the permeability values of the upper and lower layers being one order of 

magnitude smaller (instead of two orders of magnitude smaller as in the default setting) than 

that of the middle-pumped layer. 

 
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 

Fig.8 The nondimensional drawdown response in the pumped layer and unpumped layers 

under different anisotropy of the pumped layer (KD1 = Kz1/Kr1) for Case 3 with rD = 0.1, αD = 

0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5, lD = 0.75, dD = 0.25, KD2 = Kz2/Kr2 = KD3 = Kz3/Kr3 = 0.2, 

where (a) Kr = Kr2 = Kr3 = 4×10-6m/s, (b) Kr = Kr2 = Kr3 = 4×10-5m/s. 

 

Fig. 8 shows the response of drawdown for Case 3 in the pumped layer (zD = 0.5) and in 

the upper and lower layers (zD = 1.25, -0.25) at rD = 0.1 with a partial penetration well (lD = 

0.75, dD = 0.25) for various anisotropy of the pumped layer (KD1 = Kz1/Kr1). Note that KD1 = 1 

refers to the isotropic case, which is included as a reference.  

One can see from Fig. 8 that the entire aquifer system for scheme A and scheme B is 

affected by the change of the pumped layer anisotropy almost during the entire pumping time. 

The pumped layer drawdown decreases with an increase of the anisotropy ratio and a larger 

KD1 results in larger drawdowns for the upper and lower unpumped layers. Comparing the 

drawdowns for scheme A shown in Fig. 8 (a) and for scheme B listed in Fig. 8 (b), one can 

see that the drawdown for scheme A is always larger than that for scheme B. This is because 
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the difference of the permeability of the unpumped layers and pumped layer for scheme B is 

not as significant as that for scheme A, and the capacity of water supply of the unpumped 

layers for scheme B is much stronger than that for scheme A. Therefore, it is much easier to 

obtain the water supply from the top boundary, thus a smaller drawdown is seen as illustrated 

in Fig. 8 (b). Overall, the pumped layer anisotropy is of great importance to ascertaining the 

drawdown behavior of the entire three-layer aquifer system.  

 

 

Fig.9 The nondimensional drawdown change in the pumped layer and unpumped layers 

under different anisotropy of the unpumped layers ( KD = Kz2/Kr2 = Kz3/Kr3) for Case 3 with 
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rD = 0.1, αDz2 = αDz3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, BD3 = 0.5, KD1 = Kz1/Kr1 = 0.5, 

Kr2 = Kr3, lD = 0.75, dD = 0.25, in which (a) κ1 = κ2 = 0.04, αDr2 = αDr3 = 4 × 10-5, Kz = Kz2 = 

Kz3 = 2×10-6m/s and (b) κ1 = κ2 = 0.4, αDr2 = αDr3 = 4 × 10-4, Kz = Kz2 = Kz3 = 2×10-5m/s.  

 

Fig. 9 demonstrates the drawdown changes for Case 3 in an anisotropic pumped layer 

(zD = 0.5, KD1 = 0.5 and Kr1 = 10-4 m/s) and anisotropic upper and lower layers (zD = 1.25 and 

-0.25) for various anisotropy ratios of unpumped layer (KD = KD2 = Kz2 / Kr2 = KD3 = Kz3 / Kr3) 

at rD = 0.1 with a pumping well of partial penetration (lD = 0.75 and dD = 0.25). It should be 

mentioned that the vertical permeability of the unpumped layer is to be kept on hold in Fig. 9, 

where (a) Kz = Kz2 = Kz3 = 2×10-6m/s and (b) Kz = Kz2 = Kz3 = 2×10-5m/s. The case of an 

isotropic unpumped layer (KD = 1) is considered in both subgraphs, and the case of ignoring 

the radial flow in unpumped layer is depicted as well for comparison in Fig. 9. One can 

obviously see from Fig. 9 that the influence of various anisotropy ratios on the pumped layer 

drawdowns almost coincide with the case of the unpumped layer with no horizontal low for 

scheme A if KD ≥ 0.5. However, when KD is 0.1 for scheme A, the anisotropy of the 

unpumped layers significantly affects the pumped layer drawdown at the late pumping time 

as demonstrated in Fig. 9 (a). The influence of the unpumped layers anisotropy on the 

pumped layer drawdown for scheme B is more obvious than that for scheme A at 

intermediate and late times, it can be seen from Fig. 9 (b). In addition, no matter what the 

value of anisotropy KD is, the change of KD has an appreciable influence on the unpumped 

layer drawdowns for both scheme A and scheme B. Finally, one still can conclude from Fig. 9 

that the drawdown for scheme A is generally larger than that for scheme B at the same 

position within the aquifer system of three-layer and at the same pumping time. Overall, the 
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radial and vertical flows in the unpumped layer (effect of anisotropy) should be considered in 

determining drawdown responses around the pumping well, especially to the general case 

without large contrast of hydraulic conductivity among the unpumped layers and the pumped 

layer.   

