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Abstract. This work develop a transfer function to describe the variation of the 1 

integrated specific discharge in response to the temporal variation of the rainfall event 2 

in the frequency domain. It is assumed that the rainfall-discharge process takes place in 3 

a confined aquifer with variable thickness, and it is treated as nonstationary in time to 4 

represent the stochastic nature of the hydrological process. The presented transfer 5 

function can be used to quantify the variability of the integrated discharge field 6 

induced by the variation of rainfall field or to simulate the discharge response of the 7 

system to any varying rainfall input at any time resolution using the convolution model. 8 

It is shown that with the Fourier-Stieltjes representation approach a closed-form 9 

expression for the transfer function in the frequency domain can be obtained, which 10 

provide a basis for the analysis of the influence of controlling parameters occurring in 11 

the rainfall rate and integrated discharge models on the transfer function. 12 

 13 

1 Introduction  14 

 15 

Quantifying the variability of specific discharge response of an aquifer system to 16 

fluctuations in inflow recharge is essential for efficient groundwater resources 17 

management. However, this requires extensive and continuous hydrological 18 

time-series data, and these data are very often not available in practice. One possible 19 
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approach (namely, convolution or transfer function approach) to this problem is to 20 

simulate the discharge response by convolution of the time-varying recharge input 21 

with the corresponding impulse response. In convolution models, the aquifer is 22 

regarded as a filter that converts recharge signals into fluctuations of the aquifer head 23 

or discharge. Lumped conceptual-convolution models have been shown to be an 24 

efficient means for the simulation of time series of groundwater levels (e.g., Gelhar, 25 

1974; Molénat et al., 1999; Olsthoorn, 2007; Long and Mahler, 2013; Pedretti et al., 26 

2016). 27 

Since the impulse response function in the convolution model contains all 28 

information of the system necessary to relate its input to its output, it may be 29 

determined from the analytical solution of the linear system equation governing the 30 

input-output process (e.g., Cooper and Rorabaugh, 1963). Once a suitable impulse 31 

response function can be specified, it allows the simulation of the linear system 32 

response to any varying input at any time resolution.  33 

In this work, a regional-scale flow in a confined aquifer with variable thickness, 34 

which is recharged by rainfall through an outcrop, is analyzed by deriving transfer 35 

functions to characterize the rainfall-discharge process in the frequency domain. The 36 

stochastic analysis of groundwater flow is traditionally based on the assumption of 37 

stationarity of the recharge and discharge processes. However, the hydrologic process 38 
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in nature is nonstationary-stochastic (e.g., Christensen and Lettenmaier, 2007; Milly 39 

et al., 2008; Sang et al., 2018). In order to improve the quantification of the natural 40 

recharge-discharge process, the nonstationary rainfall-discharge process is assumed in 41 

this study. The Fourier-Stieltjes representation approach is used to achieve the goal of 42 

this work. The analysis of the results is focused on the influence of controlling 43 

parameters in the rainfall-discharge models on the transfer function. 44 

 45 

2 Problem formulation 46 

 47 

In certain areas, aquifer recharge can vary greatly over time, so determining the 48 

discharge of the aquifer at the outlet for regional groundwater problems, which 49 

involves transferring recharge at the aquifer outcrop over a relatively large space scale, 50 

can be quite difficult. However, it is very important for planning and management of 51 

regional groundwater resources that require knowledge of discharge at the aquifer 52 

outlet over a long period of time. This study is therefore devoted to quantifying the 53 

discharge response of the confined aquifer at the outlet to the temporal variation in 54 

aquifer recharge.  55 

In this study, a confined aquifer with variable thickness is considered as a linear 56 

block-box system with a stochastic rainfall recharge input and therefore a stochastic 57 
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runoff output. Both inputs and outputs are variable in time. In a linear system, the 58 

output of the system can be represented as a linear combination of the responses to 59 

each of the basic inputs through the convolution integral on a continuous time scale as 60 

(e.g., Rugh, 1981; Rinaldo and Marani, 1987)  61 

0

( ) ( , ) ( )

t

Q t t R d     , (1) 62 

where Q and R denote the output flow (discharge) rate and the input flow (recharge) 63 

rate of the system, respectively, and  is the impulse response function of the system. 64 

