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Abstract. The non-parametric Budyko framework provides empirical relationships between a catchment’s long-term mean 

evapotranspiration (�̅�) and the aridity index, defined as the ratio of mean rainfall depth (�̅�) to mean potential evapotranspiration 10 

(𝐸0
̅̅ ̅). The parametric Budyko equations attempt to generalize this framework by introducing a catchment-specific parameter 

(𝑛 or 𝑤), intended to represent differences in catchment climate and landscape features. Many studies have developed complex 

regression relationships for the catchment-specific parameter in terms of biophysical features, all of which use known values 

of �̅�, 𝐸0
̅̅ ̅, and �̅� to numerically invert the parametric Budyko equations to obtain values of 𝑛 or 𝑤. In this study, we analytically 

invert both forms of the parametric Budyko equations, producing expressions for 𝑛 and 𝑤 only in terms of �̅�, 𝐸0
̅̅ ̅, and �̅�. These 15 

expressions allow for 𝑛 and 𝑤 to be explicitly expressed in terms of biophysical features through the dependence of �̅�, 𝐸0
̅̅ ̅, and 

�̅� on those same features. 

1 Introduction 

The non-parametric Budyko framework was developed to explain and describe the distinctive clustering pattern 

observed for the long-term average evaporative behavior across multiple catchments. This pattern emerges when the 20 

evaporative indices, 
�̅�

�̅�
 (where �̅� is the mean rainfall depth and �̅� is the mean actual evapotranspiration depth), of multiple 

catchments are plotted against their corresponding aridity indices, 
𝐸0̅̅̅̅

�̅�
 (where 𝐸0

̅̅ ̅  is the mean potential evapotranspiration 

depth). Several empirical relationships of the form, 

�̅�

�̅�
= 𝑓0 (

𝐸0̅̅̅̅

�̅�
) ,            (1) 

have been proposed to describe this pattern, including (Schreiber, 1904), 25 

�̅�

�̅�
= 1 − 𝑒−

𝐸0̅̅ ̅̅

�̅�  ,            (2) 

and (Ol’Dekop, 1911) 
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�̅�

�̅�
=

𝐸0̅̅̅̅

�̅�
tanh (

�̅�

𝐸0̅̅̅̅
) .            (3) 

Equations (2) and (3) were selected since they closely match the central tendency of 
�̅�

�̅�
 across 

𝐸0̅̅̅̅

�̅�
, obey the laws of conservation 

of energy and mass for all values of 
𝐸0̅̅̅̅

�̅�
, and approach energy limitation (i.e., 

�̅�

�̅�
→

𝐸0̅̅̅̅

�̅�
) and water limitation (i.e., 

�̅�

�̅�
→ 1) in the 30 

humid (i.e., 
𝐸0̅̅̅̅

�̅�
→ 0) and arid (i.e., 

𝐸0̅̅̅̅

�̅�
→ ∞) limits, respectively. The geometric mean of Eq. (2) and (3) has been shown to 

predict 
�̅�

�̅�
 with ~10% uncertainty (Budyko and Zubenok, 1961; Gentine et al., 2012) for ungauged basins if �̅� and 𝐸0

̅̅ ̅ are known.  

 In an attempt to generalize the non-parametric Budyko framework and explain deviations in 
�̅�

�̅�
 from the central 

tendency of the empirically observed catchment clustering pattern, two parametric Budyko equations have been proposed 

(Turc, 1953; Choudhury, 1999; Mezentsev, 1955; Yang et al., 2008), 35 

�̅�

�̅�
=

𝐸0̅̅ ̅̅

�̅�

[1+(
𝐸0̅̅ ̅̅

�̅�
)
𝑛

]

1
𝑛

 ,            (4) 

and (Tixeront, 1964; Berkaloff and Tixeront, 1958; Fu, 1981; Zhang et al., 2004), 

�̅�

�̅�
= 1 +

𝐸0̅̅̅̅

�̅�
− (1 + (

𝐸0̅̅̅̅

�̅�
)

𝑤

)

1

𝑤
 ,          (5) 

where 𝑛 and 𝑤  are dubbed “catchment-specific parameters”. Equations (4) and (5) can alternatively and equivalently be 

expressed in terms of the R-Index, 
�̅�

𝐸0̅̅̅̅
 (Yao, 1974), and humidity index, 

�̅�

𝐸0̅̅̅̅
 (Hulme et al., 1992), giving, 40 

�̅�

𝐸0̅̅̅̅
=

�̅�

𝐸0̅̅ ̅̅

[1+(
�̅�

𝐸0̅̅ ̅̅ )
𝑛

]

1
𝑛

 ,            (6) 

and 

�̅�

𝐸0̅̅̅̅
= 1 +

�̅�

𝐸0̅̅̅̅
− (1 + (

�̅�

𝐸0̅̅̅̅
)

𝑤

)

1

𝑤
 .          (7) 

The catchment-specific parameter (𝑛 or 𝑤) has been described as an empirical, effective parameter representing the 

influence of all catchment biophysical features, other than �̅� and 𝐸0
̅̅ ̅, on �̅� (Wang et al., 2016a). Additionally, the functional 45 

forms of the parametric Budyko equations have typically been interpreted as representing the evaporative behavior of 

individual catchments under different aridity indices (e.g., (Roderick and Farquhar, 2011; Wang and Hejazi, 2011; Yang and 

Yang, 2011; Wang et al., 2016b; Zhou et al., 2016; Shen et al., 2017; Zhang et al., 2016; Milly et al., 2018)). Utilizing these 

interpretations, many studies have developed complex regression relationships for the catchment-specific parameter in terms 

of various climate and landscape features (Yang et al., 2007; Donohue et al., 2012; Yang et al., 2009; Shao et al., 2012; Li et 50 
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al., 2013; Xu et al., 2013; Cong et al., 2015; Yang et al., 2016; Zhang et al., 2018; Abatzoglou and Ficklin, 2017; Xing et al., 

2018; Zhao et al., 2020; Ning et al., 2020b; Ning et al., 2020a; Li et al., 2020b; Li et al., 2020a; Zhang et al., 2019; Ning et al., 

2019; Bai et al., 2019; Ning et al., 2017). In all such studies, known values of �̅�, 𝐸0
̅̅ ̅, and �̅�, estimated empirically or via 

modelling, are used to numerically invert the parametric Budyko equations to obtain values of the catchment-specific 

parameter, which are then regressed against various biophysical features. The expressions obtained from such endeavours vary 55 

considerably between studies, both in their functional forms and which biophysical features are included, making it difficult 

to develop a consistent mechanistic understanding of the catchment-specific parameter (Reaver et al., 2020). This difficulty 

could be overcome by having the explicit relationship between 𝑛 or 𝑤 and �̅�, 𝐸0
̅̅ ̅, and �̅�, which would allow for 𝑛 or 𝑤 to be 

expressed in terms of biophysical features through the dependence of �̅�, 𝐸0
̅̅ ̅, and �̅� on those same features. 