3.6 The effect of well partial penetration 

 

 

Fig. 10 Drawdown responses in the pumped layer and unpumped layers (Case 3) with rD = 

0.1, κ1 = κ2 = 10-2, αDz2 = αDr2 = 2 × 10-4, αDz3 = αDr3 = 2 × 10-4, αD = 0.8, Q1D = 2.5, BD2 = 1.5, 

BD3 = 0.5 (a) for different well screen length, in which lD = 1.0 (b) for various depth of well 
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screen within the middle pumped layer, where lD - dD = 0.5. 

 

     One of the main contributions in this study is that the established general analytical 

model considered the effect of the well partial penetration, Fig. 10 shows the drawdown 

changes for Case 3 (rD = 0.1) in the middle-pumped layer (zD = 0.5) and unpumped layers (zD 

= 1.25 and -0.25). Especially, Fig. 10 (a) is for various well screen length and lD = 1.0, and 

Fig. 10 (b) is for different vertical position of well screen within the middle-pumped layer 

and the well screen length is fixed (lD - dD = 0.5). It can be seen from Fig. 10 that the length 

and position of well screen have remarkable effect on the drawdown for all three layers. A 

larger well screen length means that the middle drawdown of pumped layer is closer to the 

position of well screen and the stored water is much easier to be released, resulting in a larger 

drawdown of pumped layer, similarly, a smaller drawdown for the upper layer and a greater 

drawdown for the lower unpumped layer can be seen in Fig. 10 (a) for Case 3. Additionally, 

one can conclude from the above analysis shown in Fig. 5 (b) that the closer to the center of 

the pumped well, the larger drawdown can be seen for all three layers, and the drawdown for 

the lower layer is relatively larger than the late-time drawdown for the upper layer at the 

same distance measured from the interface between the pumped layer and unpumped layer 

for Case 3. The center point of the well screen for three different lD = 1.0, 0.8 and 0.6 is 

respectively at zD = 0.75, 0.55 and 0.35, respectively. Thus, the pumped layer drawdown (zD 

= 0. 5) with lD = 0.6 is larger than that with lD = 1.0 and smaller than that with lD = 0.8, in the 

same way, the upper unpumped layer drawdown (zD = 1.25) with lD = 0.8 is larger than that 

with lD = 0.6 and smaller than that with lD = 1.0, and the lower unpumped layer drawdown 
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(zD = -0.25) with lD = 0.8 is larger than that with lD = 1.0 and smaller than that with lD = 0.6. 

Besides that, whatever the pumping well is located at the pumped layer, the pumping induced 

drawdown in the lower unpumped layer is larger than that in the upper layer for Case 3. 

4. Discussion 

Based upon the presented solution, firstly, one can perform quantitative evaluation of the 

dimensionless drawdown at any points within the general three-layer aquifer system with a 

partial penetration pumping well in the middle layer. It is worth emphasizing again that the 

developed solution not only has no any restrictions on the values of the thickness, hydraulic 

conductivity, and specific storage for all three layers, but that for the length and location of 

the well screen fixed in the pumped layer, thus, the generality of the obtained solution is the 

main contribution of this study. Secondly, it is convenient to explore the influences of 

variable discharge of pumping, aquifer thickness, anisotropy, well partial penetration, and the 

type of top and bottom boundary on the groundwater flow problems in the aquifer system of 

three-layer. Besides that, the present solutions have a powerful potentiality within 

geotechnical engineering, petroleum engineering and groundwater resource development. 

Another important application of the proposed solution is to identify the hydraulic parameters 

of each layer with adopting the method of parameter estimation in conjunction with field 

data.  

