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Abstract. Hydroclimatic extremes such as intense rainfall, floods, droughts, heatwaves, and wind/storms have devastating ef-

fects each year. One of the key challenges for society is understanding how these extremes are evolving and likely to unfold

beyond their historical distributions under the influence of multiple drivers such as changes in climate, land cover, and other

human factors. Methods for analysing hydroclimatic extremes have advanced considerably in recent decades. Here we provide

a review of the drivers, metrics and methods for the detection, attribution, prediction and projection of nonstationary hydro-5

climatic extremes. We discuss issues and uncertainty associated with these approaches (e.g arising from insufficient record

length, spurious nonstationarities, or incomplete representation of nonstationary sources in modelling frameworks), examine

empirical and simulation-based frameworks for analysis of nonstationary extremes, and identify gaps for future research.

1 Introduction: nonstationary hydroclimatic extremes

Are hydroclimatic extremes stationary or nonstationary? This question has generated much debate because of the ramifications10

for hazard management in a changing world. At the simplest level, a stationary process is one where the statistical properties

of the distribution do not shift over time. Thus, a stationary time series (Figure 1a) would not exhibit any shift in mean,

variance (Figure 1b) or shape. For hydroclimatic extremes, this implies the distribution of extreme precipitation, temperature,

streamflow, or wind should merely fluctuate within a stationary envelope of variability. The assumption of stationarity has long

served as the basis for statistical analysis of hazards and design of engineering structures, by defining the magnitude of events15

with a given frequency of occurrence, such as the probable maximum precipitation (PMP) or stationary 100-year design flood

(e.g. Salas et al., 2018).

In reality, hydroclimatic extremes exhibit multiple forms of natural nonstationarity depending on the chosen timescales (e.g.

Hannaford et al., 2013; Stevenson et al., 2018). Alongside ’natural’ nonstationarities, the global water cycle also manifests

many artificial nonstationarities induced by human activities, such as climate change, land cover change (e.g. Blum et al.,20

2020), water abstraction/augmentation, river regulation, and even geopolitical uncertainty (e.g. Wine, 2019) at local, regional,

and global scales. Trends and step-changes in the magnitude, frequency, duration, volume, or areal extent of hydroclimatic
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Figure 1. What is nonstationarity? Examples of (a) a stationary time series with constant mean and variance; and (b) three nonstationary

time series in the form of shift in mean (trend, step-change) and shift in variance. Solid and dashed black lines represent the mean and the

variance of the time series, respectively.

extremes such as intense rainfall (e.g. Sun et al., 2020a; Westra et al., 2013; Donat et al., 2016), floods (e.g. Berghuijs et al.,

2019a; Do et al., 2017; Archfield et al., 2016), droughts (e.g. Andreadis and Lettenmaier, 2006; Spinoni et al., 2017), and

heatwaves/heat stress (e.g. Oliver et al., 2018; Lorenz et al., 2019; Ouarda and Charron, 2018) have been widely detected,

and have led to proclamations about "death" of stationarity (Milly et al., 2008). In contrast, trends in strong winds/storms are

less certain and the influence of anthropogenic climate change is difficult to attribute (Shaw et al., 2016; Elsner et al., 2008;5

Martínez-Alvarado et al., 2018; Wohland et al., 2019). Disentangling natural and anthropogenic drivers of nonstationarity

is problematic, as the two can be interlinked, and even seemingly ’natural’ drivers such as climate modes may shift under

the effects of anthropogenic climate change (e.g. Maher et al., 2018). Although the drivers of abrupt nonstationarities (step-

changes) may be apparent (e.g. water abstraction, reservoir filling and operations), drivers of more incremental nonstationarities

(trend/variance) (e.g. climate variability and change, and land cover change) may be harder to attribute and/or obfuscated by10

other confounding factors.

Deciding whether a time series should be treated as nonstationary for the purpose of managing extremes is one of the

greatest challenges facing weather and water scientists and practitioners today. Short-term trends are widely present in variables

like streamflow, which exhibit long memory (time-dependence) and periodicities. However, such trends are not necessarily

indicative of nonstationarity (e.g. Koutsoyiannis, 2006; Koutsoyiannis and Montanari, 2015). Multi-decadal (e.g. 30-year)15

shifts may simply be temporary excursions in longer (e.g. 100-year) records, or a function of the start and end dates chosen

for the trend analysis (Harrigan et al., 2018), and may not warrant application of nonstationary analysis. A growing body of

literature has shown that inappropriately applying nonstationary models to short time series may have the undesired effect of

increasing uncertainty; in cases where model structure and/or underlying physical drivers are uncertain, stationary models may

be the preferred option for design and management of extremes (Serinaldi and Kilsby, 2015). However, it is also recognised that20

for engineering purposes, the concept of nonstationarity is highly valuable. Villarini et al. (2018, p. 6) contend that "the issue

is not whether observations arise from a long-term excursion from some underlying stationary process but rather whether the
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probability distribution of future (events) will resemble the distribution that is obtained from fitting a probability distribution to

observations over a historical record". As such, nonstationary approaches have "functional" value when there are good reasons

to suspect physically-plausible drivers of change, which in turn are somewhat predictable.

Detecting the presence, and attributing the source, of both natural and artificial nonstationarities in hydroclimatic extremes

is vital for understanding and managing water resources in a changing world. Nonstationarities may have dramatic impacts for5

infrastructure (François et al., 2019), property, and society over a range of overlapping timescales. There are many different

drivers that may alter extremes simultaneously over the short-term (e.g. influence of groundwater abstraction on streamflow)

and medium- to long-term (e.g. interdecadal to multidecadal "hazard-rich" and "hazard-poor" periods driven by modes of

climate variability) of relevance to societies (e.g. Rust et al., 2019). The appropriate timescales of nonstationarity, therefore,

depend on the nature and dynamism of the variable of interest, and associated impacts on a given location.10

Over the last two decades, hundreds of papers have addressed the detection, attribution, prediction and projection of non-

stationarity in precipitation, floods, drought, heat stress, temperature, extreme winds and storms. However, there is yet no

comprehensive, introductory overview of these methods across hydroclimatic extremes, or overarching discussion of key chal-

lenges that can arise. This paper offers a synthesis of methods for quantifying, attributing, and managing nonstationarity over

multiple spatial and temporal scales, along with their limitations. The structure follows the logical order of steps employed in15

a detection, attribution and management framework (Figure 2).

Figure 2. Workflow for the detection, attribution and management of nonstationary hydroclimatic extremes. Bullet points indicate examples

discussed in the manuscript (sections 2-7).

Section 2 describes the most widely used indices for diagnosing the symptoms of nonstationarity via changes in magnitude,

frequency and timing. Section 3 identifies essential data pre-requisites for detecting nonstationarity, such as homogeneity anal-

ysis. Section 4 discusses the techniques used to detect nonstationarity, including regression-based methods for gradual change,

pooled approaches for analysis of rare extremes, step-change analysis for abrupt change, and other methods for discerning20

changing seasonality. Section 5 introduces the key drivers of nonstationarity of hydroclimatic extremes. Section 6 reviews ap-

proaches for attribution of nonstationary extremes, including both observation- and model-based approaches, and issues with

attribution and engineering design under nonstationarity. Finally, Section 7 discusses approaches to manage nonstationarity via

engineering design, prediction (over weekly to annual timescales) and projection (over multi-decadal timescales), including
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key limitations. The overall aim of the paper is to highlight the most significant issues and considerations when detecting,

attributing, predicting and projecting nonstationarity in hydroclimatic extremes.

2 Symptoms of nonstationarity

Both natural and artificial nonstationarities in hydroclimatic extremes may be expressed through a significant shift in the mean,

variance, or shape of a given time series (Figure 1). Such departures are generally diagnosed by symptoms such as a change in5

the magnitude (events becoming more or less extreme), frequency (events occurring more or less often than before) and timing

(events occurring earlier or later in the year) of seasonal or annual extremes. There are many different ways of describing the

symptoms of nonstationarity - each is discussed in turn below.

2.1 Are extreme events becoming more extreme?

Significant changes in the magnitude of extremes are relevant to society, engineers, decision-makers, and insurers alike. The10

magnitude or intensity of an event is generally described by estimating the percentiles of a distribution over a given period (e.g.

minima or maxima within a season or year); significant changes are detected by evaluating alterations in these percentiles over

time (e.g. a time series of annual maximum daily streamflow). More generally, magnitudes can also be described through the

spatial extent of an event or via metrics characterising its intensity or flashiness, such as the time-to-peak.

The magnitude or intensity of precipitation (in mm, Figure 3a) can be assessed using various metrics. Many of these are part15

of the ’ETCCDI’ indices that were proposed in 2002 by the Expert team on climate change detection and indices (ETCCDI)

(see e.g. Frich et al., 2002; Zhang et al., 2011). Precipitation metrics include the maximum depth of precipitation for a given

(1-, 3-, 6-, or 24-hour) duration within a given month/year; the maximum 1- or 5-day precipitation accumulation (respectively

Rx1day, or Rx5day) over a month/year (Sun et al., 2020a); the percentage of a daily total that fell in the monthly maximum

1-hour precipitation (or some other period); the 90th, 95th or 99th percentile precipitation amount (over 1-, 3-, or 6-h) during20

a month/year - or specifically on wet days (Moberg and Jones, 2005); or the total precipitation accumulated from hours

exceeding specified percentiles over a month/year (e.g. Donat et al., 2013). For a complete state-of-the-art review on the

’probable maximum precipitation’ (PMP) concept, see Salas et al. (2020). The PMP can be computed via hydrometeorological,

statistical, grid-based and site-specific approaches using both stationary and nonstationary methods (e.g. Lee and Singh, 2020).

A recent global analysis of observed rainfall data indicated that extreme precipitation has increased at about two thirds of25

stations – a significantly greater proportion than can be expected by chance (Sun et al., 2020a).

Percentiles of daily streamflow distribution are commonly used for floods (Figure 3b). For example, the Q90 (the 90th per-

centile of the distribution, i.e. the flow that is exceeded 10% of the time, confusingly referred to as ’Q90’ in North America and

’Q10’ in the British and Irish islands), Q95, Q99 (flow that is exceeded 3.65 days per year, on average), Q99.9 (0.37 days per year)

or AMAX (the annual maximum streamflow). When considering more extreme events than AMAX, hydroclimatic extremes30

are commonly expressed as 1-in-20, 1-in-50, or the 1-in-100 year events (e.g. Milly et al., 2002). Hydrograph analyses may

also be used to extract metrics such as flood volume and duration (Figure 3b). Other indicators describe the flashiness of an
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Figure 3. Metrics employed for evaluating five types of hydroclimatic extremes: (a) Precipitation hyetograph (including infiltration loss curve

indicating excess rainfall); (b) Flood hydrograph; (c) Drought; (d) Temperature; (e) Wind (storms). All these variables can be described using

indicators of event duration and magnitude (peak intensity).

event, such as the time-to-peak, which is defined as the total number of hours starting from the sharp rise of the hydrograph

until the peak discharge. Synthetic design hydrographs (SDHs) may be used to test the sensitivity of the peak, volume and

shape of the flood hydrograph to the flood generating mechanism and catchment properties (e.g. Brunner et al., 2018; Yue

et al., 2002a).