In this study, we analytically invert both forms of the parametric Budyko equations. The resulting expressions give 𝑛 60 

and 𝑤 only in terms of �̅�, 𝐸0
̅̅ ̅, and �̅�, illustrating that if 𝑛 and 𝑤 depend on any biophysical features, it is due directly to the 

dependence of �̅�, 𝐸0
̅̅ ̅, or �̅� on those same features. Notably, there has not been an analytical derivation illustrating how 𝑛 and 

𝑤 relate to biophysical features, though the importance of doing so has been noted many times (Zhang et al., 2004; Yang et 

al., 2008; Donohue et al., 2012; Xu et al., 2013; Greve et al., 2015; Wang et al., 2016a; Zhang et al., 2018). The expressions 

we develop here for 𝑛 and 𝑤 satisfy this need, providing a general expression for the dependence of 𝑛 and 𝑤 on any possible 65 

biophysical features through the dependence of �̅�, 𝐸0
̅̅ ̅, and �̅� on those same features. 

2 Analytical Expressions for 𝒏 and 𝒘 

To develop explicit analytical expressions for 𝑛 and 𝑤, we start with Eq. (4) and (5). These two equations can be 

algebraically manipulated into, 

(𝑒𝑛)
ln(

𝐸0̅̅ ̅̅

�̅�
)
− (𝑒𝑛)

ln(
𝐸0̅̅ ̅̅

�̅�
)
= 1 ,          (8) 70 

and 

(𝑒𝑤)
ln(

𝐸0̅̅ ̅̅ +�̅�−�̅�

�̅�
)
− (𝑒𝑤)

ln(
𝐸0̅̅ ̅̅

�̅�
)
= 1 ,          (9) 

respectively. Similarly, Eq. (6) and (7) can be manipulated into 

(𝑒𝑛)
ln(

�̅�

�̅�
)
− (𝑒𝑛)

ln(
�̅�

𝐸0̅̅ ̅̅ )
= 1 ,          (10) 

and 75 

(𝑒𝑤)
ln(

𝐸0̅̅ ̅̅ +�̅�−�̅�

𝐸0̅̅ ̅̅ )
− (𝑒𝑤)

ln(
�̅�

𝐸0̅̅ ̅̅ )
= 1 ,          (11) 

respectively. Eq. (8), (9), (10), and (11) all have the following general form, 
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𝑦𝐶 + 𝑧𝑦𝐷 = 1 ,            (12) 

where 𝐶 and 𝐷 are constants related to the evaporative and aridity indices, respectively, 𝑧 is an arbitrary complex variable, and 

𝑦 is a function of 𝑧. With the constraint, 𝐶 > 𝐷 > 0, Eq. (12) has a solution of the form (Hochstadt, 2012), p. 81-84, 80 

𝑦(𝑧) =
1

𝐶
∑

(−1)𝑟𝑧𝑟𝛤(
1+𝐷𝑟

𝐶
)

𝑟!𝛤(
1+𝐷𝑟

𝐶
+1−𝑟)

∞
𝑟=0  ,          (13) 

where 𝑟 is an integer index variable, and 𝛤(  ) is the gamma function. Table 1 illustrates that Eq. (8) and (9) fulfill the necessary 

constraints (i.e. 𝐶 > 𝐷 > 0) for arid climates (i.e. 𝐸0
̅̅ ̅ > �̅�) and Eq. (10) and (11) do so for humid climates (i.e. 𝐸0

̅̅ ̅ < �̅�), which 

leads to the explicit analytical expression for 𝑛 and 𝑤, 

𝑛 𝐨𝐫 𝑤 = ln [
1

ln(𝐺)
∑

𝛤(
1+ln(𝐻)𝑟

ln(𝐺)
)

𝛤(𝑟+1)𝛤(
1+ln(𝐻)𝑟

ln(𝐺)
+1−𝑟)

∞
𝑟=0 ] ,        (14) 85 

where 𝐺𝑛 = {
𝐸0̅̅̅̅

�̅�
,
�̅�

�̅�
} , 𝐺𝑤 = {

𝐸0̅̅̅̅ +�̅�−�̅�

�̅�
,
𝐸0̅̅̅̅ +�̅�−�̅�

𝐸0̅̅̅̅
}, and 𝐻𝑛,𝑤 = {

𝐸0̅̅̅̅

�̅�
,

�̅�

𝐸0̅̅̅̅
}; the first and second terms inside the braces apply to arid 

and humid climates, respectively (see also explicit forms in Eq. (A47)-(A50) of appendix). For critical point climates, where 

𝐸0
̅̅ ̅  = �̅�, Eq. (8), (9), (10), and (11) can be solved algebraically, giving, 

𝑛 𝐨𝐫 𝑤 =
ln(2)

ln(𝛺)
 ,            (15) 

where Ω𝑛 =
𝐸0̅̅̅̅

�̅�
=

�̅�

�̅�
 and Ω𝑤 = 2 −

�̅�

𝐸0̅̅̅̅
= 2 −

�̅�

�̅�
 (see also Eq. (A51) and (A52) of appendix). The detailed derivations of Eq. (14) 90 

and (15), are presented in Appendix A. 
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Table 1: Illustration of the condition 𝑪 > 𝑫 > 𝟎 for arid climates (Eq. (8) and (9)) and for humid climates (Eq. (10) and (11)). From 105 
Left to Right: The first column gives the equation and associated climate. The second column gives mathematical constraints that 

must be true given an arid or humid climate. The third column gives specific mathematical constraints derived from the climatic 

constraints. The last column gives the condition, 𝑪 > 𝑫 > 𝟎, for each associated equation and climate, given the climatic and derived 

constraints. 