Because the responses for a special case of aquitard-aquifer-aquifer system is mainly 

explored for comparison with existing solutions, some suggestions can be obtained for using 

the developed solutions in such a three-layer aquifer from the above analysis herein. First of 

all, the well structure (screen position and length) in the pumped layer and the thickness of all 
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layers should be clearly determined. Secondly, the type of boundary at the top and bottom of 

the aquifer system should be clarified with the use of the observed data of late-time 

drawdown for parameter estimation. Thirdly, the feature of inflection point for the curve of 

drawdown against time due to the effect of variable discharge can be used to estimate the 

pumped layer parameters, and in such a case the in situ data of drawdown in vicinity of the 

pumping well need to be collected. Fourthly, the data of early-time drawdown for unpumped 

layers are suggested to determine their specific storage respectively, the datum of late-time 

drawdown for unpumped layers can be applied to estimate their values of hydraulic 

conductivities respectively. 

However, a few limitations of this study are also need to be addressed. Firstly, the effects 

of finite radius and wellbore storage on flow cannot be investigated in this study because of 

the assumption of infinitesimal radius of the pumping well. Secondly, the three-dimensional 

transient responses in three-layer aquifer system have not been discussed with the condition 

of constant-drawdown pumping, other type of variable-rate pumping (e.g. sinusoidal 

pumping, piecewise-linear pumping), etc. Thirdly, the heterogeneity of the aquifer and 

varying/non-uniform thickness of each layer are not taken into consideration. Fourthly, the 

slope of each layer and the influence of finite or non-uniform well skin are not considered as 

well. Fifthly, the effect of a finite or irregular lateral boundary is not analyzed. The 

investigation for these subjects is much needed in details in the future.  

5. Summary and conclusions 

A general semi-analytical dimensionless drawdown solution in an anisotropic aquifer 

system of three-layer caused by a partial penetration well pumped at a variable discharge is 
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developed by means of Laplace-Hankel transformation taking account of the interface flow. 

Most importantly, three widely used types of boundary conditions at the top and bottom are 

considered that include a zero-drawdown boundary for Case1 or a no-flow boundary for Case 

2, and a constant-head boundary at the top in combination with a no-flux boundary at the 

bottom for Case 3. The time-domain solutions are evaluated by performing numerical 

inversion of the transformations of Laplace and Hankel. The present solutions encompass 

some previously known solutions caused by a full or partial penetration pumping well in an 

aquifer system of two-layer or single-layer as subsets. The three-dimensional transient 

drawdown in the entire aquifer system pumped by a partial penetration well having a 

discharge with exponentially decaying function in the middle layer is explored as an example 

of illustration. From this study, one can conclude the following main findings: 

(1) The pumped layer drawdown for Hantush (1960) with neglecting vertical flow in the 

pumped layer and horizontal flow in the unpumped layer and the use of the Hantush-Jacob 

approximation is greater that of this work for Case 2, especially at the early pumping time for 

a fully penetrating well, and the unpumped layers drawdown for Hantush (1960) are greater 

than that for present study. 

(2) The effect of variable discharge describing an exponential decline function of 

pumping time mainly affects the drawdown of the pumped layer, and a noticeable feature of 

inflection points can be seen at the stage of the decay of well discharge and the region nearby 

the well of pumping. 

(3) The type of boundary at the top and bottom of the aquifer system has no influence on 

the early- and intermediate-drawdown, but the drawdown at late pumping time for Case 3 is 
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greater than that for Case 1 and smaller than that for Case 2 in all three layers.  

(4) A smaller anisotropy ratio (meaning a smaller vertical/horizontal permeability ratio) 

of the pumped layer results in a larger pumped layer drawdown and a smaller unpumped 

layer drawdown over the whole pumping times. The anisotropy of the unpumped layers (KD) 

mainly affects the drawdown in the unpumped layer and a larger anisotropy ratio (KD) leads 

to a larger drawdown of unpumped layer.  

(5) The anisotropy of the unpumped layers significantly affects the drawdown in the 

aquifer system without large contrast of hydraulic conductivity between the unpumped layers 

and the pumped layer during entire pumping period. 