The spatial extent of a flood or drought event can be described using metrics such as the number of catchments flooding si-5

multaneously (Uhlemann et al., 2010) or the ’flood synchrony scale’ (FSS), which evaluates the largest radius around a stream

gauge where more than half of the surrounding stream gauges also record flooding within the same week (Berghuijs et al.,

2019a). Studies are increasingly evaluating the spatial dependence of flooding across multiple basins by considering meteoro-

logical, temporal and land surface processes leading to simultaneous flooding across varying spatial scales (e.g. Brunner et al.,

2020; Kemter et al., 2020; Wilby and Quinn, 2013).10

Droughts (Figure 3c) differ from other extreme weather because they develop more slowly and last longer; they are broadly

defined as “a sustained period of below-normal water availability” (Tallaksen and Van Lanen, 2004), sometimes referred to

as a “creeping phenomenon” (Mishra and Singh, 2010; Wilhite, 2016). These characteristics make it more difficult to assess

nonstationarity as there are fewer events to compare over time plus drought onset and termination are challenging to pinpoint

(Parry et al., 2016). Not all droughts are defined by aridity; and rainfall deficit alone does not imply a drought (Van Loon, 2015).15

Instead, a combination of factors in the hydrological cycle interact to yield below normal conditions (Figure 3c). Drought has
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been typically classified as: meteorological (precipitation deficit); hydrological (surface and subsurface water deficit relative to

local water uses); agricultural (declining soil moisture and crop failure); or socioeconomic (failure of water resources system to

meet demand) (Van Loon, 2015). Since the definition of "normal conditions" depends on spatial and temporal scales, drought

anomalies are typically defined locally using composite indicators, including precipitation and temperature. Various metrics

exist to measure drought stress, and they either reflect deficits in precipitation, or combined metrics of precipitation, temperature5

and evaporation. The World Meteorological Organisation (WMO) recommends the use of the Standardized Precipitation Index

(SPI), which reflects standard deviations from normal rainfall (WMO, 2016; McKee et al., 1993). Other well-known indices

that rely on monthly precipitation include the Palmer Drought Severity Index (PDSI) (Palmer, 1965), deciles (Gibbs and Maher,

1967), and the rainfall anomaly index and its modified version (RAI/mRAI) (e.g. Hänsel et al., 2016). Some metrics combine

variables. PDSI accounts for soil moisture, temperature, and precipitation anomalies and therefore, reflects both sides of the10

water balance. The Standardized Precipitation Evapotranspiration Index (SPEI) can be interpreted similarly to SPI, but reflects

both evaporative demand and precipitation inputs to a system (Vicente-Serrano et al., 2010). The spatial characteristics of

drought have also become increasingly relevant, as more studies examine their areal extent over time, using metrics like spatial

patterns of drought intensity mapped across livelihood zones over time (e.g., Leelaruban and Padmanabhan, 2017; Mekonen

et al., 2020).15

For temperature extremes (Figure 3d), studies may monitor the hottest/coldest day, warmest/coolest night, or the extreme

temperature range (TXx-TNn, °C) (e.g. Donat et al., 2013). Percentiles of the distribution are also commonly assessed (Zhang

et al., 2005; Kjellström et al., 2007), while some authors work with combined temperature-humidity metrics (Matthews et al.,

2017; Raymond et al., 2020b; Knutson and Ploshay, 2016), which offer a more complete measure of atmospheric heat content

(Pielke Sr et al., 2004; Peterson et al., 2011; Matthews, 2020), and may therefore be more closely aligned with levels of thermal20

stress felt by humans (Mora et al., 2017; Matthews, 2018). Other approaches include an emphasis on duration by focussing on

heatwaves, defined as periods of consecutive days when heat is higher than normal (Perkins and Alexander, 2013). This very

broad categorization has seen a plethora of thresholds (both absolute-value and percentile-based) and metrics (temperature and

combined temperature-humidity indices) applied to heatwave studies, with the choice shaped by interests in potential impacts

(Xu et al., 2016).25

Changes in the magnitude of extreme wind events (Figure 3e) may also be tracked using wind speed percentiles such as the

90th, 95th, 98th and 99th seasonal or annual percentiles (e.g. Donat et al., 2011; Young and Ribal, 2019; Wang et al., 2009).

Wind intensity (in metres per second) may be explicitly measured over two-minute sustained periods, or three-second gust

periods (Pryor et al., 2014). Wind events may also be inferred from gradients in sea-level pressure fields (Jones et al., 2016;

Matthews et al., 2016b). Winds associated with Western Hemisphere tropical cyclones are described using storm scales such as30

the Saffir-Simpson hurricane wind scale (SSHWS) (e.g Elsner et al., 2008; Karl et al., 2008). This classifies wind intensity into

five storm categories: one (119-153 km/h), two (154-177 km/h), three (178-208 km/h), four (209-251 km/h) and five (>252

km/h). Cyclones and typhoon magnitudes are equally described using metrics such as the seasonal mean lifetime peak intensity,

intensification rate, and intensification duration (Mei et al., 2015).
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2.2 Are extreme events occurring more frequently than before?

A second broad category of nonstationarity ’symptoms’ is the frequency of events. Many metrics are used to describe changes

in the frequency of hydroclimatic extremes, such as annual exceedance probabilities and counts of occurrences above or below

thresholds (i.e. ’peak over threshold’ (POT) approaches such as the number of days or hours exceeding a threshold in a given

year). In reality, the magnitude and frequency of extremes are closely related, such that when magnitudes increase, one can5

also generally expect to find more peaks over a given threshold (see Figure 4). However, frequency-based metrics generally

enable better detection of changes in extremes than magnitude-based metrics (e.g. Mallakpour and Villarini, 2015) because they

often reflect a larger sample of data and are less prone to measurement errors. For example, while block-maxima approaches

often include just one value per year/season, POT approaches count the total number of exceedances above a threshold. This

fact is exploited by those using documentary evidence to evaluate flood frequency (Macdonald et al., 2006). The thresholds10

for detection of changes in frequency should be set high enough to describe a meaningful extreme event, yet low enough to

compile an adequate sample size.

For precipitation, multiple methods exist for the selection of the most appropriate threshold (Caeiro and Gomes, 2016).

Thresholds are generally chosen based on the local precipitation distribution such as the 95th, 98th, 99th or 99.5th percentile

of rain over a 1-, 6-, 12-, or 24-h period (e.g. Wi et al., 2016). Percentile or fixed thresholds (such as the 10 mm or 20 mm15

daily total, R10mm or R20mm) are then used to count monthly/annual days with heavy precipitation exceeding or equalling

these values. Alternatively, a mean residual life plot (an exploratory graphical approach) can be used to select a suitably high

threshold (e.g. Coles, 2001). These thresholds can be calculated for individual years or using the entire multi-year record. For

an overview of threshold selection methods, see Anagnostopoulou and Tolika (2012). An alternative approach for estimating

the probability of intense rainfall events is the changing likelihood of an historical precipitation analogue (Matthews et al.,20

2016a).

The frequency of temperature extremes is assessed using metrics such as the percentage of the time when the daily minimum

or maximum temperature is below or above a given percentile, such as the total annual count of ice/frost days (ID/FD) where

the daily minimum temperature is below 0◦C (e.g. Donat et al., 2013). Mwagona et al. (2018) observed changes in cold/warm

night frequency at 116 stations in Northeast China. They report a decrease in cold night frequency during winter and spring,25

while warm night frequency increased primarily in summer. Similar metrics are used to describe changes in the frequency of

heatwaves (Perkins-Kirkpatrick and Lewis, 2020) or growing season days, such as the number of days with plant heat stress

(with maximum temperature exceeding 35◦C) (e.g. Rivington et al., 2013). Alternatively, the accumulated frost (sum of degree

days where the minimum temperature is below 0◦C) (e.g. Harding et al., 2015) may be linked to crop yields during different

growth phases.30

The frequency of wind extremes is often assessed in terms of the number of wind storms (e.g. Wild et al., 2015) or cyclones

(e.g. Matthews et al., 2016b) in a given period. The number of events can be estimated using tracking algorithms, ranging from

simple algorithms based on the mean sea-level pressure values for cyclone activity (Murray and Simmonds, 1991; Donat et al.,

2011) and the exceedance over the 98th percentile wind speeds for wind storms (Leckebusch et al., 2008) to more complicated
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tracking of ’sting jets’ (Hart et al., 2017). The frequency of extreme winds may be quantified from reanalysis data, noting that

the trend magnitude and sign can be sensitive to the reanalysis product (Befort et al., 2016; Wohland et al., 2019; Torralba

et al., 2017a).

POT methods are widely used to evaluate changes in the frequency of hydroclimatic events. These methods require selection

of a reference threshold (a magnitude) and a period (e.g. one week) to de-cluster independent events. This is a common chal-5

lenge for most hydroclimatic extremes (Figure 3). For floods, many studies apply a somewhat arbitrary streamflow threshold

that is on average exceeded twice per year (e.g. Hodgkins et al., 2019; Slater and Villarini, 2017a). In practice, alternative

thresholds may be equally valid, such as the number of days when water levels exceed official flood thresholds (Slater and

Villarini, 2016). However, setting a lower threshold means that events are less likely to be independent and/or of practical sig-

nificance. ’Clusters’ of consecutive events are, thus, further de-clustered by specifying a period between events. For instance,10

Wi et al. (2016) separated extreme rainfall events by an interval of 7 days but other requirements have been proposed to ensure

independence. For example, Lang et al. (1999, p.105) highlight that in 1976, the U.S. Water Resources Council imposed a

separation between floods events of "at least as many days as five plus the natural logarithm of square miles of basin area",

including a drop between consecutive peaks ’below 75% of the lowest of the two flood events’. The time between independent

events depends on the catchment size, as a longer duration is expected in larger catchments because of the slower draw-down15

of hydrograph limbs. In practice, such thresholds are far too short to adequately distinguish truly independent events, given the

timescales of hydroclimatic variability which are often greater than a year. Similar concerns apply when isolating successive

drought events (Bell et al., 2013; Thomas et al., 2014; Parry et al., 2016). Metrics to identify drought termination and subse-

quently drought independence include storage deficit methods that quantify the volume of water in relation to normal water

storage conditions (Thomas et al., 2014), and more generally, the return from maximum negative anomalies to above-average20

conditions (Parry et al., 2016). Hence, specification of the threshold and de-clustering technique make POT approaches more

complicated to implement than block maxima approaches, where only one extreme per ’block’ (unit of time) is selected. The

more flexible selection of extremes and larger sample size of frequency-based (i.e. POT) approaches may be preferred when

record length is a limiting factor, whereas simpler magnitude-based (i.e. block maxima) approaches may be preferred when

longer records are available.25

More severe hydroclimatic extremes (such as 1-in-10, -20, -50, -100, or -200-year events) are typically evaluated using return

periods (also denoted as the ’expected waiting time’). Alternatively, annual exceedance probabilities (AEPs) define the average

waiting time for an event of a given magnitude to occur, or the likelihood of attaining or exceeding a given threshold in any

particular year. Other metrics have been proposed for engineering design. Reviews by Salas et al. (2018) and François et al.

(2019) highlight ongoing disagreements about the utility of nonstationary methods for the design of engineering structures. As30

the uncertainties of nonstationary model structure may exceed that of stationary models (Serinaldi and Kilsby, 2015), specific

strategies are required to manage the consequences of those uncertainties (François et al., 2019). There are thus ongoing debates

about which concepts and methods are most appropriate for estimation of extremes, such as the return period, risk, reliability

or Equivalent Reliability (ER), Design Life Level (DLL) or Average Design Life Level (ADLL), and Expected Number of

Exceedances (ENE) (e.g. Read and Vogel, 2015; Rootzén and Katz, 2013; Yan et al., 2017; Salas and Obeysekera, 2014).35
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Figure 4. Examples of trends in magnitude, frequency, and timing of hydroclimatic extremes. (a) Trends in extreme daily precipitation fre-

quency (left: events) and magnitude (right: annual mean extreme daily precipitation anomaly, mm) over the globe (Papalexiou and Montanari,

2019). (b) Trend in the highest temperature anomaly of the year (◦C) over the globe (baseline period: 1970-1989); red line indicates 5-year

moving average (Papalexiou et al., 2018). (c) Trends in flood timing across Europe in days/decade, 1960-2010 (Blöschl et al., 2017). (d)

Trends in flood frequency (number of flood days) and magnitude (annual maxima) across the USA, 1965-2015 (significance level set to 5%,

Villarini and Slater, 2017). (e) Global trends in wind speed. Left: linear trend (m/s per decade) of ERA-Interim 90th percentile of 10 m wind

speed for December-January-February (DJF); significant trends hatched. Right: 850 hPA wind speed trends produced by ERA-I, JRA-55 and

MERRA-2; where blues (reds) indicate level of agreement between reanalyses about negative (positive) trends (Torralba et al., 2017a).

9
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For instance, return period metrics may exhibit limitations in the case of time-correlated hydroclimatological extremes, so

alternatives such as the ’equivalent return period’ (ERP, i.e. "the period that would lead to the same probability of failure

pertaining to a given return period T in the framework of classical statistics (independent case)" Volpi et al., 2015), may be

preferred.