Version of 

Eq. (14) 

and 

Climate 

Climatic 

Constraint 
Derived Constraints Resulting Condition, 𝐶 > 𝐷 > 0 

𝑛 version, 

arid 
𝐸0
̅̅ ̅ > �̅� > �̅� 

𝐸0
̅̅ ̅

�̅�
>

𝐸0
̅̅ ̅

�̅�
> 1 ln (

𝐸0
̅̅ ̅

�̅�
) > ln (

𝐸0
̅̅ ̅

�̅�
) > 0 

𝑛 version, 

humid 
�̅� > 𝐸0

̅̅ ̅ > �̅� 
�̅�

�̅�
>

�̅�

𝐸0
̅̅ ̅

> 1 ln (
�̅�

�̅�
) > ln (

�̅�

𝐸0
̅̅ ̅

) > 0 

𝑤 version, 

arid 
𝐸0
̅̅ ̅ > �̅� > �̅� 

𝐸0
̅̅ ̅ + �̅� − �̅�

�̅�
>

𝐸0
̅̅ ̅

�̅�
> 1 ln (

𝐸0
̅̅ ̅ + �̅� − �̅�

�̅�
) > ln (

𝐸0
̅̅ ̅

�̅�
) > 0 

𝑤 version, 

humid 
�̅� > 𝐸0

̅̅ ̅ > �̅� 
�̅� + 𝐸0

̅̅ ̅ − �̅�

𝐸0
̅̅ ̅

>
�̅�

𝐸0
̅̅ ̅

> 1 ln (
�̅� + 𝐸0

̅̅ ̅ − �̅�

𝐸0
̅̅ ̅

) > ln (
�̅�

𝐸0
̅̅ ̅

) > 0 

3 Properties of Analytical Expressions for 𝒏 and 𝒘 110 

Here we investigate the mathematical properties of Eq. (14) and (15) to determine that they are valid analytical 

expressions for 𝑛 and 𝑤. First, we examine the behavior of Eq. (15) as �̅� → 0  and �̅� → 𝐸0
̅̅ ̅ or �̅�. Mathematically, the values 

of 𝑛 are constrained between 0 and ∞ (Yang et al., 2008), and the values of 𝑤 are constrained between 1 and ∞ (Zhang et al., 

2004). Therefore, the upper and lower limits of the 𝑛 and 𝑤 versions of Eq. (15) should be equal to these respective constraints. 

The lower limit for the 𝑛 version of Eq. (15), 115 

lim
�̅�→0

𝑛 =
ln(2)

∞
= 0 ,           (16) 

and the upper limit, 

lim
�̅�→𝐸0̅̅̅̅

𝑛 = lim
�̅�→�̅�

𝑛 =
ln(2)

0
= ∞ ,          (17) 
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are equal to the lower and upper constraint for 𝑛, respectively. Similarly, the lower limit for the 𝑤 version of Eq. (15), 

lim
�̅�→0

𝑤 =
ln(2)

ln(2−0)
= 1 ,           (18) 120 

and the upper limit, 

lim
�̅�→𝐸0̅̅̅̅

𝑛 = lim
�̅�→�̅�

𝑛 =
ln(2)

ln(2−1)
=

ln(2)

0
= ∞ ,         (19) 

are equal to the lower and upper constraint for 𝑤, respectively. 

Next, we investigate the properties of Eq. (14). This equation contains a convergent infinite series whose value 

asymptotically approaches 𝑒𝑛 or 𝑒𝑤 for the 𝑛 and 𝑤 versions, respectively. The asymptotic behavior of the series’ terms (e.g., 125 

monotonically decreasing or alternating sign and absolute value decreasing) depends on the specific values of �̅�, �̅�, and 𝐸0
̅̅ ̅ 

(Fig. 1-4). To verify that both the 𝑛 and 𝑤 versions of Eq. (14) produce the correct values of 𝑛 and 𝑤 for a given set of �̅�, �̅�, 

and 𝐸0
̅̅ ̅ , we numerically invert Eq. (4) and (5) and compare the fitted 𝑛  and 𝑤  values, �̌�  and �̌� , to successively better 

approximations of Eq. (14). The numerical inversion of Eq. (4) and (5) consists of numerically solving, 

[
 
 
 
  𝐸0̅̅ ̅̅

 �̅�

[1+(
 𝐸0̅̅ ̅̅

 �̅�
)
�̌�

]

1
�̌�

−
�̅�

�̅�

]
 
 
 
 
2

= 0 .           (20) 130 

and 

[1 +
𝐸0̅̅̅̅

�̅�
− (1 + (

𝐸0̅̅̅̅

�̅�
)

�̌�

)

1

�̌�

−
�̅�

�̅�
]

2

= 0 .         (21) 

for �̌� and �̌�, respectively. We compute approximations of Eq. (14) by truncating the infinite series to a finite number of terms, 

𝑁𝑟. We successively improve these finite approximations by increasing 𝑁𝑟. As the number of terms in the finite series increase, 

the approximations asymptotically converge to the �̌� and �̌� values obtained from the numerical inversion of Eq. (4) and (5) 135 

for both arid and humid climates (Fig. 1-4). This convergence is rapid (requiring fewer than ten terms) for typical values of 𝑛 

and 𝑤 (i.e., < 4) and provides strong numeric evidence that Eq. (14) yields valid analytical expressions for 𝑛 and 𝑤. 
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Figure 1: Comparison of �̌� (red lines) from Eq. (20) to finite series approximations of 𝒏 (black dots) from Eq. (14) for increasing 

values of 𝑵𝒓 and an arid catchment (
 𝑬𝟎̅̅̅̅

 �̅�
= 𝟐), with 

 �̅�

 �̅�
= 𝟎. 𝟕 (left panel) and 

 �̅�

 �̅�
= 𝟎.𝟏 (right panel). In both cases, the finite series 140 

approximations of 𝒏 asymptotically converge to �̌� with increasing numbers of terms. 