(6) The drawdown nearby the pumping well in all three layers are significantly affected 

by the length and position of well screen in the pumped layer at the entire time, and a larger 

drawdown can be seen at the position of a smaller distance to the midpoint of the well screen. 
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Appendix A. Derivations of solutions for different cases 

The Laplace and Hankel transformation technique are sequentially applied to Eqs. (17) – 

(33), one can obtain the following Laplace-Hankel domain governing equations of flow in the 

middle-pumped aquifer 

2 2
1 1

1 12 0
1

ˆ 1ˆ lim
D

D D
D D

r
Dz DD

s s
s r

rz


 

 
 


  (A1) 

with 

 1

0

0 1

2
lim

0 0

D D

D
D D D Dr

D D D

D D

l z

Q ps
r d z l

r l d

z d



 


    
 

  

 (A2) 

and the variable discharge used in this study is expressed in Eq. (5), one can obtain, 

  1 11 D

D

Q
Q p

p p 


 


  (A3) 

Substituting Eq. (A3) into Eq. (A2) results in 

1 1

0

0 1

12 1
lim

0 0

D

D D

D D
D D D Dr

D D D D

D D

l z

s Q
r d z l

r l d p p

z d



 


           
  

   (A4) 

To derive the solution of Eq. (A1), using the method proposed by Neuman (1974), the 

dimensionless drawdown for the middle-pumped layer ( 1Ds ) can be divided into the following 

form and written in Laplace-Hankel space as: 

1
ˆ ˆ ˆ

D D Ds u v    (A5) 

in which ˆ
Du  designates the Laplace-Hankel domain drawdown solution in a confined aquifer 

caused by a partial penetration pumping well, and the final expression of ˆ
Du  written in Eq. 

(33) can be obtained by complying with the analogous process adopted by Feng and Zhan 

(2019). ˆ
Dv  satisfies Eqs. (17) and (24)-(27). 

https://doi.org/10.5194/hess-2020-586
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.






Under this circumstance, the governing equation of ˆ
Dv  becomes 

2
2

12

ˆ ( ) ˆ ( ) 0D D
D D

D

v z p
v z p

z


 


 


, ,

, ,   (A6) 

   By analogy, the governing equations of the upper and lower unpumped layer are 

respectively rewritten as 

2
22
2 22

ˆ ( ) ˆ ( ) 0D D
D D

D

s z p
s z p

z


 


 


, ,

, ,   (A7) 

and 

2
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3 32

ˆ ( ) ˆ ( ) 0D D
D D

D

s z p
s z p

z


 


 


, ,

, ,   (A8) 

The interface boundary conditions at zD = 1 given in Eqs. (24) and (25) become 

     2
ˆ ˆ ˆ,1, ,1, ,1, 1D D D Du p v p s p z    ，   (A10) 

   2
1

ˆ ˆ, , , ,
, 1D D D D

D
D D

v z p s z p
z

z z

 


 
 

 
  (A11) 

And considering the boundary conditions at zD = 0 expressed in Eqs. (26) and (27), one 

can obtain 

     3
ˆ ˆ ˆ, , , , , , , 0D D D D D D Du z p v z p s z p z       (A12) 

   3
2

ˆ ˆ, , , ,
, 0D D D D D D

D
D D

v r z p s r z p
z

z z


 
 

 
  (A13)

Finally, the top and bottom boundary conditions given in Eqs. (28)-(33) can be rewritten 

as: 

For Case 1,  

 2 2
ˆ , , 0,D D D D Ds r z p z B    (A14) 

 3 3
ˆ , , 0,D D D Ds r z p z B     (A15) 

For Case 2,  
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 2
2

ˆ , ,
0,D D D

D D

s r z p
z B
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
 


  (A16) 
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ˆ , ,
0,D D D

D D
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s r z p
z B

z


  


  (A17) 

and 

for Case 3, 

 2 2
ˆ , , 0,D D D D Ds r z p z B    (A18) 

 3
3

ˆ , ,
0,D D D

D D
D

s r z p
z B

z


  


  (A19) 

The general solution for Eq. (A6) is 

  1 1
1 2

ˆ , , D Dz z
D Dv z p c e c e      (A20) 

Substituting Eq. (A20) into Eq. (A5), one can write 

  1 1
1 1 2

ˆ ˆ , , D Dz z
D D Ds u z p c e c e       (A21) 

The general solutions of Eqs. (A7) and (A8) for flow in the upper and lower unpumped 

layers can be expressed, respectively, as 

2 2
2 3 4

ˆ D Dz z
Ds c e c e     (A22)  

and 

3 3
3 5 6

ˆ D Dz z
Ds c e c e     (A23) 

Using the continuity boundary conditions of Eqs. (A10)-(A13) leads to 

  1 1 2 2
1 2 3 4

ˆ ,1, 0Du p c e c e c e c e            (A24) 