It is not just individual characteristics of weather and water extremes that can change over time but also the interdependence5

between different characteristics, such as frequency, magnitude, and volumes. Brunner et al. (2019) assessed future changes

in flood peak-volume dependencies and found that the interdependence between variables may change more strongly that the

individual variables themselves. This interdependency also applies to other variable pairs jointly of interest such as drought

duration and deficit or precipitation intensity and duration. Recognising the interdependence between magnitude and frequency,

many studies employ intensity-duration-frequency (IDF) metrics, which describe both the magnitude and frequency at once.10

It has recently been shown that generalized extreme value (GEV) distribution parameters scale robustly with event duration

at the global scale (R2 > 0.88), hence a universal IDF formula can be applied to estimate rainfall intensity for a continuous

range of durations, including at the sub-daily scale (Courty et al., 2019). There is growing interest in the nonstationarity of IDF

curves (Cheng and AghaKouchak, 2014; Ganguli and Coulibaly, 2017) as well as the implications of this nonstationarity for

compound hydroclimatic extremes globally (AghaKouchak et al., 2020).15

2.3 Is the timing of events changing?

Nonstationarity in the timing and seasonality of hydroclimatic extremes has been examined far less than trends in magnitude

and frequency. Timing and seasonality provide information that is relevant for the management of water resources and analysis

of underlying drivers of change. For instance, the start of field operations for farming may be estimated as the day of the year

when ’the sum of average temperature from 1st January exceeds 200◦C’ (e.g. Rivington et al., 2013; Harding et al., 2015).20

Similarly, the start of the growing season may be measured as the first of five consecutive days with average temperature

exceeding 5◦C (Rivington et al., 2013). Changes in these indicators of hydro-climatic extremes may have substantial impacts,

e.g. for crop yields. Additionally, changes in timing and seasonality can also affect impacts of extreme events. For example, the

risk from compound tropical cyclones and heatwaves is sensitive to the seasonal cycles in tropical cyclone probability (which

peaks in late summer) and extreme heat (mid summer). A greater frequency of tropical cyclones earlier in summer, or more25

extreme heat late in summer, would increase the risk of compounding and attendant impacts (Matthews et al., 2019).

Changes in the timing of seasonal streamflows are typically assessed using the centre of volume (CV) date (Court, 1962) or

mean date of flood occurrence (mean flood day, MFD). For example, Hodgkins and Dudley (2006) assessed changes in flood

timing over the conterminous USA from 1913-2002 using the winter-spring CV dates. They found that a third of stations north

of 44 degrees had significantly earlier flows, likely related to changes in winter and spring air temperatures affecting winter30

snowpack. The MFD has been used to assess changes in streamflow timing in specific countries such as Wales (Macdonald

et al., 2010) and Spain (Mediero et al., 2014). Probabilistic methods for identifying flood seasonality and their trends Cunderlik

et al. (2004) have been applied in Canada (Cunderlik and Ouarda, 2009) and the northeastern United States (Collins, 2019). In

Europe, an analysis of 4,262 streamflow stations in 38 countries used the date of occurrence of the highest annual flow peak
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to assess changes in flood timing (Blöschl et al., 2017). This showed significant changes in the seasonal timing of floods at the

regional scale: in northeastern Europe, 81% of stations had shifted towards earlier floods (by 8 days per 50 years); in western

Europe, 50% of stations had shifted towards earlier floods (by 15 days per 50 years); and around the North Sea, 50% of the

stations had shifted towards later floods (by 8 days per 50 years), as seen in Figure 4d (Blöschl et al., 2017).

Nonstationarity in the timing of extreme precipitation has also been used to better understand the causal factors of extremes.5

For instance, Gu et al. (2017) examined shifts in the seasonality and spatial distribution of extreme rainfall over 728 stations

in China. They found that alterations in rainfall seasonality are likely being driven by changes in the pathways of seasonal

vapor flux and tropical cyclones. Others have examined shifts in the seasonality of future large-scale global precipitation

and temperature extremes from model projections such as CMIP5 (e.g. Zhan et al., 2020) (see Section 7.2 for discussion of

prediction and projection).10

3 Essential data considerations before detecting and attributing nonstationarity

3.1 Spurious nonstationarities: the issue of data quality

Confidence in nonstationarity detection, attribution, and prediction rests on confidence in the homogeneity and quality of

input data – including primary hydro-meteorological series from individual observations, accompanying meta-and qualitative

information. Data quality issues tend to be prevalent with measurement of extremes. Hydroclimatologists increasingly need15

to be aware of data quality issues associated with homogeneity of remotely sensed data and their derivatives. For example,

inaccuracies may arise from orbital drift (Weber and Wunderle, 2019), inference of precipitation from vegetation in data sparse

regions (Xu et al., 2015), or changing land-surface reflectance such as snow cover over mountainous regions (Karaseva et al.,

2012). Some of the most common sources of data errors and biases that reduce homogeneity/ cause nonstationarity in ground-

based information over time-scales of years to decades are: site or instrument changes, biases and drift in field procedures (time20

of sample, preferred values), unstable rating curves and cross-sections, changes in network density/ cover, post-processing and

archiving (unit changes) (Wilby et al., 2017). For example, the England and Wales Precipitation series is a specific example of

spurious nonstationarity (a long-term trend towards wetter winters) arising from a combination of climate drivers (cold winters

with more snowfall in the early nineteenth century) with non-standard rain gauges before the mid-1860s and snowfall under-

catch, giving an apparent increase in winter precipitation (Figure 5a, Murphy et al., 2020b). Gridded products and reanalysis25

data are also not immune from such data quality issues and are further affected by time-space variations in raw data inputs,

version updates and system drift (Sterl, 2004; Ferguson and Villarini, 2014).

Detecting spurious nonstationarities within raw data should be one of the first steps when evaluating time series that have

yet to be quality-controlled. Tests for homogeneity have been proposed for uncovering such issues (see Figure 5b). Common

techniques for assessing data quality range from visual inspection/expert judgment, to formal statistical tests (e.g. Chow test,30

Buishand range test, Pettitt test, standard normal homogeneity tests). For meteorological variables relative homogeneity tests

are possible where appropriate networks of observations are available (e.g. HOMER (Mestre et al., 2013)). However, such
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Figure 5. Homogeneity of observational records. (a) An example of spurious non-stationarity in decadal mean observed (red line) winter

precipitation for England and Wales due to inhomogenous records. The ensemble median and individual reconstructions (black and grey

lines) do not exhibit nonstationarity. Dashed lines indicate the 95% confidence intervals for the reconstructions; from Murphy et al. (2020b).

(b) An approach to data homogenization for monthly to annual climate records, adapted from Aguilar et al. (2003).

techniques are often limited to evaluating changes in the mean rather than extremes (Peña-Angulo et al., 2020; Ribeiro et al.,

2016; Yosef et al., 2019).

An important step toward detecting and attributing nonstationarity would be providing better meta-data about measurement

practice and any changes in observational techniques, as well as guidance on basic quality assurance approaches and the

procurement and servicing of datasets. Observations are the foundation for understanding hydroclimatic change. Unfortunately,5

datasets of essential variables (precipitation, evapotranspiration, discharge etc.) are typically disbursed across various global,

regional, and national archives containing different variables and time scales, in varied formats. For streamflow records, changes

in the rating quality are rarely noted. Large, multi-country databases such as the Global Runoff Data Centre (GRDC, https:

//portal.grdc.bafg.de/) are vital for providing an overview of nonstationarities at continental and global scales but do not provide

information on streamflow data quality. Accordingly, there are limitations on what can be said in global studies, compared with10

local knowledge. Hydrologists could take the lead from climatologists and their ambitious aims to create integrated datasets of

essential climate variables for understanding and detecting change (e.g. Thorne et al., 2017).

3.2 Record length and completeness

Definitions of nonstationarity depend on the information content of the data, which is inherently linked to how observations

sample the true distribution, and therefore to the available record length. Given that observation networks commonly used in15

hydroclimate research tend to extend from the mid 20th Century (in the best cases), our ability to estimate the true distribution

is limited. Consequently, early studies and guidance on what constitute ‘long records’ for trend detection are likely too short:

e.g. Kundzewicz et al. (2005) claimed that 50 years of data were sufficient for trend detection. However, key modes such as

variations in Atlantic sea surface temperatures (SSTs) are known to vary over periods longer than 50 years (McCarthy et al.,

2015; Sutton and Dong, 2012) and to affect precipitation and temperature over multi-decadal timescales. For instance, the20
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North Atlantic was particularly cold during the middle of the climate normal period 1961-1990 due to the Atlantic Multidecadal

Oscillation/great saline anomaly (Dickson et al., 1988), with and perhaps a global "change point" in climate during the late

1960s (Baines and Folland, 2007). Hence, even 50 years of data is insufficient to robustly detect true nonstationarities because

the start and end dates of records may substantially affect the sign (direction) and magnitude of trends detected, especially

in records that exhibit periodicity (Harrigan et al., 2018). Ideally, the length of observation period should be appropriate for5

the aims of analysis, plausible physical drivers, and properties of the underlying data. Highly variable time series (such as

streamflow annual maxima) require a longer period of time for a significant signal to emerge, than less variable time series

based on more data (e.g. peak over threshold time series). In places where series have low signal-to-noise ratios, the time

required to detect plausible trends (e.g. in precipitation, evapotranspiration, and discharge extremes) can be centuries long (e.g.

Ziegler et al., 2005; Wilby, 2006). Faster detection may be possible using seasonal, rather than annual time series (e.g. Ziegler10

et al., 2005).

The mismatch between the temporal scales of drivers of climate variability versus the availability and quality of observations

can also result in misleading conclusions. Climate is nonstationary by definition, but there is a real danger of identifying the

incorrect driver of change when record length is short. For example, numerous studies have reported decreasing precipitation

in Mediterranean regions since the 1960s (Longobardi and Villani, 2010; Gudmundsson and Seneviratne, 2016), with some15

attributing this decline and corresponding increase in drought frequency to anthropogenic forcing in the Mediterranean basin

(e.g. Barkhordarian et al., 2013; Gudmundsson and Seneviratne, 2016; Hoerling et al., 2012). Vicente-Serrano et al. (2019)

show that, when viewed in the context of rescued and quality assured data beginning in the mid–19th Century, these recent

trends in precipitation are within the range of longer-term variability. Hence, trends depend intrinsically on the period of record

and indeed on the quality of the dataset; without sufficient record length, false attribution statements may arise with potentially20

significant management implications.

The challenges posed by the lack of available long-term observations have prompted some to leverage advances in data

rescue and historical climatology to extend discharge series back in time (e.g. O’Connor et al., 2020; Smith et al., 2017;

Bonnet et al., 2020). Although such datasets lengthen the period available for analysis and better reflect ranges of variability

in extremes such as drought (Murphy et al., 2020a), they are subject to limitations from changes in measurement practice,25

decreasing density of observations in early records, and a lack of consideration of issues such as changes in land cover and

shifts in channel capacity (Slater et al., 2015).

Finally, the issue of data completeness is equally important. Gaps in extreme hydroclimatic time series affect the detection

rate of significant trends. Detection rates are lower in records that have larger gaps and shorter records than those with less

change (lower regression slopes) and fewer gaps, and/or when the data gaps are located towards the beginning or end of a time30

series (Slater and Villarini, 2017a).

In many regions, temporal and spatial data sparsity is likely to remain a key issue, hindering robust detection, attribution,

and prediction of water and climate nonstationarities. Therefore different trend detection and attribution methods should be

considered (e.g. using lower quantiles and peak-over-threshold methods; see Section 4), while implementing holistic ’multiple

working hypotheses’ approaches (Chamberlin, 1890; Harrigan et al., 2014) to avoid overlooking potential drivers of change.35
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4 Detection of nonstationarity

Detection of nonstationarity in hydroclimatological extremes requires a sound examination of the data before applying any

statistical tests, which broadly seek to detect two types of nonstationarity (see Figure 1b): monotonic change (trends) and

step-changes (change points). Such changes can be considered as symptoms of nonstationarity if they represent a significant

departure from normality within a long-term record. Nonstationarity may be detected either in individual time series (point-5

based analysis) or in larger ensembles of stations (spatially-coherent trends) (Hall et al., 2013). Regional coherence generally

provides greater confidence in spatial patterns of change (Prosdocimi et al., 2019). Here, we provide an overview of existing

methods employed in the fields of weather and water extremes. For a description of change-detection methods in hydrology

we refer the reader to Helsel et al. (2020), and for floods to Villarini et al. (2018).