 

Figure 2: Comparison of �̌� (red lines) from Eq. (20) to finite series approximations of 𝒏 (black dots) from Eq. (14) for increasing 

values of 𝑵𝒓 and a humid catchment (
 𝑬𝟎̅̅̅̅

 �̅�
= 𝟎. 𝟖), with 

 �̅�

 �̅�
= 𝟎. 𝟕 (left panel) and 

 �̅�

 �̅�
= 𝟎.𝟎𝟐 (right panel). In both cases, the finite series 

approximations of 𝒏 asymptotically converge to �̌� with increasing numbers of terms. 145 
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Figure 3: Comparison of �̌� (blue lines) from Eq. (21) to finite series approximations of 𝒘 (black dots) from Eq. (14) for increasing 

values of 𝑵𝒓 and an arid catchment (
 𝑬𝟎̅̅̅̅

 �̅�
= 𝟐), with 

 �̅�

 �̅�
= 𝟎. 𝟕 (left panel) and 

 �̅�

 �̅�
= 𝟎.𝟏 (right panel). In both cases, the finite series 

approximations of 𝒘 asymptotically converge to �̌� with increasing numbers of terms. 150 

 

Figure 4: Comparison of �̌� (blue lines) from Eq. (21) to finite series approximations of 𝒘 (black dots) from Eq. (14) for increasing 

values of 𝑵𝒓 and a humid catchment (
 𝑬𝟎̅̅̅̅

 �̅�
= 𝟎. 𝟖), with 

 �̅�

 �̅�
= 𝟎. 𝟕 (left panel) and 

 �̅�

 �̅�
= 𝟎.𝟎𝟐 (right panel). In both cases, the finite series 

approximations of 𝒘 asymptotically converge to �̌� with increasing numbers of terms. 

 155 
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4 Discussion and Conclusion 

Inspection of Eq. (14) highlights the ambiguous nature of 𝑛 and 𝑤. The relationships between 𝑛, 𝑤, �̅�, 𝐸0
̅̅ ̅, and �̅� are 

fairly complicated, including logarithms of infinite series for the non-redundant cases. This highly nonlinear relationship 

challenges an intuitive understanding of how 𝑛 and 𝑤 should vary with changes to �̅�, 𝐸0
̅̅ ̅, or �̅� and is likely part of the reason 

why attempts to relate the catchment-specific parameter to climate and landscape features have yielded such divergent results 160 

(e.g., (Yang et al., 2007; Donohue et al., 2012; Yang et al., 2009; Shao et al., 2012; Li et al., 2013; Xu et al., 2013; Cong et al., 

2015; Yang et al., 2016; Zhang et al., 2018; Abatzoglou and Ficklin, 2017; Xing et al., 2018; Zhao et al., 2020; Ning et al., 

2020b; Ning et al., 2020a; Li et al., 2020b; Li et al., 2020a; Zhang et al., 2019; Ning et al., 2019; Bai et al., 2019; Ning et al., 

2017)). 

Notably, the explicit analytical expression for 𝑛 and 𝑤 from Eq. (14) illustrates that the value of the catchment-165 

specific parameter is only determined by �̅�, 𝐸0
̅̅ ̅, and �̅�. Therefore, if  𝑛 or 𝑤 depend on biophysical features, it is directly due 

to the dependence of �̅�, 𝐸0
̅̅ ̅, or �̅� on those features. In short, this means that Eq. (14) is the general solution for how 𝑛 and 𝑤 

depend on biophysical features. By substituting �̅�, 𝐸0
̅̅ ̅, or �̅� as functions of specific biophysical features into Eq. (14), one 

obtains the expression for 𝑛 and 𝑤 as a function of those features. Eq. (14) thus fulfills the literature-identified need of an 

analytical expression for 𝑛 and 𝑤 in terms of biophysical features. 170 
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Appendix A: Details of Analytical Inversion 

Here we develop analytical inversions of the two parametric Budyko equations. The steps for these derivations are: 270 

1) Produce a general form for both parametric forms of the Budyko equation. 

2) Determine the Mellin transform for the general form. 

3) Manipulate the Mellin transformed general form into functions with known inversions. 

4) Take the inverse Mellin transform of the general form to find a general solution. 

5) Substitute the specific functional forms of each parametric Budyko equation into the general solution to produce 275 

explicit expressions for 𝑛 and 𝑤. 

The outline for portions of these derivations was developed from Hochstadt (2012), p. 81-84. 

A.1 Producing a general form for both parametric forms of the Budyko equation 

Equation (4) of the main text can be rearranged in the following manner, 

(
𝐸0̅̅̅̅

𝐸
)

𝑛

− (
𝐸0̅̅̅̅

�̅�
)

𝑛

= (𝑒
ln(

𝐸0̅̅ ̅̅

�̅�
)
)

𝑛

− (𝑒
ln(

𝐸0̅̅ ̅̅

�̅�
)
)

𝑛

= 𝑒
𝑛ln(

𝐸0̅̅ ̅̅

�̅�
)
− 𝑒

𝑛ln(
𝐸0̅̅ ̅̅

�̅�
)
= (𝑒𝑛)

ln(
𝐸0̅̅ ̅̅

�̅�
)
− (𝑒𝑛)

ln(
𝐸0̅̅ ̅̅
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= 1 ,   (A1) 280 
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to produce Eq. (8). Following the same procedure, Eq. (5), (6), and (7) can be rearranged to Eq. (9), (10), and (11). The general 

form of Eq. (8), (9), (10), and (11) is Eq. (12). We use the Eq. (12) and the condition, 𝐶 > 𝐷 > 0 (Table 1), to derive a general 

solution which will allow for specific solutions of 𝑛 and 𝑤. 

A.2 The Mellin transform for 𝒚(𝒛) 

The Mellin transform for 𝑦(𝑧) of Eq. (12) is, 285 

𝑌(𝑠) = ∫ 𝑧𝑠−1𝑦(𝑧)𝑑𝑧
∞

0
 ,           (A2) 

where 𝑠 is a complex number. Whether the improper integral in Eq. (A2) converges or diverges depends on the behavior of 

𝑦(𝑧) and the value of 𝑠. Letting 𝑧 = 0 in Eq. (12) gives, 

𝑦(0) = 1 .            (A3) 

Taking the first derivative of Eq. (12) gives, 290 

𝑑𝑦

𝑑𝑧
=

−𝑦𝐷

𝐶𝑦𝐶−1+𝑧𝐷𝑦𝐷−1 ,           (A4) 

Since 𝐶 > 𝐷 > 0, Eq. (A4) is always negative, meaning that 𝑦(𝑧) is a monotonically decreasing function for 0 ≤ 𝑧 < ∞. 