As shown in Fig. 1, once an appropriate impulse response function can be specified at 65 

the scale of the aquifer, it is possible to evaluate the system response from records of 66 

the input without the need to specify smaller scale heterogeneity. As will be shown 67 

below, the transfer function of the system can be used to characterize the uncertainty 68 

(variability) expected in applying the convolution integral Eq. (1) to the regional 69 

groundwater flow problems. 70 

 71 

Figure 1. Schematic representation of a linear block-box system. 72 

When using the nonstationary Fourier-Stieltjes representations for the perturbed 73 
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quantities of random recharge and outflow discharge processes, namely (e.g., 74 

Priestley, 1965)  75 

( ) ( ) [ ( )] ( ; ) ( )rr t R t E R t t dZ  




    ,  (2) 76 

( ) ( ) [ ( )] ( ; ) ( )qq t Q t E Q t t dZ  




    ,  (3) 77 

the power spectrum of the mean-removed convolution (1) can be written in the form  78 

2

( ; ) ( )( : )qq qt tS S 
   ,  (4) 79 

where  80 

0

( ; ) ( , ) ( ; )

t

q rt t d        .  (5) 81 

In Eqs. (2) and (3), r and q are the oscillatory functions (Priestley, 1965) of the 82 

recharge and outflow processes, respectively,  is the frequency,  is a zero-mean 83 

random stationary forcing process, which generates the variations of the recharge and 84 

thus the output flow processes, with an orthogonal increment dZ. In Eq. (4), Sqq and 85 

S represent the power spectra of the processes q and , respectively, and q
2 is 86 

termed the transfer function.  87 

In practice, the interest in many cases resides in evaluating the influence of the 88 

variation of recharge on the variation of the outflow discharge. Equation (4) provides 89 

an efficient way to quantify the variability of the outflow induced by the fluctuations 90 

of the inflow process in the frequency domain, since it relates the fluctuations of an 91 
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output time series to those of an input series. 92 

It is worthwhile to mention that for the case of second-order stationary rainfall 93 

processes, the representations of the forms (2) and (3) are reduced, respectively, to  94 

( ) ( )i t
rr t dZe  





  ,  (6) 95 

( ) ( ; ) ( )q rq t t dZ 




  ,  (7) 96 

and correspondingly  97 

2

( ; ) ( )( : )qq rrqt t SS   ,  (8) 98 

where  99 

0

( ; ) ( , )

t

i t
q t t de       .  (9) 100 

Equations (1) and (4) reveal that once the transfer function for the linear lumped 101 

system is identified, the first two moments of temporal random discharge fields can be 102 

determined. That is, the transfer function approach provides a basic framework for the 103 

characterization of large-scale flow processes, which may serve as a basis for an 104 

efficient management of groundwater resources. Furthermore, Eq. (4) provides 105 

another possible way to identify the aquifer parameters, as it relates the observed 106 

fluctuations of an output discharge process to those of a recharge process in the 107 

frequency domain.  108 

In the following, the focus is on the development of a closed-form expression for 109 
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the transfer function for a linear lumped confined flow model, in which the regional 110 

confined aquifer is directly recharged by rainfall in the area corresponding to the high 111 

elevation outcrop. 112 

 113 

3 Theoretical development  114 

 115 

The differential equation describing the transient flow of groundwater in 116 

inhomogeneous isotropic confined aquifers is of the form (e.g., Bear, 1979; de 117 

Marsily, 1986)  118 

( , ) ( ) ( , )[ ]s
ii

h t K h tS
t x x

  


  
x x x    i = 1, 2, 3, (10) 119 

in which Ss represents the specific storage coefficient of the aquifer, h = h(x,t) is the 120 

hydraulic head, K(x) is the hydraulic conductivity, and x (= (x1,x2,x3)) is the spatial 121 

coordinate vector. Many problems of groundwater flow are regional in nature, with 122 

the horizontal extent of the formation being much larger than the vertical extent. It is 123 

more practical to regard the flow as essentially horizontal. The regional-scale flow 124 

equations can be derived by integrating Eq. (10) along the thickness of the confined 125 

aquifer using the assumption of vertical equipotential surfaces (e.g., Bear, 1979; Bear 126 

and Cheng, 2010). 127 

Integrating Eq. (10) along the x3-axis perpendicular to the confining beds and 128 
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using Leibnitz’ rule results in  129 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ) ( , , ) ( , ) ( , , ) ( , ) ln ( , ) ( , , )[ ]
i i ii i