4.1 Regression-based methods for detection of incremental change10

The detection of trends in hydroclimatic time series generally employs two key approaches: detection of trends in magnitude

(e.g. quantiles or block maxima, such as the annual maxima, AMAX) or frequency-based methods (e.g. use of point process

modelling frameworks to model the peaks-over-threshold (POT) series, also referred to as partial-duration series (PDS)) (e.g.

Coles, 2001; Salas et al., 2018).

As hydroclimatic extremes typically have skewed distributions, one of the frequently used approaches for detecting mono-15

tonic trends in magnitudes is to use a non-parametric test such as the Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975)

which evaluates whether the central tendency or median of the distribution changes monotonically over time (see Helsel et al.,

2020). The test statistic, Kendall’s τ , is a rank correlation coefficient which ranges from -1 to +1 (e.g. see Figure 4c, left panel).

For instance, Westra et al. (2013) evaluated trends in annual maximum daily precipitation at 8,326 precipitation stations with

at least 30 years of record and found increases at approximately two-thirds of these stations. An additional test, called the20

Theil-Sen slope estimator, has often been used alongside MK to estimate the slope of the trend over time (Sen, 1968; Theil,

1992; Hipel and McLeod, 1994). Different versions of the MK test exist to detect seasonal and regionally-coherent trends over

time (see Helsel et al. (2020) for details and examples).

Other studies also apply ordinary least squares (OLS) linear regression to estimate trends in precipitation (e.g. Figure 4a,

Papalexiou and Montanari, 2019) temperature (e.g. Papalexiou et al., 2018), and flood flows (e.g. Hecht and Vogel, 2020).25

Practical advantages to using OLS methods include its ease of use and expression of uncertainty, graphical communication,

and usability for providing decision-relevant information (e.g. Hecht and Vogel, 2020). In cases where the assumptions of OLS

are not met, quantile regression (QR) may be used; instead of estimating the conditional mean of the response variable, QR

considers different conditional quantiles (including the median) of a distribution. QR has been used for precipitation trends

(e.g. Tan and Shao, 2017), air temperature (e.g. Barbosa et al., 2011), surface wind speed (e.g. Gilliland and Keim, 2018),30

and flood trends (e.g. Villarini and Slater, 2018), and is also regularly employed to investigate scaling properties between

hydroclimatological variables; see section 5.1 (e.g. Wasko and Sharma, 2014).
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When the empirical distribution of hydroclimatic extremes is known, many prefer to select an appropriate distribution and

evaluate how the distribution parameters vary as a function of covariates such as time (e.g. Katz, 2013). For example, the non-

stationary Generalized Extreme Value (GEV) or Gumbel (GU) distributions are widely used to detect trends in annual/seasonal

maxima such as floods (e.g. Prosdocimi et al., 2015), precipitation (e.g. Gao et al., 2016) and wind (e.g. Hundecha et al., 2008),

while the Poisson (PO, e.g. Neri et al., 2019) or negative binomial (NBO, e.g. Khouakhi et al., 2019) distributions are preferred5

for discrete data (e.g. counts of days over thresholds). These distributions can be fit to the data either with constant parameters

(stationary case) or with the parameters expressed as a function of time (nonstationary case) (Katz, 2013). In the nonstationary

case, a time covariate is employed to detect changes in the parameters of the distribution – as illustrated in Figure 6. Criteria

for model selection, such as the Akaike Information Criterion (AIC) or Schwarz Bayesian Criterion (SBC - also known as the

Bayesian Information Criterion, BIC) can then be used to determine whether the stationary or nonstationary model is the better10

fit (e.g. Figure 6a). If the nonstationary model performs better (in terms of goodness-of-fit and uncertainty) then the time series

may be considered as nonstationary, pending sufficient record length (see section 3.2).

Increasingly, distributional regression modelling frameworks such as Vector Generalized Linear and Additive Models (VGLM/

VGAM) or Generalized Additive Models for Location, Scale and Shape (GAMLSS) are being chosen for their flexibility in

evaluating nonstationarity of hydroclimatic extremes (e.g. Serinaldi and Kilsby, 2015). These frameworks are a generalization15

of generalized linear models (GLMs) allowing a broader range of distributions as well as different relationships between pa-

rameters and explanatory variables (linear, nonlinear, or smooth nonparametric). GAMLSS models, for instance, can have up to

four parameters µ, σ, ν, and τ , which allow modelling of the location (mean, median, mode), scale (spread: standard deviation,

coefficient of variation) and shape (skewness and kurtosis) of a distribution. An example of nonstationarity detection is shown

in Figure 6. Here, two nonstationary (with time-varying parameters) and two stationary (constant parameters) models are fit20

using both the Gamma and Weibull distributions to observed time series of instantaneous (15-minute) peak maxima (Figure

6a). In the nonstationary case, the (µ and σ) model parameters both depend linearly on the time covariate (in years). A loga-

rithmic link function is employed to ensure the distribution parameters remain positive. The goodness-of-fit of both stationary

and nonstationary models is assessed using SBC (Figure 6a). A detrended quantile-quantile- (worm) plot showing the residuals

for different ranges of the explanatory variable(s) can also be used to diagnose model fit (Figure 6b). The model fit is satisfac-25

tory if the worm is relatively flat and if data points lie within the confidence intervals. In the case of the River Ouse, we find

the nonstationary Gamma model is the best-fitting model, and that both the central tendency (mean: Figure 6c) and variance

(Figure 6d) are increasing over time. Here, the 50-year flood (specific discharge) increased from 0.123 m3/s/km2 in 1900 to

0.183 m3/s/km2 in 2018. GAMLSS methods have been applied for different hydroclimatic extremes. For example, Bazrafshan

and Hejabi (2018) developed a Nonstationary Reconnaissance Drought Index (NRDI) to assess drought nonstationarity in Iran,30

and found large differences between the NRDI and a traditional RDI for timeframes longer than 6 months. Sun et al. (2020b)

also evaluated changes in a Nonstationary Standardised Runoff Index (NSRI) using GAMLSS over the Heihe River Basin in

China. Importantly, the covariate in a GAMLSS nonstationary model is often time (e.g. Villarini et al., 2009a; Serinaldi and

Kilsby, 2015), but may also include other physical drivers such as climate modes (e.g. Villarini and Serinaldi, 2012), urban or
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agricultural land cover (e.g. Villarini et al., 2009b; Slater and Villarini, 2017b), or other hydro-climatic variables such as dew

point temperature (e.g. Lee et al., 2020).

Figure 6. Example workflow for detecting trends in the magnitude and return period of extremes using distributional regression (GAMLSS).

The example shows a considerable increase in flood magnitude and frequency in the River Ouse at Skelton, UK, over 130 years. (a) Two

nonstationary and two stationary models are fit to the time series of 15-minute peak maxima (black circles: specific discharge, in m3/s/km2);

colour lines indicate the 50% probability (centile) for each model. The best-fitting model is the nonstationary Gamma model (lowest Schwarz

Bayesion Criterion, indicated in brackets). (b) The wormplot indicates satisfactory model fit (dashed lines indicate 95% confidence interval).

(c) Time series of the µ parameter for the nonstationary Gamma model. (d) Time series of the σ parameter (note: the mean of the distribution

is equal to µ and the variance is equal to σ2µ2). (e) Centile curves for the best-fitting nonstationary model are shown for the 1st, 50th, 80th, 90th

centiles (from bottom to top), 95th (20-year flood), 98th (50-year flood), and 99th (100-year flood). The dotted horizontal red line indicates the

value of the 50-year flood in 1900. (f) The 50-year flood estimated every year from the nonstationary model increases over time. Confidence

intervals given by dashed lines (5th and 95th). Blue circles indicate the estimated 50-year flood in 1900 and 2018. (g) The return period of the

50-year flood estimated in 1900 (with associated confidence intervals in 1900) is then estimated for every year using the time-varying µ and

σ parameters. Blue circles indicate the estimated return period in 1900 (50 years) and 2018.

Finally, there is growing interest in using interpretable machine learning methods for detection of nonstationarities in weather

and water extremes. For example, Prophet (Taylor and Letham, 2018) is a decomposable time series forecasting model, similar

to Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1987), which is increasingly popular for hydro-climatological5

time series modelling. For example, Papacharalampous and Tyralis (2020) used the model for forecasting mean annual dis-

charge one year ahead, and Aguilera et al. (2019) used the approach for groundwater-level forecasting. Prophet decomposes

the time series into a trend component and a seasonal or periodic component, such as annual or daily cycles. The trend com-
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ponent is a piecewise linear growth model, meaning that for each partition (piece) of the time series (separated by the change

points) the model fits a unique trend (varying the trend over time), and the periodic effects are modelled as a Fourier series.

This approach allows users to determine the locations in time when there are significant changes.

4.2 Pooled methods for detecting changes in extremes

As noted above, trend-detection of hydroclimatic extremes is problematic when there is uncertainty arising from short record5

lengths or small samples. Extreme events such as the annual maximum, or 1-in-n (50, 100)-year events tend to be highly

variable and require lengthy time series to ensure robust detection of significant nonstationarities. In cases where the sample

size of observed records is insufficient, alternative methods have been proposed, ranging from "pooled" sampling to scaling

approaches.

To address the issue of limited sample size over large spatial scales, one innovative approach is to pool the single largest10

event over an n-year period from multiple independent gauge-based records, effectively substituting space (large spatial sample

across many gauges) for time (long temporal sample at individual gauges). In other words, by pooling the data from multiple

records or datasets, the data sample is increased for greater statistical robustness. For instance, Berghuijs et al. (2017) assessed

changes in 30-year floods across multiple continents by noting the date of occurrence of the single largest daily streamflow

at individual gauges, and by evaluating the fraction of catchments experiencing their maximum flood at different points in15

time. This approach revealed temporal clustering of extreme flood occurrence at regional scales, i.e. flood-rich and flood-poor

periods likely associated with hydroclimate variability.

A different and promising pooling method for detection of trends in extremes is the "UNSEEN" approach - UNprecedented

Simulated Extremes using ENsembles (e.g. Van den Brink et al., 2005; Thompson et al., 2017). UNSEEN pools members of

seasonal predictions or large ensemble climate models (e.g. Deser et al., 2020), using the members as multiple realisations of a20

plausible ’alternate reality’. In this way, historical sample sizes can be vastly increased to provide greater statistical confidence

in extreme estimates. The method was further developed through an "UNSEEN-trends" approach that enables detection of

nonstationary extremes (e.g. precipitation) such as 100-year events, from short (e.g. 30-year) climate model records (Kelder

et al., 2020). The UNSEEN-trends approach has potential for detection of nonstationarities in a range of climate extremes, but

there are some caveats. Reliability of UNSEEN-trends rests on the independence, stability, and fidelity of underlying model25

members, as well as on the physical plausibility of the hazard-generating mechanisms in the model world.