Additionally, 𝑦(𝑧) = 0 is not a valid solution to Eq. (12), therefore, 1 ≥ 𝑦(𝑧) > 0  for 0 ≤ 𝑧 < ∞. As 𝑧 → ∞, 𝑦(𝑧) will 

become very small. This allows us to rearrange Eq. (12) to get an approximate functional form for 𝑦(𝑧) for large values of 𝑧, 

𝑦𝐷 =
1−𝑦𝐶

𝑧
≈

1

𝑧
 ,            (A5) 295 

therefore, 

𝑦(𝑧) ≈ 𝑧−
1

𝐷.            (A6) 

Thus, from Eq. (A3), (A4), and (A6), the integrand of Eq. (A2) is ≈ 𝑧𝑠−1 for small values of 𝑧 and transitions to ≈ 𝑧𝑠−
1

𝐷
−1

 for 

as 𝑧 increases. Splitting Eq. (A2) into two component integrals and substituting in Eq. (A3) for small values of 𝑧 and Eq. (A6) 

for large values of 𝑧 gives, 300 

∫ 𝑧𝑠−1𝑦(𝑧)𝑑𝑧
∞

0
= ∫ 𝑧𝑠−1𝑦(𝑧)𝑑𝑧

1

0
+ ∫ 𝑧𝑠−1𝑦(𝑧)𝑑𝑧

∞

1
≈ ∫ 𝑧𝑠−1𝑑𝑧

1

0
+ ∫ 𝑧𝑠−

1

𝐷
−1𝑑𝑧

∞

1
 .    (A7) 

To find the values of 𝑠 for which Eq. (A2) converges, we determine the values of 𝑠 for which the two approximate integrals 

in Eq. (A7) converge. Integrating Eq. (A7), and expressing 𝑠 as the sum of its real and imaginary parts, 𝑠 = 𝑎 + 𝑏𝑖 where 𝑖 =

√−1, yields, 

∫ 𝑧𝑠−1𝑑𝑧
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𝑎−
1
𝐷
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1

𝐷
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1

∞

 .   (A8) 305 

Rearranging Eq. (A8) and using Euler’s formula, 𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥), yields, 
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[
𝑒𝑖𝑏 ln(𝑧)𝑧𝑎

𝑎+𝑏𝑖
]
0

1

+ [
𝑒𝑖𝑏 ln(𝑧)𝑧

𝑎−
1
𝐷
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]
1
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[cos(𝑏 ln(𝑧))+𝑖 sin(𝑏 ln(𝑧))]𝑧𝑎
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1
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1
𝐷
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1

𝐷

]
1

∞

 .   (A9) 

The value of the expression, cos(𝑏 ln(𝑧)) + 𝑖 sin(𝑏 ln(𝑧)), in Eq. (A9) is bounded to a circular region of radius 1 around the 

origin in the complex plane, making it finite for all value of 𝑧. Evaluating Eq. (A9) and setting 𝐹(𝑧) = cos(𝑏 ln(𝑧)) +

𝑖 sin(𝑏 ln(𝑧)) to represent its finite value, gives, 310 

[
𝐹(𝑧)𝑧𝑎

𝑎+𝑏𝑖
]
0

1

+ [
𝐹(𝑧)𝑧

𝑎−
1
𝐷
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1

𝐷

]
1

∞

=
𝐹(1)

𝑎+𝑏𝑖
−

𝐹(0)

𝑎+𝑏𝑖
lim
𝑧→0

𝑧𝑎 +
𝐹(∞)

𝑎+𝑏𝑖−
1

𝐷

lim
𝑧→∞

𝑧𝑎−
1

𝐷 −
𝐹(1)

𝑎+𝑏𝑖−
1

𝐷

 .     (A10) 

If both limits of Eq. (A10), lim
𝑧→0

𝑧𝑎 and lim
𝑧→∞

𝑧𝑎−
1

𝐷, exist, then Eq. (A2) will be convergent. The first of these limits, lim
𝑧→0

𝑧𝑎, will 

give a finite value if, 

𝑎 > 0 ,             (A11) 

The second limit, lim
𝑧→∞

𝑧𝑎−
1

𝐷, will give a finite value if, 315 

𝑎 −
1

𝐷
< 0 ,            (A12) 

which gives, 

𝑎 <
1

𝐷
 .             (A13) 

Thus, Eq. (A2) converges and the Mellin transform exists if, 

 0 < 𝑅𝑒(𝑠) <
1

𝐷
 .            (A14) 320 

A.3 Mellin transformed 𝒚(𝒛) in terms of known functions 

Next, we evaluate Eq. (A2) explicitly. To do this, we switch the integration from z to y, using Eq. (12). This involves 

expressing z in terms of 𝑦, 

𝑧 = 𝑦−𝐷 − 𝑦𝐶−𝐷 ,           (A15) 

expressing 𝑑𝑧 in terms of y and 𝑑y, 325 

𝑑𝑧 = −[𝐷𝑦−𝐷−1 + (𝐶 − 𝐷)𝑦𝐶−𝐷−1]𝑑𝑦 ,         (A16) 

and expressing the limits of integration in terms of 𝑦, 

when 𝑧 = 0, 𝑦 = 1
when 𝑧 → ∞, 𝑦 → 0

 .           (A17) 

We can now rewrite Eq. (A2) in terms of a 𝑦 integration, 
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𝑌(𝑠) = −∫ 𝑦(𝑦−𝐷 − 𝑦𝐶−𝐷)𝑠−1[𝐷𝑦−𝐷−1 + (𝐶 − 𝐷)𝑦𝐶−𝐷−1]𝑑𝑦
0

1
 ,      (A18) 330 

which can be rearranged to, 

𝑌(𝑠) = 𝐷 ∫ 𝑦−𝐷𝑠(1 − 𝑦𝐶)𝑠−1𝑑𝑦
1

0
+ (𝐶 − 𝐷) ∫ 𝑦−𝐷𝑠+𝐶(1 − 𝑦𝐶)𝑠−1𝑑𝑦

1

0
 .     (A19) 

Making the substitution 𝑦𝐶 = 𝑢, we have, 

𝑑𝑦 =
1

𝐶
𝑦−𝐶+1𝑑𝑢 =

1

𝐶
𝑢

1

𝑐
−1𝑑𝑢 ,          (A20) 

while the limits of integration remain the same, 335 

when 𝑦 = 0, 𝑢 = 0
when 𝑦 = 1, 𝑢 = 1

 ,           (A21) 

therefore, Eq. (A19) becomes, 

𝑌(𝑠) =
𝐷

𝐶
∫ 𝑢

1−𝐷𝑠

𝐶
−1(1 − 𝑢)𝑠−1𝑑𝑢

1

0
+

𝐶−𝐷

𝐶
∫ 𝑢

1−𝐷𝑠

𝐶
+1−1(1 − 𝑢)𝑠−1𝑑𝑢

1

0
 .      (A22) 