S h t T h t T B h tx x x x x x x x x x x x x x
x x x x x

    
 

    
   ,  i = 1, 2 (11) 130 

where S(x1,x2) is the storage coefficient (or storativity) of the aquifer (= SsB(x1,x2)), 131 

B(x1,x2) = b2(x1,x2)-b1(x1,x2) (an aquifer’s thickness), b1(x1,x2) and b2(x1,x2) are the 132 

elevations of the fixed bottom and ceiling of the confined aquifer, respectively, T(x1,x2) 133 

is the transmissivity of the aquifer (=K(x1,x2)B(x1,x2)), interpreted as the 134 

depth-integrated hydraulic conductivity, and ),,(
~

21 txxh is the depth-averaged 135 

hydraulic head defined as  136 

( )
2

( )
1 2

1 2

1

1 2 1 2 3 3

2 1 2 1 1 2

,

,

1
( , ) ( , , , )

( , ) ( , )

b x x

b x x

h h tx x x x x dx
b x x b x x


  , (12) 137 

Equation (11) is derived under the following assumptions: (1) there is no exchange of 138 

leakage fluxes between the confined aquifer and its confining beds in the direction of 139 

x3-axis, (2) h(x1,x2,b2,t)  ),,(
~

21 txxh   h(x1,x2,b1,t) (vertical equipotentials; Bear, 140 

1979; Bear and Cheng, 2010), and (3) all terms involved in the fluxes in the directions 141 

of x1and x2 at the boundaries are removed due to the no-slip condition at the 142 

boundaries. 143 

The use of the depth-averaged hydraulic head operator for modeling regional 144 

groundwater flow is valid when the variation in aquifer thickness is much smaller 145 

than the average thickness (Bear, 1979; Bear and Cheng, 2010). The error 146 

introduced by the use of this operator is very small in most cases of practical 147 
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interest, greatly simplifying the analysis of flow in confined aquifers.  148 

Similarly, when applying Leibnitz’ rule to Darcy equation, the vertically 149 

integrated specific discharge in the xi direction is given by  150 

),,(
~

),(),,(
~

),(),(),,( 212121212121 txxh
x

xxTtxxh
x

xxBxxKtxxQ
ii

xi 






 .  i = 1, 2 (13)  151 

In this study, the regional confined aquifer is considered with a nonuniform, 152 

unidirectional mean flow in the x1-axis direction, but with small flow variations in the 153 

x1- and x2-axis directions and time-varying recharge at the aquifer outcrop (x1 = 0). 154 

Since the regional flow domain considered in the x1 direction is much larger than that in 155 

the x2 direction, Eqs. (11) and (13) can be approximated as one-dimensional by  156 


2

2

( ) ( )
( , ) ( , ) ln ( ) ( , ) ln ( ) ( , )

S x R t
h x t h x t T x h x t B x h x t

t x x x xT Tx

       
    

   , (14) 157 

( , ) ( ) ( , )x x t T x h x tQ
x


 


 , (15)  158 

where T  = K B, K  represents the spatial average of the hydraulic conductivity, 159 

and R is the recharge rate. It is worth noting that a one-dimensional flow equation 160 

with the transmissivity parameter has been widely used to predict the regional 161 

groundwater flow fields in the downstream region of the aquifer in field applications 162 

(e.g., Gelhar, 1974; Onder, 1998; Molénat et al., 1999; Russian et al., 2013). Equation 163 

(14) can be expressed alternatively as  164 


2

2

( )
( , ) ( , ) 2 ln ( ) ( , )

( )
s R tS h x t h x t B x h x t

t x xK KB xx

    
  

  .  (16)  165 

for the convenient analysis of the effect of the thickness of the aquifer.  166 
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In the following analysis, the recharge rate is considered a random function of 167 

time. Equation (15) is then regarded as a stochastic differential equation with a 168 

stochastic input in time and therefore a stochastic output in time. Introduction of 169 

decomposition of the depth-averaged hydraulic head into a mean and a zero-mean 170 

perturbation into Eq. (16) and, after subtracting the mean of the resulting equation 171 

from Eq. (16), the result is the following equation describing the depth-averaged head 172 

perturbation  173 

2

2

( )
( , ) ( , ) 2 ln ( ) ( , )