Most statistical tests used to detect nonstationarity in stream flow suffer from a substantial loss of power when applied to

shorter time series (Yue et al., 2002b; Vogel et al., 2013; Prosdocimi et al., 2014, 2019). Pooled frequency analysis improves the

estimation of rainfall events associated with long return periods in rainfall intensity-duration-frequency curves at sites where

historical rainfall records are short or ungauged by compiling data from many rainfall records in a region (Requena et al.,30

2019). The areal model applied in Prosdocimi et al. (2019) serves a similar function, pooling regionally similar stream flow

gauging stations to enhance shared trend signals. This approach can make clear the presence of trends that might otherwise

remain obscured at individual sites due to short record length.
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4.3 Change point analyses for detection of abrupt change

Abrupt changes in hydroclimatic extremes are often a sign that there has been significant human intervention, such as the

construction of a dam or diversion, which may significantly affect a catchment’s water balance. Change point (also known as

step-trend) tests can thus be used either to detect such a shift, or to compare two different periods separated by a long gap

(Helsel et al., 2020). Several change-point tests are available. The nonparametric Pettitt test is one of the most widely applied,5

and allows the user to determine the timing of the change point and its significance. One simulation study assessed the ability

of the Pettitt test to detect shifts and found that the test performs best with longer records, when the step-change is located

centrally in the distribution, and when the record is less variable (Mallakpour and Villarini, 2016). The performance of the

Pettitt test and other similar approaches including pruned exact linear time (PELT) (Killick et al., 2012), binary segmentation

(Scott and Knott, 1974), Bayesian analysis (Erdman and Emerson, 2008), wild binary segmentation (WBS) (Fryzlewicz et al.,10

2014), nonparametric PELT (Haynes et al., 2017), and the Mann-Whitney test (Mann and Whitney, 1947) for the estimation of

abrupt changes in the mean, variance, or median of a time series was tested using both simulated and historical data with known

change points (Ryberg et al., 2019). Although these methods offer potential benefits (such as the detection of multiple change

points), the comparison found that the Pettitt test delivered the best combination of change point detection and minimization of

false positive results. The parametric tests (PELT, binary segmentation, and Bayesian analysis) generally performed poorly at15

detecting known change points in peak stream flow, whilst the non-parametric tests (non-parametric PELT and Mann-Whitney)

as well as the parametric WBS resulted in unacceptable false positive rates (Ryberg et al., 2019). The Mood test (Mood, 1954;

Ross et al., 2011) for abrupt changes in scale was also evaluated in the same study but located only about 25% of known change

points in historical data (with a relatively low false positive rate) and approximately 29% of change points in simulated data

(with a relatively high false positive rate).20

4.4 Circular statistics and methods for detection of shifts in timing

Circular statistics, a branch that focuses on directions, axes, or rotations, can show changes in the timing and seasonality of

hydroclimatic extremes. Circular statistics have been applied to precipitation (e.g. Gu et al., 2017) and flooding (e.g. Villar-

ini, 2016; Hall and Blöschl, 2018). The null hypothesis of circular statistics, when applied to timing, is that data are evenly

distributed (uniform), with no tendency to cluster. Three seasonality types can be detected: circular uniform (no preferential25

direction, indicating that an event has the same probability on any day of the year); reflective symmetric (unimodal); and asym-

metric (multimodal, i.e. locations with multiple generating processes, such as snowmelt and mesoscale convective systems in

the case of flooding) (Villarini, 2016). Gu et al. (2017) found a significant shift in the seasonality of extreme precipitation using

circular statistics, which suggested that pathways of seasonal vapor flux and tropical cyclones were likely driving these changes.

A new approach based on seasonality statistics was recently developed to evaluate changes in the dominant flood-generating30

processes across Europe. Berghuijs et al. (2019b) use the mean date of occurrence of three processes (extreme precipitation,

soil moisture excess, and snowmelt) to estimate the relative importance of each process at 3,777 European catchments with at

least 20 years of flood peak timing data. They found that the relative importance of mechanisms had not changed significantly
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over 50 years. Similarly, Macdonald et al. (2010) used the mean day of the flood (MDF) to assess changes in flood timing

over Wales. They used a directional statistic, computed by counting the number of days from 31st May (the date is chosen to

provide a more normal distribution of British floods over the year) until the event, then converting the day of flood occurrence

to an angular value (θ; a direction).

Shifts in the timing of extreme weather events can also be assessed by comparing the number of events per season between5

present and future climate simulations. For example, Whan et al. (2020) show that July–September could experience an increase

in the number of landfalling atmospheric rivers over Norway by the end of the century. They find the seasonal differences are

reduced in the Far-Future period, with an equal number of AR events in winter and summer, hence suggesting a seasonality

shift.

Beyond the detection of statistically significant changes in hydroclimatic extremes (in the form of trends, step-changes, and10

shifts in timing), the next step is, inevitably, to attribute the most likely cause(s) of the nonstationarity.

5 Drivers of nonstationarity

The terms hydroclimatic ’mechanisms’, ’agents’, and ’drivers’ are sometimes used interchangeably or with different intents.

Here, we distinguish between these terms as follows. The expressions hydroclimatic agents or mechanisms refer to the pro-

cesses generating hydroclimatic extremes. Depending on the temporal and spatial scale, precipitation-generating agents might15

include local convection, synoptic weather patterns or cyclones; flood-generating mechanisms might additionally include

snowmelt or ice-jam release. In contrast, the expression ’nonstationary drivers’ refers to longer-term processes which may

cause significant shifts in the underlying distributions of hydroclimatic extremes, via climate or land cover change. Here we

focus more on the drivers of nonstationarity than the extreme-generating mechanisms and agents. It is important to note that

other (non-process related) factors may also generate spurious nonstationarities (see Section 3.1).20

The drivers of nonstationarity can be broadly categorised as ’artificial’/human (e.g. land cover change, river regulation) and

’natural’ (e.g. large scale climate variability), whist recognising that both are interlinked and affected by feedback processes and

confounding variables. These drivers operate over a range of timescales: the annual timescales of land-surface changes (e.g.

urbanisation effects on temperature, precipitation, floods and droughts) and seasonal to multidecadal timescales of climate

variability (Figure 7). The effect of these nonstationary drivers is complex, and not yet fully understood: the same drivers affect25

extremes in different ways, depending on the site-specific conditions over different spatial and temporal scales.

5.1 Climate variability and change

Climate change is widely recognised as one of the most important multidecadal to millennial drivers of changes in hydrocli-

matic extremes. Potential impacts may be expressed primarily through the water cycle, as storminess and rainfall extremes are

projected to increase with warming (Hartmann et al., 2013; Kharin et al., 2013; Held and Soden, 2006; Kossin, 2018). How-30

ever, the association between warming and hydroclimatic extremes is not straightforward: there is not a one-to-one relationship
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Figure 7. Drivers of nonstationary hydroclimatic extremes, by temporal and spatial scale.

between increases in temperature, precipitation and floods (e.g. Wasko and Nathan, 2019; Wasko et al., 2019), and the effects

of climate change operate over different temporal and spatial scales.

To understand how warming may affect intense rainfall and floods, studies have assessed the nature of scaling relationships

between extremes. As air temperature warms, the intensity of extreme precipitation is expected to increase due to the enhanced

water vapour-holding capacity of warmer air, approximately following the Clausius-Clapeyron relation (7% per degree Celsius)5

(Trenberth et al., 2003; Ali et al., 2018). Generally, peak rainfall intensities increase with both regional and global temperature.

Extreme precipitation is expected to become more intense, and weaker rainfall less intense, in all climatic regions and seasons

(Wasko and Sharma, 2015). One key question is whether precipitation intensities are likely to increase proportionally more

over shorter timescales. Research suggests that temperature-rainfall scaling increases over hourly timescales (Lenderink and

Van Meijgaard, 2008). For example, UK summer precipitation is estimated to increase by 30-40% for short-duration extreme10

events (Kendon et al., 2014). As temperature increases, we can expect to see longer duration events and higher peak intensities

(e.g. exceeding the 99th percentile) (Chan et al., 2016).

What does temperature scaling mean for floods and droughts? There is still little evidence that increases in heavy rainfall

events at higher temperatures translate into similar increases in streamflow (Wasko and Sharma, 2017). Increased extreme

rainfall does not necessarily lead to increased flooding (Blöschl et al., 2019). There are many other factors that affect flood15

response besides precipitation intensity, including the duration and extent of precipitation events, antecedent soil moisture

conditions, catchment size, vegetation cover, and catchment imperviousness and roughness (Sharma et al., 2018). Increases in

precipitation intensity are more likely to cause increases in streamflow in smaller catchments (Wasko and Sharma, 2017; Wasko

and Nathan, 2019). Perhaps counter-intuitively, streamflow is likely to decrease in catchments that are experiencing significant

reductions in the fraction of precipitation falling as snow (Berghuijs et al., 2014). In high-altitude, snowmelt-dominated regions20
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such as the Hindu Kush Himalayan “water towers of Asia” (Immerzeel et al., 2020), where a large amount of water is stored

as snow or ice, expected climate shifts could accelerate glacier and snowpack melting. This may in turn lead to more frequent

glacial lake outburst floods, flash floods and riverine floods, thus posing potential risks to the 240 million people in the region

and the 1.9 billion people living downstream (Wester et al., 2019).

Over large spatial scales, climate change also affects the characteristics (magnitude, frequency and timing) of the synoptic-5

scale phenomena that generate hydroclimatic extremes, such as atmospheric rivers (ARs), tropical cyclones, and atmospheric

circulation patterns (e.g. Hirschboeck, 1988; Schlef et al., 2019). For example, ARs play a major role in flood occurrence in

many regions of the world (Lavers et al., 2011, 2012; Paltan et al., 2017), and thus changes in their frequency and characteristics

could alter the properties of future hydroclimatic extremes. In regions such as Norway where rainfall extremes are primarily

driven by ARs (Whan et al., 2020), changes in the phase of precipitation are leading to increasingly rainfall-dominated, rather10

than snowfall-dominated regimes, which may alter flood characteristics and water resource management. Where otherwise

snow would be stored in the catchment, rainfall is likely to contribute more directly to runoff, leading to more severe AR-

induced floods, but less severe snowmelt-driven floods later in the season.

The effects of climate variability on hydroclimatic extremes are well recognised. Hazard-rich and hazard-poor periods in

the historical record tend to be driven by the spatial and temporal periodicities of multiple, sometimes overlapping, climate15

modes. For instance, during a positive phase of the North Atlantic Oscillation (NAO), the jet stream tends to shift northwards,

generating a greater frequency of heavy rain events over the British and Irish islands (Hannaford and Marsh, 2008). The

NAO, together with the Scandinavian pattern (SCA), is also the main driver of European windstorm variability (Walz et al.,

2018). El Nino Southern Oscillation (ENSO) phases have different effects on flooding and droughts depending on locality. In

Central America, for instance, the west coast experiences increased likelihood of droughts during ENSO, while the east coast20

has increased flood risk (Cid-Serrano et al., 2015; Enfield and Mayer, 1997; Aguilar et al., 2005). Moreover, El Niño events

have been observed to drive episodes of extreme heat in Southeast Asia (Thirumalai et al., 2017), whilst also increasing the

lifetime and strength of tropical cyclones in the Western North Pacific (Camargo and Sobel, 2005). Temperatures extremes in

Northern Europe are associated with atmospheric blocking situations, both during winter cold spells (Sillmann et al., 2011) and

summer heatwaves (Schaller et al., 2018). However, the interlinkages between climate variability and change are still not fully25

understood for atmospheric blocking and remain challenging to disentangle (e.g. Woollings and Blackburn, 2012; O’Reilly

et al., 2019).

5.2 Land cover changes

Land cover modulates the response of local, regional, and remote regions to shifts in climate variability and change. Land is

both a source and sink of greenhouse gases: changes in land use such as expansion of areas under agriculture and forestry30

may alter hydroclimatic extremes through a combination of both biophysical effects (e.g. photosynthesis, respiration, drying,

greening) and greenhouse gas feedbacks (see Chapter 2 of IPCC (2019)).

The effect of urbanisation on hydroclimatic extremes is perhaps one of the most well documented land cover changes, but

there are still many unknowns. Cities alter the local atmosphere through the urban heat island (UHI) effect which increases the
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mean annual surface air temperature within cities relative to surrounding rural areas. The magnitude and diurnal amplitude of

the UHI effect varies between cities (Ward et al., 2016) lifting night temperatures more than daytime temperatures (Hausfather

et al., 2013). For example, in Kuala Lumpur, Malaysia, hourly intensities of extreme rainfall have increased by ~35% in the

last 30 years due to the UHI creating an unstable atmosphere (i.e. altering the local atmospheric vertical structure, Li et al.,

2019). The effects of these local land surface changes are compounded by the thermodynamic and dynamical effects of climate5

change. Local changes in extreme temperature are driven over short/medium spatial and temporal scales by changes in the land

surface such as the UHI effect and large-scale irrigation, (e.g. Mahmood et al., 2014), but over multi-decadal timescales they

are principally caused by large-scale shifts in greenhouse gases modifying the global mean temperature.

Urbanisation effects on flooding and drought are also widely acknowledged but not yet fully understood. Prosdocimi et al.