The integrals in Eq. (A22) are of the same form as the integral definition of the Beta function, allowing 𝑌(𝑠) to be expressed 

as a sum of Beta functions, 340 

𝑌(𝑠) = [
𝐷

𝐶
] 𝛣 (

1−𝐷𝑠

𝐶
, 𝑠) + [

𝐶−𝐷

𝐶
] 𝛣 (

1−𝐷𝑠

𝐶
+ 1, 𝑠) ,        (A23) 

where 𝛣(  , ) is the Beta function. The Beta function in turn can also be defined in terms of the Gamma function (i.e. 𝛣(𝑞, 𝐿) =

Г(𝑞)Г(𝐿)

Г(𝑞+𝐿)
), allowing Eq. (A23) to be rewritten as, 

𝑌(𝑠) = [
𝐷

𝐶
]

Г(
1−𝐷𝑠

𝐶
)Г(𝑠)

Г(
1−𝐷𝑠

𝐶
+𝑠)

+ [
𝐶−𝐷

𝐶
]
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1−𝐷𝑠

𝐶
+1)Г(𝑠)

Г(
1−𝐷𝑠

𝐶
+1+𝑠)

 ,         (A24) 

where Г(   ) is the Gamma function. The Gamma function has the property Г(𝑞 + 1) = 𝑞Г(𝑞), which allows Eq. (A24) to be 345 

simplified to, 

𝑌(𝑠) = [
Г(𝑠)

𝐶
] [

𝐷(
1−𝐷𝑠

𝐶
+𝑠)Г(
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𝐶
)
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𝐶
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+
(𝐶−𝐷)(

1−𝐷𝑠

𝐶
)Г(

1−𝐷𝑠

𝐶
)

Г(
1−𝐷𝑠

𝐶
+1+𝑠)

] ,        (A25) 

and, 

𝑌(𝑠) = [
Г(𝑠)

𝐶
] [

𝑠𝐷Г(
1−𝐷𝑠

𝐶
)+𝐶(

1−𝐷𝑠

𝐶
)Г(

1−𝐷𝑠

𝐶
)

Г(
1−𝐷𝑠

𝐶
+1+𝑠)

] = [
Г(𝑠)Г(

1−𝐷𝑠

𝐶
)

𝐶
] [

1−𝐷𝑠+𝐷𝑠

Г(
1−𝐷𝑠

𝐶
+1+𝑠)

] =
Г(𝑠)Г(

1−𝐷𝑠

𝐶
)

𝐶Г(
1−𝐷𝑠

𝐶
+1+𝑠)

 .    (A26) 
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A.4 The inverse Mellin transform and solution for 𝒚(𝒛) 350 

We now take the inverse Mellin transform of Eq. (A26) and solve for 𝑦(𝑧) explicitly. The inverse Mellin transform is defined 

as, 

𝑦(𝑧) =
1

2𝜋𝑖
∫ 𝑌(𝑠)

𝑘+∞𝑖

𝑘−∞𝑖
𝑧−𝑠𝑑𝑠 ,          (A27) 

where the integral from 𝑘 − ∞𝑖 to 𝑘 + ∞𝑖  is interpreted as a line integral along a vertical line in the complex plane. For our 

specific function, the inverse Mellin transform is, 355 

𝑦(𝑧) =
1

2𝜋𝑖
∫

𝑧−𝑠Г(𝑠)Г(
1−𝐷𝑠

𝐶
)

𝐶Г(
1−𝐷𝑠

𝐶
+1+𝑠)

𝑘+∞𝑖

𝑘−∞𝑖
𝑑𝑠 𝑤ℎ𝑒𝑟𝑒 0 < 𝑘 <

1

𝐷
 .       (A28) 

The constraint 0 < 𝑘 <
1

𝐷
 is due to Eq. (A14), the constraint on the real part of 𝑠 so that Eq. (A2) would converge. This means 

that the vertical line in the complex plane over which the line integral is taken must fall between 0 and 
1

𝐷
 on the real axis (Fig. 

A1). We evaluate the integral in Eq. (A28) to find an explicit form of 𝑦(𝑧) using the following methodology: 

1) Define an appropriate contour in the complex plane to perform a contour integration of 𝑌(𝑠)𝑧−𝑠. 360 

2) Use residue integration to evaluate the value of this contour integral. 

3) Show that the only part of this contour that does not vanish is the line integral defined in Eq. (A28), meaning the 

inverse Mellin transform, and therefore 𝑦(𝑧), is equal to the value of the contour integral evaluated in step 2. 

First, we choose a semicircle contour in the complex plane, with the straight portion as a vertical line crossing the real axis at 

𝑠 = 𝑘, and the circular portion connecting the ends of this line across the left side of the complex plane (Fig. A1). This contour 365 

is consistent with the constraint on the real part of 𝑠 given in Eq. (A14). We can now define the integral of 𝑌(𝑠)𝑧−𝑠 over this 

contour, 

𝛬(𝑧) = ∮𝑌(𝑠)𝑧−𝑠𝑑𝑠 .           (A29) 

𝛬(𝑧) can be expressed as the sum of two line integrals, one over the vertical line portion of the contour, and one over the 

circular arc portion of the contour, 370 

𝛬(𝑧) = ∮𝑌(𝑠)𝑧−𝑠𝑑𝑠 = ∫ 𝑌(𝑠)
𝑘+𝑅𝑖

𝑘−𝑅𝑖
𝑧−𝑠𝑑𝑠 + ∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠

 

𝑎𝑟𝑐
 ,       (A30) 

where 𝑅 is the radius of the semicircle contour. Allowing 𝑅 → ∞ leads to, 

𝛬(𝑧) = ∮𝑌(𝑠)𝑧−𝑠𝑑𝑠 = ∫ 𝑌(𝑠)
𝑘+∞𝑖

𝑘−∞𝑖
𝑧−𝑠𝑑𝑠 + ∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠

 

𝑎𝑟𝑐
 .       (A31) 

We can now evaluate 𝛬(𝑧) over the infinitely large contour using residue integration. Residue integration relates the value of 

a contour integral to the sum of the residues of the function being integrated. Residues occur when the function of interest has 375 

singularities within the contour. Inspection of 𝑌(𝑠)𝑧−𝑠 (i.e. the integrand in Eq. (A26)) inside the semicircle contour shows 
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that the only component with singularities is Г(𝑠). Г(𝑠) is undefined and has simple poles at 𝑠 = −𝑟 where  𝑟 = 0, 1, 2, 3, …∞. 