( )
s r tS h x t h x t B x h x t

t x xK B x Kx

      
  

, (17) 174 

where h(x,t) is the fluctuations in depth-averaged head.  175 

If it is assumed that the thickness of confined aquifer increases exponentially in 176 

x-direction in accordance with (Hantush, 1962; Marino and Luthin, 1982)  177 

( ) xB x e , (18) 178 

then Eq. (17) becomes  179 

2

2
( , ) ( , ) 2 ( , ) ( )

x
sS eh x t h x t h x t r t

t xK Kx






     
 

. (19) 180 

In Eq. (18),  and  are positive geometrical parameters. Furthermore, the outcrop (x 181 

= 0) and outlet (x = L) of the confined aquifer are considered as constant head 182 

boundaries. Since Eq. (19) only quantifies the response of the depth-averaged head to 183 

changes in the recharge rate, the initial and boundary conditions for Eq. (19) may be 184 

represented as follows  185 
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( 0 ) 0h x, ;  , (20a) 186 

(0 ) 0h ,t;  , (20b) 187 

( ) 0h L,t;  . (20c) 188 

The following Fourier-Stieltjes integral representation of a depth-averaged head 189 

process is used to solve Eqs. (19) and (20) for the fluctuations h in terms of r:  190 

( , ) ( , ; ) ( )hh x t x t dZ  




   ,  (21) 191 

where h is the oscillatory function of depth-averaged head process. The resulting 192 

differential equation for the oscillatory functions is found from using Eqs. (2) and (21) 193 

in Eqs. (19) and (20) as  194 

2

2
( , ; ) ( , ; ) 2 ( , ; ) ( ; )

x
s

h h h r
S ex t x t x t t

t xK Kx



       


   
 

. (22) 195 

with the following conditions:   196 

( 0 ) 0h x, ;  , (23a) 197 

(0 ) 0h ,t;  , (23b) 198 

( ) 0h L,t;  . (23c) 199 

By solving the above boundary value problem, the oscillatory function of 200 

depth-averaged head process is found to be (see Appendix A)  201 

0
1

2 1 cos( )
( , ; ) exp( ) sin( ) exp[ ( )] ( ; )

tn

h rn
s n L L

n x x
x t n t d

nS



       






     , (24) 202 

where  = L and n = K (n22+2)/(SsL
2). It implies from Eqs. (3), (15) and (24) that 203 
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at the arbitrary location x = x,  204 

( ; ) ( , ; )
x

q q
t tx    205 

0
1

1 cos( )
2 cos( ) sin( ) exp[ ( )] ( ; )[ ]

tn

rn
s nL

K n
n n n t d

nS
  

        






      , (25) 206 

where  = x/L. This means that the impulse response function of the system  in Eqs. 207 

(1) or (5) is taken in the form  208 

1

1 cos( )
( , ) 2 cos( ) sin( ) exp[ ( )][ ]

n

n
s nL

K n
t n n t

nS
  

     







     . (26) 209 

 210 

4 Results and discussion 211 

 212 

Equation (25) implies that the transfer function q
2 depends on the oscillatory 213 

function of the temporal random rainfall process; consequently, to complete the 214 

analysis of the transfer function the oscillatory function of the temporal random 215 

rainfall process must be specified. It is assumed that the generated temporal random 216 

perturbations of rainfall field are governed by the noise forced diffusive rainfall model 217 

(North et al., 1993)  218 

2
2

0 0 2
( , ) ( , ) ( , ) ( )x t x t x t t

t x
    

   
 

, (27) 219 

where  is a zero-mean rainfall rate perturbation, 0 and 0 are the characteristic time 220 

and length scales, respectively, which are inherent to the rainfall field, and  is a 221 

zero-mean random stationary forcing process which has a spectral representation of 222 
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the form (e.g., Lumley and Panofsky, 1964)  223 

( ) ( )i tt dZe 
 





  . (28) 224 

In Eq. (27), the rainfall-rate field is represented as a first-order continuous 225 

autoregressive process in time and an isotropic second-order autoregressive process in 226 

space. 227 

Furthermore, the rest of this study takes into account that rain falls within a 228 

defined period of time over a certain area of horizontal extension from x =-   to x = . 229 