(2015) evaluated the impacts of urban land cover in a paired-catchment study in the UK using both block maxima and POT10

approaches. They found a significant effect of urbanization on high flows in all seasons, with the strongest effect in summer.

A recent analysis of 280 stream gauges in the United States found that annual maximum floods increase by 3.3% on average

for every 1% increase in impervious land cover, using panel regression (e.g. Blum et al., 2020). Further, the vertical structure

of cities can alter precipitation and flood extremes. When hurricane Harvey hit Houston in August 2017, enhanced rainfall

was produced by the storm system’s drag induced by increased surface roughness (Zhang et al., 2018). Another recent study15

examined the effect of urbanization on long term persistence in the stream flow records of 22 catchments in the North-eastern

United States using scaling exponents (Jovanovic et al., 2016). They found evidence that streamflow responds more quickly to

rainfall in urbanized catchments than in less urbanized counterparts.

Afforestation/deforestation affect both floods and drought, but not always in a single way. For example, afforestation can

increase streamflow magnitude by ditching but reduce flood peaks by canopy interception, evapotranspiration and drier an-20

tecedent conditions (e.g. Birkinshaw et al., 2014; Soulsby et al., 2017). The effects of changes in vegetated land are believed

to be far more pronounced for low flows than high flows (e.g. Birkinshaw et al., 2014; Bathurst et al., 2020; Do et al., 2017;

Vicente-Serrano et al., 2019) although there have been very few large-sample studies using observational records. To un-

derstand the influence of land cover changes on catchment hydrology, numerical modelling is often used to assess potential

impacts and provide evidence for ambitious land cover changes related to policy before implementation. Some use theoretical25

land cover changes (e.g. Gao et al., 2018; Iacob et al., 2017); others use scenario-based land cover changes (e.g. Harrison et al.,

2019). The response of hydroclimatic extremes to land cover change varies over both spatial and temporal scales. At the very

fine scale, the hydraulic structure of the soil may be changing due to reorganisation of macro- and micropores associated with

land management practices just within a single parcel of land. At continental and multi-decadal scales, changes in the mag-

nitude, intensity and pathway of storms may lead to widespread changes in runoff. These effects may not be distinguishable30

over short periods in individual catchment data so long-term monitoring is required to understand their impact on catchment

hydrology over a range of spatial and temporal scales (Dadson et al., 2017).

Major land cover changes may also have remote teleconnection effects on hydroclimatic extremes. For instance, it has

been shown that tropical deforestation alters precipitation patterns not only locally, but also in the mid- and high latitudes.

Deforestation of the Amazon and Central Africa may reduce precipitation in the US Midwest; while deforestation of Southeast35
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Asia has been shown to affect China (Avissar and Werth, 2005). In northern India, Saeed et al. (2009) found that irrigation

suppresses the development of monsoon-driving land-sea temperature gradients and, thereby, exerts a first-order control on

precipitation in central India and the Bay of Bengal.

5.3 Water resources management and geomorphological change

With the growing demand for food and increased productivity following the mechanisation of agriculture, large swathes of5

land have been subject to arterial and land drainage. Such installations can take various forms. Their impact on hydrological

response is poorly understood but they may alter catchment morphology, soil and groundwater hydrological response, depend-

ing on the extent of the catchment affected and the extent of works completed on river channels. The nature of hydrological

nonstationarities associated with arterial and field drainage has been debated: some argue that changes should not be detectable

in discharge as abrupt shifts, while others have identified change points in specific components of the hydrological regime10

(Harrigan et al., 2014). Numerous studies show that arterial and field drainage can affect flood peaks (increasing magnitude

and reducing time to peak, e.g.Wilcock and Wilcock (1995), Bhattarai and O’Connor (2004)). Conversely, understanding of

the impacts of drainage on low flows and drought remains poor, as does our understanding of how other components of runoff

response are affected due to inadequate monitoring of sub-surface hydrological processes.

Changes in river channel morphology and conveyance capacity are also poorly-understood drivers of changes in flooding.15

In the Mississippi River for example, construction of wing dikes, navigational structures, and levees have contributed signifi-

cantly to increases in flood levels (Pinter et al., 2008). Decreases in river conveyance may significantly affect the frequency of

overbank flooding and can be identified from trends in flood stages (Pinter et al., 2006) as well as from stream gauge transect

data (James, 1991; Smelser and Schmidt, 1998). It is now possible to estimate the relative effect of hydrologic and geomorphic

drivers of changing flood risk (Slater et al., 2015) and even to estimate the influence of tropical cyclones on conveyance and20

flood risk (Li et al., 2020).

Water management can also generate significant nonstationarities. Dam construction increased dramatically over the last

century and is likely to continue to continue apace in developing regions. Grill et al. (2015) highlight that on a global basis, 48%

of river volume is moderately to severely impacted by either flow regulation, river fragmentation (i.e. diminished connectivity

within river systems), or both as a result of dam construction. The impacts on trends in river flow have been debated. Lorenzo-25

Lacruz et al. (2012) examined trends in Iberian river flows over the period 1945-2005, finding that river regulation by dams

was more likely to affect the magnitude of trends rather the direction of change,with important seasonal difference. Examining

trends in floods at a global scale, Do et al. (2017) found that the presence of dams did not have a large impact on trend

results in all catchments. Rather, catchment size and local context was deemed to be most important in determining response.

Abstractions and discharges from watercourses can also drive nonstationarities, with an important task in detection being to30

ensure naturalised flow regimes are used.
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5.4 Land-atmosphere feedbacks

Nonstationarity can also arise when non-linear dynamical systems exhibit multiple metastable states. Much debate has arisen

in the literature surrounding the flawed diagnosis of nonstationarity in systems that have metastable states due to internal

feedbacks. The difficulty is particularly acute when records are short and understanding of the system is poor. Examples of

metastable states imposed by the climate system include the persistence of periods of high levels in Lake Victoria (Sutcliffe5

and Parks, 1999), now thought likely to be driven by the Indian Ocean Dipole (Schott et al., 2009). Important examples of

land-atmosphere feedbacks internal to hydrological systems include the role of rainfall recycling in Amazon dieback (Wenzel

et al., 2014). Feedbacks are also thought to have amplified climate variability in the Sahel and in the 20th century western

US dust bowl (Berg et al., 2016). More recently, the role of soil moisture storage in controlling land-surface feedbacks was

highlighted through enhancement of heatwaves and associated severe drought conditions in Central Europe (e.g. Seneviratne10

et al., 2010; Kornhuber et al., 2020). Of key importance is the potential for human water use to affect the water balance in

regions where hydrological systems are close to sensitive thresholds (Gleick and Palaniappan, 2010). Taken together, these

examples demonstrate that internal feedbacks in hydrological systems can amplify nonstationary drivers of change. Moreover,

some of these feedbacks exhibit behaviour which suggests that they introduce tipping points in the Earth system, thus providing

not only a response to external changes in the hydrological system, but also that they can be a driver of nonstationarity itself15

(Lenton et al., 2008). Analyses which address the mechanisms behind such feedbacks will be required in order to account for

their effects in the future.

Most of the time there are many drivers affecting hydroclimatic extremes simultaneously, across overlapping multiple tem-

poral and spatial scales (Figure 7). This makes it all the more challenging to discern their individual effects.

5.5 Compound drivers: difficulties understanding nonstationarity in compound risk and consecutive disasters20

Interest in compound hydrological extremes is growing rapidly, not least because these events can deliver particularly severe

societal impacts (de Ruiter et al., 2019; Raymond et al., 2020a; Zscheischler et al., 2020). Although rarity and complexity

pose challenges for their assessment, physical reasoning and empirical methods have highlighted that they can be sensitive to

anthropogenic climate warming (AghaKouchak et al., 2020) as well as modes of climate variability (Hillier et al., 2020). It is

also possible that novel compound hazards emerge as the climate continues to change (Raymond et al., 2020a; Matthews et al.,25

2019), causing potentially devastating consequences for communities taken by surprise (Masys et al., 2016). With so much

at stake, losses may be too substantial to learn from novel hazards one they have emerged (Masys et al., 2016; Sornette and

Ouillon, 2012). Instead, modelling and simulation can be used to explore the so far unseen events. As the name suggests, the

climate modelling framework in Section 4.2 may be particularly well suited to this task, but so too are resampling and stochastic

weather generation techniques that provide a quantitative underpinning to storyline approaches (Woo, 2019; Shepherd et al.,30

2018; Matthews et al., 2019).

The role of spatial and temporal correlations in hydrological hazards like drought is important for probabilistic calculations

of risk. For example, simultaneous crop failure in Russia, South West Australia and South West China caused a major spike
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in grain prices in 2011–12 (e.g. Gaupp et al., 2020). Crop production losses can be underestimated by a factor of three if

spatially-correlated risks are ignored, but losses can be reduced by international cooperation to pool risks (e.g. Gaupp et al.,

2020). Coincident hydrological extremes at the global scale are driven by climate modes such as ENSO, the Pacific Decadal

Oscillation, and the Atlantic Multi-decadal Oscillation (De Luca et al., 2020).

6 Attribution of nonstationarity in hydroclimatic extremes5

The term ’attribution’ implies understanding the causes or driving processes of change. In the climate sphere, it is often un-

derstood in a strict sense as quantifying the influence of humans on the climate or by demonstrating that climate change is

consistent with climate model predictions rather than alternative causal explanations. However, beyond climate science, the

field of attribution is still relatively new. In hydroclimatology, the concept of attribution is used more broadly to disentangle the

wide range of drivers of hydroclimatic extremes, which include climate variability, land cover change, and land-atmosphere10

feedbacks (section 5). Attribution is typically preceded by exploratory data analysis (EDA) to understand the underlying data

(section 6.1). Attribution methods can then broadly be divided into empirical (section 6.2) and simulation-based (section 6.3)

approaches. Empirical approaches use statistical techniques to relate the causes to detected changes in the observed record.

Simulation-based approaches use model simulations to explain drivers of changes in climatic extremes. In both cases, attribu-

tion requires developing multiple working hypotheses based on a process-based understanding of potential drivers of change15

(Harrigan et al., 2014). There is considerable overlap between the methods employed for attribution (in the past), prediction

(over short future time scales) and projection (over multi-decadal timescales).

6.1 Exploratory data analysis (EDA)

Exploratory analyses play an essential role in understanding historical changes. Often, such analyses involve visual exploration

of the time series and of the statistical test results for many gauges to identify common patterns or outliers. At the most basic20

level, temporal trend lines (e.g. Figure 6f) from multiple stations can be plotted on the same graph to identify any record that

diverge from the coherence of the pooled analysis. Similarly, trend persistence plots may be created for multiple stations to

identify suspect data where nonstationarities may be present. For example, Noone et al. (2016) computed the MK Z-score

over different time periods, starting with the full record, then shortening the start year one year at time to a minimum length

required for statistical robustness (such as 30 years). Plotting persistence lines for multiple stations allowed them to flag stations25

with possibly spurious nonstationarities. Wavelet power spectra can also be plotted for multiple stations to assess whether a

common periodicity could be detected across multiple sites. For instance, Rust et al. (2019) used continuous wavelet transforms

to identify multi-annual periodicities of the North Atlantic Oscillation in UK groundwater records.