 1 1 2 2
1 2 1 3 4 0c e c e c e c e          (A25) 

  1 2 5 6
ˆ ,0, 0Du p c c c c        (A26) 

and 

 1 2 2 5 6 0c c c c      (A27) 
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Applying the top and bottom boundary conditions Eqs. (A10)-(A13), one can write 

Case 1,  

2 2 2 2
3 4 0D DB Bc e c e     (A28) 

3 3 3 3
5 6 0D DB Bc e c e      (A29) 

Case 2,  

2 2 2 2
3 4 0D DB Bc e c e     (A30) 

3 3 3 3
5 6 0D DB Bc e c e      (A31) 

and  

Case 3, 

2 2 2 2
3 4 0D DB Bc e c e     (A32) 

3 3 3 3
5 6 0D DB Bc e c e      (A33) 

Solving equations consisting of expressions (A24)–(A27) and (A28)–(A29), the 

coefficients that need to be determined for Case 1 are 

     
   

1
2 1 2 1 1 2

1
1 1 1 2 2 1 2

ˆ ,0, cosh cosh sinh sinh2
ˆ ,1, cosh cosh sinh sinh

D

D

u r p e
c

u r p

      

      

        
       

  (A34a) 

and 

   
     

1
2 1 2 1 1 2

2
1 1 1 2 2 1 2

ˆ2 ,0, cosh cosh sinh sinh2
ˆ2 ,1, cosh cosh sinh sinh

D

D

u r p e
c

u r p

      

      

          
       

  (A34b) 

with c3, c4, c5, and c6 written by c1 and c2. 

     2 1 1
3 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A34c) 

     2 1 1
4 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A34d) 

     5 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A34e) 

     6 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A34f) 

where 
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         
         

1 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

       

       
  (A34g) 

Similarly, solving equations including Eqs. (A20)–(A24) and Eqs. (A28)–(A29), the 

related coefficients used in Case 2 yield 

     
     

1
2 2 1 1 1 2

1
2 1 1 2 2 1 2

ˆ ,0, cosh cosh sinh sinh2
ˆ ,1, cosh cosh sinh sinh

D

D

u r p e
c

u r p

      

      

        
       

  (A35a) 

     
     

1
2 2 1 1 1 2

2
2 1 1 2 2 1 2

ˆ ,0, cosh cosh sinh sinh2
ˆ ,1, cosh cosh sinh sinh

D

D

u r p e
c

u r p

      

      

         
       

  (A35b) 

     2 1 1
3 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A35c) 

     2 1 1
4 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A35d) 

     5 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A35e) 

     6 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A35f) 

         
         

2 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 sinh 2 1 1 sinh

2 1 1 sinh 2 1 1 sinh

        

       

        

       
  (A35g) 

In the same way, one can solve the equations using Eqs. (A20)–(A24) and (A27), the 

results for Case 3 are 

     
     

1
2 2 1 1 1 2

1
3 1 1 2 2 1 2

ˆ ,0, sinh sinh cosh cosh2
ˆ ,1, sinh sinh cosh cosh

D

D

u r p e
c

u r p

      

      

        
       

  (A36a) 

     
     

1
2 2 1 1 1 2

2
3 1 1 2 2 1 2

ˆ2 ,0, sinh sinh cosh cosh2
ˆ2 ,1, sinh sinh cosh cosh

D

D

u r p e
c

u r p

      

      

         
       

  (A36b) 

     2 1 1
3 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A36c) 

     2 1 1
4 1 1 2 1 1

1

1 ˆ1 1 ,1,
2 D Dc e c e c e u r p    


          (A36d) 

     5 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A36e) 

     6 1 2 2 2 2
2

1 ˆ1 1 ,0,
2 D Dc c c u r p  


         (A36f) 

         
         

3 1 2 1 1 1 2 1 1

1 2 1 2 1 2 1 2

2 1 1 cosh 2 1 1 cosh

2 1 1 cosh 2 1 1 cosh

        

       

        

       
  (A36g) 
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Finally, substituting the obtained coefficients for various cases above into Eq. (A21) – 

Eq. (A23) respectively, and performing inverse Hankel transform can be, after some 

mathematical manipulation details, written in Eqs. (29) – (37). So far, semi-analytical 

solutions in the pumped and unpumped layers are derived. 
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