As such, the initial and boundary conditions for rainfall rate perturbations may be 230 

represented by  231 

( ,0) 0x  , (29a) 232 

( , ) 0t   , (29b) 233 

( , ) 0t  . (29c) 234 

 235 

4.1  Nonstationary random rainfall fields in time 236 

 237 

Using the Fourier-Stieltjes integral representation for the perturbation,  238 

( , ) ( , ; ) ( )x t x t dZ   




  , (30) 239 

and Eq. (28) in Eq. (27), it follows that  240 
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2
2

0 0 2
( , ; ) ( , ; ) ( , ; ) i tx t x t x t

t x
e  

     
   
 

, (31) 241 

where  is the oscillatory function of the rainfall rate processes. With the application 242 

of the initial and boundary conditions,  243 

( ,0; ) 0x   , (32a) 244 

( , ; ) 0t    , (32b) 245 

( , ; ) 0t   ,  (32c) 246 

the solution of Eqs. (31) and (32) is given by (see Appendix B)  247 

0

1

1 cos( ) exp( ) exp( / )
( , ; ) 2 sin( )

2
m

m

m
t

m

m x i t
x t m

m i


     





   


 


, (33) 248 

where m = 1+ m222,  = 0/(2 ), t =t, and  = 0.  249 

In the case where the regional confined aquifer is directly recharged by rainfall at 250 

the aquifer outcrop (x = 0), the oscillatory function is reduced to  251 

0

1

0
2

1 cos( ) exp( ) exp( / )
( ; ) ( , ; ) 2 sin( ) m

m

m
t

m

r
m i t

t t m
m i





       





  
 

 .  (34) 252 

Correspondingly, the power spectrum of rainfall rate, Srr(t,), can be expressed by  253 

2
( ; ) ( ; ) ( )rrr t tS S      254 

2 22 2
1 1 2 2

1 cos( ) 1 cos( ) 1 1
4 sin( )sin( )

n m

n m m n

m n
m n

m n  

   
   

 

 

 


 
  255 

2
1 2 3( ) 1 cos( ) ( )sin( ) ( )[ ]{ }m n m nt t ST T T            , (35) 256 

where T1 = exp[-(m+n)t/0], T2 = exp(-mt/0)+exp(-nt/0), and T3 = 257 

exp(-mt/0)-exp(-nt/0).  258 

The transfer function of the rainfall processes in Eq. (35) behaves like a filter, 259 
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attenuating the high-frequency part of the rainfall spectrum. The graph of transfer 260 

function, which is characterized by the characteristic time scale 0 for different 261 

characteristic length scales, is shown in Fig. 2. It clearly shows a reduction of the 262 

transfer function with increasing 0, implying a reduction of the variability of the 263 

rainfall field with the characteristic time scale of the rainfall field. A larger 0 264 

decreases the temporal persistence of the rainfall fluctuations, resulting in a smaller 265 

transfer function. It is also seen that for a fixed value of the time scale, the transfer 266 

function of the rainfall processes tends to decrease as the length scale of the rainfall 267 

field increases. The influence of the length scale plays a similar role as the influence 268 

of the time scale in reducing the temporal persistence of the rainfall fluctuations and 269 

thus the variability of the rainfall field.  270 

 271 

 272 
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Figure 2. Graphical representation of the transfer function of the rainfall processes in 273 

Eq. (35) characterized by the time scale for different length scales, where the series 274 

calculation is truncated up to M = N = 100.  275 

Through the use of Eq. (25) and Eq. (34), the oscillatory function of the 276 

integrated discharge process could be represented as follows:  277 

1

1 cos( )
( ; ) 4 cos( ) sin( )[ ]

n

s n

q
L

K n
t n n n

nS
 

     






    278 

0

01

2
sin( )1 cos( ) exp( ) exp( ) exp( / ) exp( )

/
[ ]n m n

m n n m

m
t

m

mm i t t t

m i i



    

      





     


  
 . 279 

 (36) 280 

Thus, the transfer function of the integrated discharge flux is taken in the form  281 
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 

 
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where  = K 0/(SsL
2) and  284 

1 2 2 2

1 1 cos( )
sin( )

m

m
m

m

 


 





, (38a) 285 

2

1 cos( )
cos( ) sin( )[ ]n

n n
n

 
   