6.2 Empirical attribution approaches

Statistical attribution of hydroclimatic nonstationarity is typically regression-based. Statistical methods require less computa-30

tional power than physical model-based approaches, but cannot account for complex feedbacks between processes. Addition-
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ally, statistical approaches are unable to distinguish between correlation and causation, even when a predictor is physically

plausible. The first step in attributing the drivers of a nonstationary process is to detect the presence of nonstationarity in the

time series. This can be done by applying a trend plus significance test (section 4.1); or by fitting a distributional regression

model with constant parameters (stationary case), then again with time-varying parameters (see Figure 6a)), and evaluating the

superior description of the data. If the stationary model fit is better (e.g. lower AIC or SBC), then it is not recommended to5

proceed further. If the time-varying model is better, and if there are physically-plausible reasons to suspect nonstationarity, then

attribution may proceed. However, it is important to note that small differences in AIC and SBC are not always meaningful

(Burnham and Anderson, 2004), and visual assessment is generally recommended. If a time series is deemed nonstationary,

regression can be used to determine potential drivers of change by introducing additional predictors that are representative of

the drivers (e.g. changing land cover, climate, or reservoir indices). Regression model coefficients can be used to quantify the10

effect of covariates (e.g. Prosdocimi et al., 2015). ’Soft’ statistical attribution approaches involve fitting a range of models with

different sets of covariates in a given location, and selecting the best-fitting model (i.e. most important covariates). For exam-

ple, Slater and Villarini (2017b) fit a range of models at 290 stream gauges using plausible combinations of five predictors –

precipitation, antecedent wetness, temperature, agriculture, and population density – to identify the dominant driving processes

in different seasons.15

Panel regression techniques are increasingly popular because they can be used to leverage temporal and spatial variation to

isolate a causal effect, separate from other drivers of change (Blum et al., 2020). These methods pool both dynamic (e.g. land

cover) and static (e.g. physical catchment characteristics) data across time and space. They are able to identify generalized

relationships between drivers and hydrologic response (i.e. reliable model coefficients), and are particularly powerful in re-

gional and large sample analyses (Bassiouni et al., 2016; Steinschneider et al., 2013). Examples of recent applications of panel20

regression include estimating low-flow response to rainfall in ungauged basins (Bassiouni et al., 2016), estimating the effects

of urbanization on annual runoff coefficients (Steinschneider et al., 2013) and peak flows in the United States (Blum et al.,

2020) and in Belgium (De Niel and Willems, 2019). Others have applied panel regression to analyse the effects of forest cover

change and other socioeconomic factors on the frequency of large floods in developing regions (Ferreira and Ghimire, 2012)

or to examine the effects of deforestation and agricultural development on streamflow in Brazil (Levy et al., 2018).25

6.3 Simulation-based attribution of nonstationary extremes

Unlike statistical methods, where models are "fit" to observations, climate model experiments are physically-based: they solve

series of mathematical equations representing various Earth-system processes. The strength of these methods relies on their

use of physics to accurately describe real-world feedbacks and recognise important physical limits, for example, the cap on

extreme humid heat in the tropics linked to deep convection (Sherwood and Huber, 2010; Zhang and Fueglistaler, 2020). Here30

we provide a brief overview but we point the reader to Hegerl et al. (2010) and Stocker et al. (2013) for details.

In attribution studies, climate models can be run under different scenarios to identify the role of anthropogenic forcing in

contributing to the likelihood of an observed extreme. For example, comparing the probability of an extreme event simulated

by a model for the current climate (p1) with its probability in a modelled pre-industrial scenario (p0), indicates how much
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"more likely" (p1/p0) the event has become relative to a "counter-factual" world in which the pre-industrial climate persisted

(see Figure 8a-b). The probability ratio framework is also used to identify the "fraction of attributable risk" (1-p0/p1) – the

portion of the event’s probability that can be assigned to anthropogenic modification of the climate (Fischer and Knutti, 2015).

Changes in event magnitude can also be examined using the same framework. Wang et al. (2018) applied such methods to the

exceptional rainfall caused by Hurricane Harvey in 2017. The analysis indicated that, in a counter-factual environment of no5

trends in SSTs or tropospheric variables, the storm would have delivered almost 30% less precipitation. Such methods, which

blend climate change scenarios (in this case, no trends since 1980) with numerical weather prediction models can also be used to

assess in detail how the characteristics of observed extremes may differ in counter-factual worlds (hotter or colder than present).

Lackmann (2015) demonstrated this for Hurricane Sandy, noting that climate warming since pre-industrial levels caused a small

northward shift and intensification of the storm’s track; further intensification and northward displacement could be expected10

in a counterfactual climate even warmer than observed in 2012. Statistical comparisons, such as the Anderson-Darling (Figure

8c) or Kolmogorov-Smirnov tests, can formally confirm any significant differences between historical observations and future

simulated extremes.

Event attribution has emerged as a major field of research in the last decade, aiming to assess whether specific extreme events

can be ascribed to human-induced climate change (Stott et al., 2016). Climate models can be used to estimate the influence15

of climate warming on the likelihood or intensity of individual events. For example, Diffenbaugh et al. (2017) compare four

different attribution approaches used to evaluate the influence of climate warming on the hottest monthly and daily events at

the global scale. The first two methods estimate the contribution of the observed historical trend to the magnitude of the event

(Figure 8d), or to the probability of the event magnitude. The second two methods estimate the probability of the observed

trend in the historical climate forcing (Figure 8e); or the probability of the event magnitude in the historical and pre-industrial20

climate forcing. For a review of the statistical methods employed for event attribution in climate science, see Naveau et al.

(2020).

6.4 Issues with attribution: complexity, confounding variables, and undetected drivers

Attribution encounters different challenges depending on the variables being considered. In the case of hydrological extremes

such as floods or droughts, there is substantial complexity in disentangling multiple drivers, which may have a confounding25

influence. One of the principal obstacles in hydrology is the lack of data on the drivers of nonstationarity at appropriate tem-

poral and spatial scales. Important drivers of hydrological change (such as arterial drainage, land use changes, or adjustments

in the conveyance capacity of river channels) may be overlooked if the initial attribution framework is too narrow – i.e. does

not consider the possibility of multiple plausible drivers. Hydrologists seeking to quantify the influence of land cover signals

are faced with a conundrum: how to disentangle multiple driving factors in big datasets that have not been assembled for such30

a purpose. There are many national hydrological reference networks (also known as benchmark networks) that are minimally

affected by anthropogenic influences and designed to enable detection of global change signals (e.g. Whitfield et al., 2012;

Harrigan et al., 2018). However, these data are not well-suited to detect drivers such as land cover changes: there are currently

no benchmark networks for detection and attribution of the effects of land cover changes on streamflow at any scale. Hy-
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Figure 8. Attribution techniques for exploring nonstationarity with climate model simulations and observations. (a) Frequency analyses:

example of daily precipitation simulations for pre-industrial conditions, present day and future warming scenarios. (b) Probability ratio:

example of exceeding 99th/99.9th percentile of pre-industrial temperature at a given warming level relative to pre-industrial conditions,

averaged across land. (c) Comparing distributions: here, using the Anderson-Darling test to evaluate differences between observed and

simulated interannual variability. (d) Event magnitude: estimating the contribution of an observed trend to an event magnitude. (e) Trend

probability: estimating the probability of an observed trend in a historical climate model simulation. Panels a-b are simplifications of the

general patterns shown in Fischer and Knutti (2015); panels c-e adapted from Diffenbaugh et al. (2017).

drologists seeking to attribute such effects may find spurious relationships, or that the data are affected by other confounding

variables such as upstream dams or abstraction. Because of the multiple confounding variables that affect streamflow, a broader

attribution framework, with multiple working hypotheses, is needed.

Complexity is reduced for attribution of extreme high temperatures because they scale strongly with global mean warming

(Buzan and Huber, 2020), particularly over land (Matthews et al., 2017). However, some confounding influences remain even5

for heatwaves because of their sensitivity to land use change. For example, any modification leading to surface drying (e.g.

cessation of irrigation) may partition more radiant energy into the sensible heat (at the expense of latent heat), thereby ampli-

fying high temperature extremes (Miralles et al., 2014; Peterson et al., 2011). This principle of trading off between sensible

and latent heat is often exploited in reverse by urban designers trying to engineer cool cities (Coccolo et al., 2018), but it may
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confound local-scale attribution studies focusing on temperature extremes. The total sensible and latent heat content of the air

is, therefore, recommended for studies of extreme heat events (Pielke Sr et al., 2004; Matthews, 2020), not least because it is

more tightly coupled to physiological heat stress (Matthews, 2018).

The challenge of nonstationarity does not end with attribution because it is only after attribution that we can consider the

management implications then approaches to prediction and projection.5

7 Management of future nonstationary extremes

Estimation of future nonstationary extremes is sensitive to methodological choices such as the influence of different bias

correction methods, and philosophical questions about whether we can (or should) predict nonstationarity into the future given

inherent uncertainties. Here we describe methods for factoring nonstationarity into design estimation and present the current

difficulties and emerging methods in predicting and projecting hydroclimatic extremes under a nonstationary future.10

7.1 Adjusting for nonstationarity in engineering design

It is generally accepted that assuming stationarity in the hydrologic variables used for long-lived engineering designs is no

longer tenable (Milly et al., 2008). However, there are differences in opinion about how environmental change information can

be used in detailed engineering designs. For instance, a decade ago, some claimed that climate models were not yet ‘ready for

prime time’ (Kundzewicz and Stakhiv, 2010). The reasoning was that outputs from climate models and downscaling procedures15

were too coarse and uncertain for use in site-specific adaptations to infrastructure. However, this was premised on a ‘predict-

then-act’ approach to nonstationarity, where the goal was to characterize, or even constrain, major sources of uncertainty for

decision-makers (Clark et al., 2016).

An alternative view is that nonstationary hydroclimatic information can be applied in smarter ways by stress-testing the

performance of a design or adaptation decision via risk and reliability metrics (e.g. Brown and Wilby, 2012). Such frameworks20

promote early engagement with the decision-maker in the design process, to identify key system vulnerabilities, performance

criteria and trade-offs between management goals (Poff et al., 2016). Furthermore, so-called ‘scenario-neutral’ methods can

establish when and where national safety margins for nonstationary hydroclimatic conditions might be inadequate (Prudhomme

et al., 2010; Broderick et al., 2019). When combined with storylines that describe more elaborate scenarios of change – such

as forest die-back and dust on snowpack under hotter-drier conditions shifting the volume and timing of runoff – more holistic25

capture of nonstationarity in adaptation planning is then feasible (e.g. Yates et al., 2015).

A few agencies have issued specific guidance for incorporating climate change into detailed engineering designs (e.g. Asian

Development Bank, 2020; Environment Agency, 2016; International Hydropower Association and others, 2019; United States

Army Corps of Engineers, 2019). Favoured techniques include: setting lower bound change estimates by extrapolating historic

rates of change (such as for sea level rise); using changes in primary design variables (such as annual daily maximum precipita-30

tion amount) from regional climate projections as an adjustment factor (or climate change allowance) to uplift baseline series;

or rescaling the parameters of extreme value distributions to reflect multi-decadal climate variability. For a review of these
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procedures and other robust decision-making approaches in the water sector see Wilby and Murphy (2019). Approaches for

incorporating uncertainty into flood design include: climate factors (i.e. adjusting peak flow estimates); the ’prudent approach’

(i.e. selecting a larger return period based on the precautionary principle); and robustness-based decision methods (i.e. which

may be suited to a large range of plausible futures) (François et al., 2019). Other sectors are recognizing the need to adopt new

standards as well, for example, to improve the thermal performance of buildings (e.g. Lomas and Giridharan, 2012).5

7.2 Model-based prediction and projection

In a world of nonstationary hydroclimatic extremes, society must adapt and become increasingly resilient to their negative

impacts. A critical tool in the Disaster Risk Reduction (DRR) effort is operational early-warning systems. These are used

over short timescales (sub-daily to several months forecast horizons) and are based on numerical weather prediction (NWP)

or seasonal prediction models. Seasonal predictions start from an observed state of the climate system and provide a picture10

of the probability that the coming season will be wetter, drier, warmer or colder than usual. A comprehensive overview is

provided by ECMWF (2020b). Seasonal predictions are used for many extremes (e.g. Vitart and Robertson, 2018), including

precipitation (e.g. Shukla et al., 2019), temperature (e.g. Gubler et al., 2020), floods (e.g. Ren et al., 2019; Slater and Villarini,

2018), droughts (e.g. Hao et al., 2018; Yuan et al., 2017) and wind/storms (e.g. Befort et al., 2019; Torralba et al., 2017b).

For hydrological extremes, several early warning systems are now operational at global and continental scales (Emerton et al.,15

2016) (e.g. EFAS, GloFAS, E-HYPE, WW-HYPE, GLOFFIS) and are being used for decision-making during major events. For

example, GloFAS was used to provide operational flood bulletins to civil protection and humanitarian agencies in Mozambique,

Zimbabwe and Malawi in the wake of Tropical Cyclones Idai and Kenneth in 2019 (Emerton et al., 2020). For a comprehensive

review of hydrometeorological ensemble forecasting, we recommend Duan et al. (2019).