The residues of the gamma function for each value of 𝑟 are, 

Res( Г(𝑠), −𝑟) =
(−1)𝑟

𝑟!
 .           (A32) 

Using the residue theorem we can evaluate 𝛬(𝑧), 380 

𝛬(𝑧) = ∮𝑌(𝑠)𝑧−𝑠𝑑𝑠 = 2𝜋𝑖 ∑Res( 𝑌(𝑠)𝑧−𝑠, −𝑟) = 2𝜋𝑖 ∑
𝑧𝑟(−1)𝑟Г(

1+𝐷𝑟

𝐶
)

𝑟!𝐶Г(
1+𝐷𝑟

𝐶
+1−𝑟)

∞
𝑟=0  ,     (A33) 

which contains the sum over the infinite number of residues of 𝑌(𝑠)𝑧−𝑠 within the semicircular contour. Substituting this 

solution into Eq. (A29) gives, 

𝛬(𝑧) = ∫ 𝑌(𝑠)
𝑘+∞𝑖

𝑘−∞𝑖
𝑧−𝑠𝑑𝑠 + ∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠

 

𝑎𝑟𝑐
= 2𝜋𝑖 ∑

𝑧𝑟(−1)𝑟Г(
1+𝐷𝑟

𝐶
)

𝑟!𝐶Г(
1+𝐷𝑟

𝐶
+1−𝑟)

∞
𝑟=0  .     (A34) 

Equation (A34) is the line integral of 𝑌(𝑠)𝑧−𝑠 evaluated for the entire contour; now we investigate the contribution of the line 385 

integral over just the circular arc portion of the contour. Using the estimation lemma, we can write the following inequality for 

the line integral over the arc, 

|∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠
 

𝑎𝑟𝑐
| ≤ 𝑀𝐿 ,           (A35) 

where 𝐿 is the length of the arc and 𝑀 is the maximum value of |𝑌(𝑠)𝑧−𝑠| along the length of the arc. Writing 𝑠 in terms of its 

real and imaginary parts, 𝑠 = 𝑎 + 𝑏𝑖, the length of the arc is defined as the product of the central angle and radius of the circle, 390 

𝐿 = 𝜋𝑅 = 𝜋√𝑎2 + 𝑏2 .           (A36) 

|𝑌(𝑠)𝑧−𝑠| can be written as, 

|𝑌(𝑠)𝑧−𝑠| =
|𝑧−𝑠||Г(𝑠)||Г(

1−𝐷𝑠

𝐶
)|

|𝐶Г(
1−𝐷𝑠

𝐶
+1+𝑠)|

 .          (A37) 

We are interested in the value of |𝑌(𝑠)𝑧−𝑠| as 𝑅 → ∞, therefore, we can approximate the absolute values of the gamma 

functions using a form of Stirling’s formula, valid for values of 𝑠 as |𝑏| → ∞  , 395 

|Г(𝑠)| = |Г(𝑎 + 𝑏𝑖)|~√2𝜋𝑒
−𝜋|𝑏|

2 |𝑏|𝑎−
1

2 .         (A38) 

Applying Stirling’s approximation to Eq. (A37) yields, 

|𝑌(𝑠)𝑧−𝑠| ≈
|𝑧−𝑎−𝑏𝑖|√2𝜋𝑒

−𝜋|𝑏|
2 |𝑏|

𝑎−
1
2√2𝜋𝑒

−𝜋|−
𝐷
𝐶𝑏|

2 |−
𝐷

𝐶
𝑏|

1−𝐷
𝐶 𝑎−

1
2

𝐶√2𝜋𝑒

−𝜋|(1−
𝐷
𝐶)𝑏|

2 |(1−
𝐷

𝐶
)𝑏|

𝐶+1−𝐷
𝐶 𝑎+1−

1
2

 ,       (A39) 
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which becomes, 

|𝑌(𝑠)𝑧−𝑠| ≈
√2𝜋𝑧−𝑎𝑒

[
−𝜋
2

𝑏+
−𝜋
2

𝐷
𝐶

𝑏+
𝜋
2
(1−

𝐷
𝐶

)𝑏]
𝑏

[𝑎−
𝐶+1−𝐷

𝐶
𝑎+

1−𝐷
𝐶

𝑎−
3
2
]
(
𝐷

𝐶
)
[
1−𝐷

𝐶
𝑎−

1
2
]

𝐶(1−
𝐷

𝐶
)
[
𝐶+1−𝐷

𝐶
𝑎+

1
2
]

=
√

2𝜋

𝐶𝐷−𝐷2𝑧−𝑎𝑒
−𝜋𝐷𝑏

𝐶 𝑏
−

3
2(

𝐷

𝐶
)
[
1−𝐷

𝐶 𝑎]

(1−
𝐷

𝐶
)
[
𝐶+1−𝐷

𝐶
𝑎]

 ,   (A40) 400 

resulting in, 

|𝑌(𝑠)𝑧−𝑠| ≈ [√
2𝜋

𝐶𝐷−𝐷2] [
(
𝐷

𝐶
)
(
1−𝐷

𝐶 )

𝑧(1−
𝐷

𝐶
)
(
𝐶+1−𝐷

𝐶
)
]

𝑎

[𝑒
−𝜋𝐷𝑏

𝐶 ] [𝑏−
3

2] .       (A41) 

Inspecting Eq. (A41), we see that |𝑌(𝑠)𝑧−𝑠| decreases as |𝑏| increases and |𝑌(𝑠)𝑧−𝑠| increases as 𝑎 increases. Therefore, 𝑀 

occurs at the starting and ending point of the arc, where 𝑎 = 𝑘. When 𝑎 = 𝑘, letting 𝑅 → ∞ is equivalent to letting |𝑏| → ∞, 

allowing us to evaluate 𝑀𝐿, 405 

𝑀𝐿 = lim
|𝑏|→∞

𝜋√𝑘2 + 𝑏2 [√
2𝜋

𝐶𝐷−𝐷2] [
(
𝐷

𝐶
)
(
1−𝐷

𝐶 )

𝑧(1−
𝐷

𝐶
)
(
𝐶+1−𝐷

𝐶 )
]

𝑘

[𝑒
−𝜋𝐷𝑏

𝐶 ] [𝑏−
3

2] = 0 .      (A42) 