  , (38b) 286 

3 0sin( ) cos( ) - exp(- )[ ]t tn nt       ,  (38c) 287 

4 0 sin( ) cos( ) - exp(- )[ ]t tn nt      , (38d) 288 

5 0exp( / ) exp( )m nt t       . (38e) 289 

Note that the linearity in modeling the recharge-discharge response of a 290 

catchment in Eq. (1), which was originally developed for large catchments, increases 291 
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with catchment area (e.g., Chow et al., 1988). This implies that the impulse responses 292 

and transfer functions derived here are valid in large confined aquifers. 293 

An essential feature of the transfer function of the integrated discharge flux in Eq. 294 

(37) is the resulting filtering associated with the flow process, as shown in Fig. 3. The 295 

attenuating the high-frequency part of the flow discharge spectrum means that the 296 

flow process smooths-out much of the small-scale variations caused by the rainfall 297 

field. Physically, this feature implies that the flow field is much smoother than the 298 

rainfall field. The figure also shows that the transfer function at fixed values for 299 

frequency and time increases with the increasing thickness of the confined aquifer. An 300 

increase in the thickness of the aquifer leads to an increased temporal persistence of 301 

the flow discharge fluctuations caused by the variation of the rainfall field and thus to 302 

an increase in the variability of integrated discharge field. As shown in Fig. 4, the 303 

ratio of the mean hydraulic conductivity to the storage coefficient (often referred to as 304 

the aquifer diffusivity) plays a similar role in influencing the variation of the transfer 305 

function as the thickness of the confined aquifer. The introduction of a larger aquifer 306 

diffusivity leads to a larger transfer function of integrated discharge and thus to a 307 

larger variability of the discharge field. Since the variability of the discharge field is 308 

positively correlated with that of rainfall field, the variability of the integrated 309 

discharge field will decrease with increasing characteristic time or length scale of the 310 
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rainfall field (see Fig. 2).  311 

 312 

 313 

Figure 3. Influence of the thickness of the confined aquifer on the transfer function of 314 

the discharge flux, where the series calculation is truncated up to M = N = 100. 315 

 316 

 317 
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Figure 4. Influence of the aquifer diffusivity on the transfer function of the discharge 318 

flux, where the series calculation is truncated up to M = N = 100. 319 

From Eqs. (4) or (8), the transfer function can be defined as the ratio of the 320 

fluctuations of an observation of output time series to those of input time series in 321 

frequency domain. Equations (35) and (37) indicate that the transfer functions are 322 

related to the properties of the rainfall field and the aquifer, such as the characteristic 323 

scales of time and length of rainfall field and the diffusivity and thickness parameters 324 

of the aquifer. Therefore, the transfer function derived here has the potential to 325 

perform a parameter estimation based on the observations of input and output time 326 

series using the inverse modeling approach. 327 

The traditional approach to regional groundwater flow problems introduces the 328 

transmissivity term, the depth-integrated hydraulic conductivity operator  329 



),(

),(

212

211

332121 ),,(),(

xxb

xxb

dxxxxKxxT  (39) 330 

into to the groundwater flow equation (diffusion equation) to reduce the 331 

three-dimensional equation to a two-dimensional one:  332 

1 2 1 2 1 2 1 2( , ) ( , , ) [ ( , ) ( , , )]
i i

S h t T h tx x x x x x x x
t x x

  


  
   i = 1, 2 (40) 333 

This means that the effects of both the variation of K in x3-direction and the aquifer 334 

thickness are implicitly reflected in the term T(x1,x2). This leads to great difficulties in 335 
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assessing the influence of aquifer thickness on the flow field with Eq. (40).  336 

The proposed diffusion equation of this work, 337 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2

1
( , ) ( , , ) ( , ) ( , ) ( , , ) ( , ) ln ( , ) ( , , )

( , )
[ ]s

i i ii i

h t K B h t K B h tS x x x x x x x x x x x x x x x x
Bx x x x x x x

    
 

    
    i =1,2 338 

 (41) 339 

derived by the hydraulic approach (Bear, 1979; Bear and Cheng, 2010), provides an 340 

efficient way to analyze flow fields in confined aquifers of non-uniform thickness. 341 