Over years to decades ahead, climate model projections (such as those of the Climate Model Intercomparison Project, CMIP)20

are used to understand how hydroclimatic extremes may develop according to different scenarios. They are typically initialized

once with perturbations to the initial conditions and with stochastic physics. Climate model projections are less constrained to

observed conditions than seasonal prediction systems that are for example initialized every month. They can be downscaled

and bias-corrected, but they cannot be evaluated against observations in the same manner as seasonal and annual climate model

predictions. Similarly, projections are employed to better assess the range of future extremes of precipitation and temperature25

(e.g. Li et al., 2016; Bao et al., 2017; Niu et al., 2018; Wu et al., 2020b), floods (e.g. Villarini and Zhang, 2020; Shkolnik et al.,

2018), droughts (e.g. Yuan et al., 2019; Wu et al., 2020a) and wind/storms (e.g. Krishnan and Bhaskaran, 2020; Emanuel and

Center, 2020). An overview of global climate projections (CMIP) and regional climate projections (CORDEX) is provided by

ECMWF (2020a).

Despite the advantages of climate models for understanding nonstationary extremes, they also have several non-trivial lim-30

itations. Their immense computational demand means that ensemble experiments may take years to complete. Their skill

depends on the ability to represent climate dynamics accurately, and so most climate models have notable biases when project-

ing nonstationarities decades ahead. For instance, several CMIP5 GCMs with 6-hourly fields exhibit ’implausible’ projections

(McSweeney et al., 2015). Care should be taken when using climate projections, as their biases (and changes over time of the
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biases) may considerably distort the multi-model means of water cycle components (Liepert and Lo, 2013). Another issue with

using climate models to understand nonstationarity is their tendency to "drift" over time, which means they develop progressive

changes beyond natural variability. This behaviour strongly depends on both the model and climate variable being analysed.

For example, precipitation drift contributes to less than 10% of the historical trend in most of the CMIP5 models, whereas drift

in steric sea level might contribute up to 30-60% of the historical trend (Gupta et al., 2013).5

Ensemble modelling approaches enhance confidence in our understanding of nonstationarities by better quantifying the

uncertainty arising from models versus the uncertainty arising from internal variability. Sample size is increased for individual

climate models by running many model members (e.g. 51 members in ECMWF’s SEAS5; Johnson et al., 2019); or via multi-

model ensembles (such as the North-American Multimodel Ensemble (NMME, Kirtman et al., 2014) or the China Multi-Model

Ensemble Prediction System (CMME, Ren et al., 2019)); or from single model initial-condition large ensembles (SMILEs),10

which quantify the effect of internal variability (Deser et al., 2020). For instance, Maher et al. (2020) showed that surface

temperature trends in near-term (15 to 30 year) projections are dominated by internal variability, using six SMILEs and the

CMIP5 output. Post-processing methods such as the Bayesian Ensemble Uncertainty Processor (BEUP) have been developed

to quantify the predictive uncertainty associated with both ensemble climate predictions and hydrologic data (Reggiani et al.,

2009). In BEUP approaches, ensemble weather predictions are used as inputs to hydrologic models and the resulting ensemble15

streamflow predictions are then post-processed by the BEUP, delivering a full probability distribution of the expected flow. The

climate uncertainty is represented by ensembles of prediction and the aggregated hydrologic uncertainty is quantified and then

added after post-processing of BEUP (Han and Coulibaly, 2019).

7.3 Hybrid statistical-dynamical prediction and projection

Hybrid statistical-dynamical approaches offer several advantages over purely statistical or purely dynamical methods for pre-20

dicting and projecting nonstationary extremes. A hybrid model uses climate predictions that are sometimes bias-corrected or

merged using techniques such as regression or Bayesian model averaging. Hybrid approaches are particularly useful for hy-

droclimatic extremes where dynamical models have limited skill (e.g. rainfall predictions). They have been applied to a wide

range of weather and water extremes including precipitation (Wang et al., 2012; Fernando et al., 2019), temperature (Strazzo

et al., 2019), hurricanes (Kim and Webster, 2010; Vecchi et al., 2011), floods (Slater and Villarini, 2018) and droughts (see25

Hao et al. (2018) for a review). For example, Kim and Webster (2010) developed extended-range seasonal hurricane forecasts

using North Atlantic SST anomalies and vertical wind shear hindcasts from the ECMWF Seasonal Forecasting System 3.

Lee et al. (2020) used projected surface air temperature (SAT), specific humidity and surface pressure from two GCMs, four

RCMs, and two Representative Concentration Pathway (RCP) climate change scenarios as covariates to compute dew-point

temperature (DPT). They then employed the SAT and DPT to project nonstationary precipitation peaks over threshold (POT)30

using a Generalized Pareto distribution. This indirect approach produced more consistent projections of precipitation across a

range of climate models than the raw (direct) precipitation projections. Finally, Slater and Villarini (2018) used forecasts of

seasonal precipitation and temperature from the NMME alongside antecedent climate conditions, agriculture, and population

density, to generate enhanced predictions of seasonal flooding. In this approach, the regression model relating extremes (e.g.
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flood indices) to covariates (e.g. precipitation) generates future predictions/projections of extremes from outlooks of seasonal

forecasting models or climate models.

There is considerable scope for developing enhanced statistical-dynamical prediction using sophisticated postprocessing

techniques such as ensemble model output statistics (EMOS). For instance, Bayesian joint probability (BJP) modeling, an

EMOS-type method, employs a joint probability distribution to characterize the relationship between the raw GCM ensemble5

mean and observations. BJP has been found to be superior to traditional quantile mapping approaches when dealing with bias,

reliability and coherence (Zhao et al., 2017).

7.4 Validity of models for evaluation of nonstationarity

Process-based models are often used in climate science and hydrological impact studies precisely to cope with the uncertainty

and nonlinear feedbacks that arise because of nonstationarity but are not always able to solve those problems. Incorporating10

nonstationarity in the calibration of model parameters and physics remains an issue. Models are used in situations where non-

stationarity is present, sometimes with the express purpose of understanding the nonstationary process (e.g. Crooks and Kay,

2015). Models that assume stationarity or are heavily reliant on calibration (with fixed parameters) are less credible at repre-

senting nonstationarity. However, this distinction between statistical models (that assume data on past system behaviour offers

insight into future behaviour) and physically-based models (which incorporate fundamental physical, biological, and chemical15

principles) is unhelpful. In practice, there are many physical principles (e.g. conservation of mass, energy, momentum) en-

coded in or relied upon by statistical models, whereas there are many data-specific parameters hard wired into physical models

(Hrachowitz and Clark, 2017). As always, the key is to understand all of the steps at which assumptions of nonstationarity are

made because these determine model realism when applied under nonstationary conditions (Kirchner, 2009).

More generally, models used for attribution and prediction suffer from incomplete representation of all sources of nonsta-20

tionarity. For instance, hydrodynamic models used for inundation modelling may be inaccurate for projecting flood extents

because they consider the land surface or river channel properties as fixed, by assuming bankfull flooding occurs once every

two years (employing a two-year flood recurrence interval) (e.g. Kettner et al., 2018). One promising approach is to begin to

tackle nonstationarity within an Earth System Modelling perspective that includes interactions between atmosphere, oceans,

land, biosphere, and human activities. Such an interdisciplinary approach is expected to accelerate scientific progress (Harri-25

gan et al., 2020). However, there are still obstacles in the way of a more holistic framework. For instance, grid resolution will

inevitably determine which features may be included (e.g. river catchments) or excluded (e.g. field drains).

8 Conclusions and recommendations

The presence of nonstationarity in weather and water extremes has long been controversial, due to lack of clarity about the

timescales required for identifying nonstationarity; spurious identification of nonstationarities arising from data inhomogeneity;30

poor or incomplete information about the drivers of change; and the mistaking of short-term excursions for long-term change.

Caution is undoubtedly necessary when attempting to detect and project nonstationarity (Serinaldi et al., 2018). However,
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recognising the presence of an abrupt temporal departure from normality in the form of a trend, step-change, shift in variance,

or more complex associations between variables may have profound utility for the appropriate management of hydroclimatic

hazards and associated resources. We argue thus in favour of a "functional" nonstationarity (Villarini et al., 2018), defined as

shifts in the probability distribution of a given dataset rather than an entire population. This approach recognises the value in

using the concept of nonstationarity as a practical tool for diagnosis, prediction and management of changing extremes. Hence,5

it is important to acknowledge the reasons for employing nonstationary methods. Inaccurate detection of a trend or step-change

(Type I errors) may be just as hazardous as not detecting a significant shift where it does in fact exist (Type II error). Such type

II errors may lead to societal under-preparedness and infrastructure maladaptation based on a flawed assumption of stationarity

(e.g. Vogel et al., 2013).

This review outlines a ’toolkit’ to guide investigations into the detection, attribution, and management of nonstationary10

extremes (Figure 2). Recognising nonstationary symptoms (section 2) is essential for developing risk management strategies

under global change. Such shifts mean society must adapt both over the short term through early warning systems, and over

the long term through nature-based and engineered solutions to risk management. However, methods used for hazard risk

management should only factor nonstationarity into their design after thorough exploratory data analysis (section 3), due

consideration of the uncertainties inherent in nonstationary techniques (Serinaldi and Kilsby, 2015), and evaluation of the15

transferability and robustness of model parameters from the calibration period to a nonstationary future (Broderick et al., 2016;

Fowler et al., 2016, 2020).

When faced with incomplete knowledge of hazard-generating processes, ’multiple working hypotheses’ frameworks must

be developed to ensure robust detection of drivers (Chamberlin, 1890; Clark et al., 2011; Harrigan et al., 2014) (sections 4-5).

Rather than seeking a single solution or ’cure’ for extremes, the precautionary principle requires a more inclusive investigation20

of possible underlying causes. Deliberately perturbing one component of a physically-based model remains currently the only

approach to control drivers with confidence, and search a response in system behaviour.

Attribution remains an ongoing challenge (section 6) as the shortness of observational records frequently precludes robust

detection of nonstationarities. Pooled approaches – both temporal (e.g. Thompson et al., 2017; Kelder et al., 2020; Massey

et al., 2015) and spatial (e.g. Prosdocimi et al., 2019; Blum et al., 2020) – hold considerable promise for enhanced detection25

and attribution of the different types of nonstationarity and their driving processes, by increasing the sample size required to

detect significant change. At individual sites, ensemble approaches will be indispensable to distinguish between periodicities

and temporal trends, as well as the inter-dependencies of the driving variables. Over regional scales, large-sample approaches

are also one of the solutions to understanding the more general properties of both environmental hazards and their drivers (e.g.

Addor et al., 2020).30

A final step is in the management of future extremes (section 7). Beyond consideration of single extremes, there are fun-

damental issues with the management, prediction, and projection of compound extremes. Just as the lack of observations is

a key challenge for individual extremes, the difficulty is even greater when it comes to understanding the intersection, se-

quencing and joint distribution of very rare events, which by definition are limited in the observed record. Pooled or ensemble

approaches are also likely to be one of the key ways forward to tackle some of the major outstanding research directions –35
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such as future changes; effects of land-atmosphere interactions and feedbacks; their impacts; land cover effects; and cascading

events (AghaKouchak et al., 2020). However, as climate models become more complex, there is no guarantee that nonsta-

tionary signals may emerge more clearly than before. Dynamical changes in atmospheric circulation are highly uncertain, and

postprocessing of large multi-model ensembles is required to help extract a signal from the noise (e.g. Smith et al., 2020). The

’promise’ of reduced uncertainty with better science is also not guaranteed: statistical postprocessing and the most advanced5

techniques may still be inconsequential if a process is poorly captured within the modelled world.

Lastly, alongside sophisticated detection and attribution techniques, there remains a need for practical tools for managing

future change. Methods range from simple look-up tables, factors, and storylines, through to user-driven design of environ-

mental decision support systems (EDSS; e.g. McIntosh et al., 2011; Zulkafli et al., 2017). Alongside the more quantitative

methods, storylines may allow us to imagine futures with multiple nonstationary drivers, and to frame narratives in terms that10

are meaningful for decision making (Shepherd et al., 2018). Developing intelligible ways to translate the science, including

"low regret" options for adaptation, remains a key area for research.
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