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This is my review of the manuscript submitted by Feng, Feng and Zhan to HESS. The
manuscript describes an analytical solution for a confined two-dimensional axisymmet-
ric flow problem with three layers with variable discharge rate. The solution appears
correct, but not particularly novel. Its difference from several other existing analyti-
cal solutions is a technicality (there are many layered analytical flow solutions in the
literature).

The authors do not present any data or comparison against reality to justify the analyt-
ical solution design. It is easier to re-derive an analytical solution for a given problem
than it is to drill a well. If the authors presented field data and used this solution to gain
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insight into observed physical behavior for a real-world system, I think the description
of this analytical solution could be relegated to an appendix of that paper.

Specific Comments

1) The authors call their solution "three dimensional," but it is only two-dimensional (r
and z).

2) Lines 85-109: the authors build up a straw man about how difficult and inaccurate
numerical solutions are, to lead into their discussion of how general and robust their
analytical solution is. I definitely believe analytical solutions are useful and have their
place, but they are not "better" than numerical models. It may be more appropriate to
discuss how analytical solutions can be quick to evaluate (but very complex analytical
solutions that are essentially "numerical" like this one are often not so quick to evaluate
numerically), and therefore can be used in sensitivity analyses to gain insight into phys-
ical behavior through inverse modeling problems. Most of the comments about pitfalls
related to numerical solution also apply to analytical solutions. The authors performed
a double integral transform, and numerically invert both of these transforms. Numer-
ically evaluating an analytical solution that involves two integral transforms can lead
to more potentially dubious numerical manipulations than involved in most "numerical
models."

2a) How many terms were used in the numerical inverse Laplace and Hankel transform
algorithms? (what was the criteria used to ensure the solution had converged?)

2b) What criteria was use to chose the convergence of these series? Fixed number of
terms? Was the solution compared with different numbers of terms?

2c) What order were the equations inverted (inverse Hankel first or inverse Laplace
first)? Does the solution depend on the order they are inverted?

2d) Many of the terms in the analytical solution involve differences of exponentials or
hyperbolic trigonometric functions. Subtraction of very large terms can lead to catas-
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trophic cancellation, was this considered? Were the terms in the solution algebraically
manipulated to minimize loss of significance? Could they be written in an equivalent
manner that was more accurate than is written in the manuscript?

The authors simply point to Feng et al. (2020) and Liang et al. (2018) and do not
discuss any details of the accuracy or convergence of their method for evaluating their
"numerical" analytical solution (line 362). I would contend analytical solutions are more
finicky and failure-prone than numerical models, so they require more careful scrutiny.
The convergence of finite difference or finite element numerical models for solving
confined groundwater flow (linear diffusion equations for a homogeneous problem) is
pretty well-known and is not going to surprise anyone. Numerical models can also
consider: 1) finite wellbore radius, 2) heterogeneity, 3) variable pumping rates, 4) non-
linearities (e.g., the equation of state for water). I think the authors could cut down
the section that discusses general "problems" with numerical models (lines 85-109) to
a sentence. They could also cut down the section that talks about how general their
analytical solution is. Both these un-needed sections could be replaced with discussion
about the "numerical" details of evaluating their solution, which would actually be useful
to someone who was going to try to implement this (the current general discussion
about how much better analytical solutions are than numerical solutions in general is
not useful).

3) The authors claim they have created a general and useful solution, but they also
use an infinitessimal wellbore with no wellbore storage. Wellbore storage is very im-
portant, especially if you can have any range of aquifer properties in all three layers. All
wells experience wellbore storage to some degree (unless it is a constant-head pump-
ing test), the balance of the volume in the wellbore interval to the formation storage
properties indicates whether or not it is significant. This solution will only be correct in
the limiting case of small wellbore storage. The authors admit this (lines 636-645), but
indicate that that will be coming in the next analytical solution.

4) Variability in the pumping rate is a trivial difference between this solution and other
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solutions. Since the solutions is completely linear, Duhamel’s theorem can be used to
superimpose solutions that are pulses in time, or other combinations of steps on and
off. The authors should provide some data or an example where this type of behavior
(exponentially declining pumping rate) occurs. It is only included here because it is a
simple case to consider in Laplace space, not because it is physically meaningful.
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