Note that Eq. (41) is the reformulation of Eq. (11). In addition, the usual observations 342 

of flow in porous media are measurements of hydraulic head from wells screened 343 

over extended sections of the medium. The measurement at a given location 344 

approximately represents a depth-averaged actual hydraulic head resulting from flow 345 

through a three-dimensional hydraulic conductivity field across the thickness of the 346 

medium. This means that the depth-averaged head representation used in Eq. (41) is 347 

consistent with what is observed in the fields. 348 

Climate changes have a direct influence on the rainfall event (e.g., Trenberth, 2011; 349 

Pendergrass et al., 2014; Eekhout et al., 2018). The nonstationarity in the statistical 350 

properties of rainfall field is a representation of climate change (e.g., Razavi et al., 351 

2015; López and Francés, 2013; Benoit et al., 2020). The nonstationary effect of 352 

climatic change over time on variability of groundwater specific discharge has not yet 353 

been well characterized in the. The transfer function in Eq. (37), which relates the 354 
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nonstationary spectra of the rainfall fluctuations to those of integrated discharge 355 

variation, generalizes existing studies that considered stationary recharge/discharge 356 

fields. To our knowledge, it has not been previously presented in the literature and has 357 

the potential to analyze the effects of climate change on temporal groundwater 358 

specific discharge variability. 359 

 360 

4.2 Application in the prediction of outflow discharge 361 

 362 

The usefulness of the stochastic theory presented here lies in its essentially predictive 363 

nature. The variance can be used as a quantification of the uncertainty associated with 364 

the prediction in field situations using the linear system model. In this sense, the 365 

solution of Eq. (1) ± two times the square root of the variance provides a rational 366 

framework for predicting discharge over a relatively large spatial scale where direct 367 

observations of such a dependent variable are not possible.  368 

For large times, the first term in Eq. (37) dominates the sum of the other terms, 369 

and therefore the transfer function can be approximated by  370 

2 222

2 2 2
1

256 1
( ; ) cos( ) sin( )[ ]q Lt  

 
    


 


 371 

2 2

2 2

1
1 2 2( + ) cos( ) 2 sin( )[ ]{ }A A A t tT T T    

 
    


 (42)  372 

where 1= 1+ 22,  = K 0(2+2)/(SsL
2),  = (TR-TA)/(-1), TR = exp(-1t/0), and 373 
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TA = exp(-t/0). If the variation of the rainfall event is generated by a random white 374 

noise forcing, the variance of the outflow discharge at large times can then be 375 

calculated using Eq. (42) as  376 

2
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,    (43) 379 

where G0 represents a constant spectral density of a white noise process. Note that 380 

white noise is a signal that contains all frequencies in equal proportions, that is, a 381 

signal whose spectrum is flat. 382 

After observing the recharge rate R(t) over time at the outcrop of the aquifer and 383 

identifying input parameters such as the specific storage coefficient, mean hydraulic 384 

conductivity and geometrical parameters of the aquifer and the characteristic time and 385 

length scales of the rainfall event for a given area or region, the discharge can be 386 

determined under uncertainty in the far downstream aquifer area, Eq. (1) together with 387 

Eq. (26) ± two times the square root of Eq. (43). It provides an important basis for the 388 

rational management of regional groundwater resources in complex geologic settings 389 

under uncertainty. 390 

 391 

4.3  A note on stationary random rainfall fields in time 392 
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 393 

If the temporal random rainfall fields are stationary, there exists a representation of 394 

the rainfall perturbation process in terms of a Fourier-Stieltjes integral as Eq. (6). 395 

Substituting Eqs. (6) and (21) into Eq. (19) gives  396 
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e
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. (44) 397 

The solution of Eq. (44) with conditions Eq. (23) is  398 
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so that  400 
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and thus  402 
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 (47) 404 

where  405 
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( ) cos( ) sin( )[ ]y
y y y y
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1 = exp[-(m+n)t], 2 = exp(-mt)+exp(-nt), and 3 = exp(-mt)-exp(-nt). 407 

At large times, Eq. (35) approach a finite value as 408 
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and the corresponding rainfall process is stationary. Combining Eq. (47) with Eq. (49) 410 

gives  411 



25 

2 22 2
1 2 30 02 2 2 22 2

1 1 0 0

( ) ( ) ( )
16 1 cos( ) sin( )( )

( ) ( )( )
( )( )[ ]{ }n m

m n
n m

qq
t m n

n m
tL

m nS

S

 
    


      

     

 

 

     
 

412 

2

2 22 2
1 1 2 2

1 cos( ) 1 cos( )
sin( )sin( )