Equation (A42) implies that the contribution of the circular arc portion of the contour vanishes, 

0 ≤ |∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠
 

𝑎𝑟𝑐
| ≤ 𝑀𝐿 = 0 ,          (A43) 

which means, 

∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠
 

𝑎𝑟𝑐
= |∫ 𝑌(𝑠)𝑧−𝑠𝑑𝑠

 

𝑎𝑟𝑐
| = 0 ,         (A44) 410 

and therefore, 

𝑦(𝑧) =
1

2𝜋𝑖
𝛬(𝑧) =

1

2𝜋𝑖
∫ 𝑌(𝑠)

𝑘+∞𝑖

𝑘−∞𝑖
𝑧−𝑠𝑑𝑠 = ∑

𝑧𝑟(−1)𝑟Г(
1+𝐷𝑟

𝐶
)

𝑟!𝐶Г(
1+𝐷𝑟

𝐶
+1−𝑟)

∞
𝑟=0  ,      (A45) 

which is the solution for the general form, Eq. (12). 
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Figure A1: Illustration of the semicircular contour in the complex plane, used to evaluate Eq. (A28). The contour is composed of a 415 
vertical line crossing the real axis at 𝒔 = 𝒌 and an arc connecting the two ends of the vertical line. The radius of this semicircle is 

given as 𝑹. We let 𝑹 → ∞ so the vertical line portion of the contour will encompass the entire imaginary axis. 

A.5 Specific functional forms of each parametric Budyko equation 

By comparing the specific forms of the parametric Budyko equations (i.e. Eq. (4), (5), (6), and (7)) to the general form, Eq. 

(12), we see that 𝑧 = −1 for all of them. We substitute 𝑧 = −1  into Eq. (A45) to produce, 420 

𝑦(−1) = ∑
(−1)2𝑟Г(

1+𝐷𝑟

𝐶
)

𝑟!𝐶Г(
1+𝐷𝑟

𝐶
+1−𝑟)

∞
𝑟=0 =

1

𝐶
∑

Г(
1+𝐷𝑟

𝐶
)

Г(𝑟+1)Г(
1+𝐷𝑟

𝐶
+1−𝑟)

∞
𝑟=0  .       (A46) 

Substitution of the appropriate expressions for 𝑦 (i.e. 𝑒𝑛  or 𝑒𝑤 ), 𝐶 , and 𝐷  (Table 1) into Eq. (A46) yields the analytical 

solutions for the two parametric forms of the Budyko equation. Specifically these are: 

𝑛 for arid climates, 𝐸0
̅̅ ̅ > �̅�, 
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𝑛 =  ln

[
 
 
 
 

1

ln(
𝐸0̅̅ ̅̅

�̅�
)
∑

𝛤(
1+ln(

𝐸0̅̅ ̅̅

�̅�
)𝑟

ln(
𝐸0̅̅ ̅̅

�̅�
)

)

𝛤(𝑟+1)𝛤(
1+ln(

𝐸0̅̅ ̅̅

�̅�
)𝑟

ln(
𝐸0̅̅ ̅̅

�̅�
)

+1−𝑟)

∞
𝑟=0

]
 
 
 
 

 ,         (A47) 425 

𝑛 for humid climates, 𝐸0
̅̅ ̅  < �̅�, 

𝑛 =  𝑙𝑛

[
 
 
 
 

1

𝑙𝑛(
�̅�

�̅�
)
∑

𝛤(
1+ln(

�̅�
𝐸0̅̅ ̅̅ )𝑟

ln(
�̅�
�̅�

)
)

𝛤(𝑟+1)𝛤(
1+𝑙𝑛(

�̅�
𝐸0̅̅ ̅̅ )𝑟

𝑙𝑛(
�̅�
�̅�
)

+1−𝑟)

∞
𝑟=0

]
 
 
 
 

 ,         (A48) 

𝑤 for arid climates, 𝐸0
̅̅ ̅  > �̅�, 

𝑤 =  𝑙𝑛

[
 
 
 
 

1

𝑙𝑛(
𝐸0̅̅ ̅̅ +�̅�−�̅�

�̅�
)
∑

𝛤(
1+𝑙𝑛(

𝐸0̅̅ ̅̅

�̅�
)𝑟

𝑙𝑛(
𝐸0̅̅ ̅̅ +�̅�−�̅�

�̅�
)
)

𝛤(𝑟+1)𝛤(
1+𝑙𝑛(

𝐸0̅̅ ̅̅

�̅�
)𝑟

𝑙𝑛(
𝐸0̅̅ ̅̅ +�̅�−�̅�

�̅�
)
+1−𝑟)

∞
𝑟=0

]
 
 
 
 

 ,        (A49) 

𝑤 for humid climates,𝐸0
̅̅ ̅  < �̅�, 430 

𝑤 =  𝑙𝑛

[
 
 
 
 
 

1

𝑙𝑛(
𝐸0̅̅ ̅̅ +�̅�−�̅�

𝐸0̅̅ ̅̅ )
∑

𝛤(
1+𝑙𝑛(

�̅�
𝐸0̅̅ ̅̅ )𝑟

𝑙𝑛(
𝐸0̅̅ ̅̅ +�̅�−�̅�

𝐸0̅̅ ̅̅ )
)

𝛤(𝑟+1)𝛤(
1+𝑙𝑛(

�̅�
𝐸0̅̅ ̅̅ )𝑟

𝑙𝑛(
𝐸0̅̅ ̅̅ +�̅�−�̅�

𝐸0̅̅ ̅̅ )
+1−𝑟)

∞
𝑟=0

]
 
 
 
 
 

 .        (A50) 

For critical point catchments (i.e. where 𝐸0
̅̅ ̅  = �̅�) the explicit solutions can be found by solving Eq. (4) (or Eq. (6)) and Eq. 

(5) (or Eq. (7)) algebraically for 𝑛 and 𝑤, respectively, yielding, 

𝑛 =
𝑙𝑛(2)

𝑙𝑛(
𝐸0̅̅ ̅̅

�̅�
)
=

𝑙𝑛(2)

𝑙𝑛(
�̅�

�̅�
)
 ,           (A51) 

and 435 

𝑤 =
𝑙𝑛(2)

𝑙𝑛(2−
�̅�

𝐸0̅̅ ̅̅ )
=

𝑙𝑛(2)

𝑙𝑛(2−
�̅�

�̅�
)
.           (A52) 
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