( )( )
[ ]n m

m n

n m m n

m n
m n

m n


 

     
   

 

 

  
 

  .     (50) 413 

Note that the nonstationarity in the hydraulic head or integrated discharge is 414 

introduced by a nonuniform thickness of the confined aquifer, even if the recharge 415 

field is stationary. Nonuniformity in the mean flow, for example, can also cause the 416 

nonstationarity in the statistics of random flow fields in heterogeneous aquifers (e.g., 417 

Rubin and Bellin, 1994; Ni and Li, 2006; Ni et al., 2010). 418 

 419 

5 Conclusions 420 

 421 

An analytical transfer function is developed to describe the spectral response 422 

characteristics of confined aquifers with variable thickness to the variation of the 423 

rainfall field, where the aquifer is directly recharged by rainfall at the outcrop of the 424 

aquifer. The rainfall-discharge process is treated as nonstationary in time, as it reflects 425 

the stochastic nature of the hydrological process. Any varying rainfall input at any 426 

time resolution can be convolved with the transfer function (or impulse response 427 

function) to simulate any discharge output of a linear model. The transfer function 428 

derived here, which relates the nonstationary spectra of the rainfall fluctuations to 429 

those of integrated discharge variation, has the potential to analyze the influence of 430 
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climate change on groundwater recharge variability. 431 

The closed-form results of this work are developed on the basis of the 432 

Fourier-Stieltjes representation approach, which allows to analyze the effects of the 433 

controlling parameters in the models on the transfer function of the integrated 434 

discharge. It is founded that the persistence of rainfall fluctuations is greater for a 435 

smaller value of the characteristic time or length scale of the rainfall field, which in 436 

turn leads to greater variability of the integrated discharge field. The attenuating 437 

characteristic of the confined aquifer flow system is observed in the spectral domain. 438 

The variability of the integrated discharge in confined aquifer with variable thickness 439 

is increased with the thickness parameter. The larger the aquifer diffusivity, the 440 

greater the spectrum (variability) of the integrated discharge. 441 

 442 

Appendix A:  Evaluation of h in Eq. (20) 443 

 444 

The boundary-value problem describing the depth-averaged head fluctuations induced 445 

by the variation of recharge rate in frequency domain is given by Eqs. (22) and (23). 446 

Using the transformation,  447 

( , ; ) exp ( )[ ] ( , ; )h
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K
x t x t

S
U x t     , (A1) 448 

Eq. (22) in h(x,t;) together with Eq. (23) can be converted into a new (easier) one 449 
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in a new variable U(x,t;) as  450 
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with  452 

( 0 ) 0U x, ;  , (A3a) 453 

(0 ) 0U ,t;  , (A3b) 454 

( ) 0U L,t;  . (A3c) 455 

The solution of Eqs. (A2) and (A3) can be found by the technique of separation of 456 

variables (e.g., Farlow, 1993) as 457 
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where n = K n22/(SsL
2). With reference to Eq. (A1), the solution of Eqs. (22) and (23) 459 

is then given by Eq. (24). 460 

 461 

Appendix B:  Evaluation of  in Eq. (31) 462 

 463 

Making use of the transformation,  464 
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leads Eqs. (31) and (32) to  466 
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with  468 
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( 0 ) 0u x, ;  , (B3a) 469 

(- ) 0u ,t;  , (B3b) 470 

( ) 0u ,t;  . (B3c) 471 

In a similar way, based on the technique of separation of variables, Eqs. (B2) and (B3) 472 

arrive at the solution in the form  473 
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where  m = m222,  = 0/(2 ), m = 1+ m, and  = 0. The use of Eqs. (B1) and (B4) 475 

results in Eq. (33). 476 
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Figure captions 576 

 577 

Figure 1. Schematic representation of a linear block-box system. 578 

Figure 2. Graphical representation of the transfer function of the rainfall processes in 579 

Eq. (35) characterized by the time scale for different length scales, where the series 580 

calculation is truncated up to M = N = 100.  581 

Figure 3. Influence of the thickness of the confined aquifer on the transfer function of 582 

the discharge flux, where the series calculation is truncated up to M = N = 100. 583 

Figure 4. Influence of the aquifer diffusivity on the transfer function of the discharge 584 

flux, where the series calculation is truncated up to M = N = 100.  585 
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