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Abstract. Canada’s water cycle is driven mainly by snowmelt. Snow water equivalent (SWE) is the snow-related variable that

is most commonly used in hydrology, as it expresses the total quantity of water (solid and liquid) stored in the snowpack.

Measurements of SWE are, however, expensive and not continuously accessible in real time. This motivates a search for

alternative ways of estimating SWE from measurements that are more widely available and continuous over time. SWE can

be calculated by multiplying snow depth with the bulk density of the snowpack. Regression models proposed in the literature5

first estimate snow density and then calculate SWE. More recently, a novel approach to this problem has been developed and is

based on an ensemble of multilayer perceptrons (MLPs). Although this approach compared favourably with existing regression

models, snow density values at the lower and higher ends of the range remained inaccurate. Here, we improve upon this recent

method for determining SWE from snow depth. We show the general applicability of the method through the use of a large data

set of 234 779 snow depth-density-SWE records from 2878 non-uniformly distributed sites across Canada. These data cover10

almost four decades of snowfall. First, it is shown that the direct estimation of SWE produces better results than the estimation

of snow density followed by the calculation of SWE. Second, testing several ANN structural characteristics improves estimates

of SWE. Optimizing MLP parameters separately for each snow climate class gives a greater representation of the geophysical

diversity of snow. Furthermore, the uncertainty of snow depth measurements are included for a more realistic estimation. A

comparison with commonly used regression models reveals that the ensemble of MLPs proposed here leads to noticeably more15

accurate estimates of SWE. This study thus shows that delving deeper into artificial neural network theory helps improve SWE

estimation.

1 Introduction

Snowmelt plays a major role in the hydrological cycle of many regions of the world. Casson et al. (2018) determined that snow

accumulation and melt are the main drivers of the spring freshet in the Canadian subarctic region, and Pomeroy et al. (2011)20

demonstrated that over 80% of the annual runoff in the Canadian Prairies is derived from snowmelt. An accurate prediction of

the accumulation and melting of snow is therefore of interest for various applications, including the management of reservoirs

for hydroelectric power generation, irrigation and water supply, and climate impact studies.
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Consequently, many hydrological models include a snow module to estimate the snow water equivalent (SWE). SWE is

of great interest in hydrology because it describes the volume of water stored in the snowpack (e.g. Kirnbauer et al. (1994);25

Dozier (2011); Hock et al. (2006); Barnett et al. (2005); Seibert et al. (2014)). Kinar and Pomeroy (2015) reviewed techniques

for measuring snowpack variables. The existing techniques for determining SWE are either time-intensive, due to manual snow

surveys, or cost-intensive because of the necessary and expensive equipment. Sturm et al. (2010) estimated SWE measurements

to be 20 times more expensive than snow depth measurements. SWE can also be calculated, however, using snow depth and

the volumetric mass density of snow.30

Snow depth can be measured inexpensively by ultrasonic distance sensors. Furthermore, light detection and ranging instru-

ments (lidar) installed on aircraft can measure snow depth remotely (e.g. Painter et al., 2016; Kim et al., 2017). Lidar penetrates

vegetation, which makes it a very good tool for measuring snow depth in forested environments. These observations also have

a high spatial resolution, which makes lidar particularly interesting in mountainous areas where snow depth is highly spatially

variable. At present, the high cost of using manned aircraft prevents this technique from becoming operational at a large scale,35

although Bühler et al. (2016) have demonstrated the potential for unmanned aerial surveys using low-cost, remotely piloted

drones to measure snow depth at a large scale and at a high spatial resolution. Lettenmaier et al. (2015) discussed remote sens-

ing techniques in hydrology and concluded that measurement of SWE from space "remains elusive". However, Environment

and Climate Change Canada (ECCC) and the Canadian Space Agency (CSA) are currently collaborating on the Terrestrial

Snow Mass Mission (Garnaud et al., 2019), a satellite mission that aims to measure SWE with a dual Ku-band radar.40

A number of regression models have already been proposed to convert snow depth to SWE (e.g. Jonas et al., 2009; Sturm

et al., 2010; Painter et al., 2016; Broxton et al., 2019). In general, these models first estimate snow density from snow depth

and then calculate SWE. Sturm et al. (2010) argue that the variation of snow density is four times less than that of snow depth.

Therefore, a model that measures the more dynamic parameter (snow depth) and estimates the more conservative parameter

(snow density) offers promise. The models are trained on field measurements using regression analysis. Additional geophysical45

classifications are used to obtain more precise results. For example, Sturm et al. (2010) and Bormann et al. (2013) used the

snow classification of Sturm et al. (2009) in which individual regression models were trained for each class. Another example

of geophysical classification is given by Jonas et al. (2009). They applied an individual regression model to each month and

elevation class to separate respectively the data both temporally and spatially.

Physics-based approaches have also been proposed for converting snow depth to SWE. For instance, Painter et al. (2016)50

used the snowmelt model iSnobal, which calculates snow density while incorporating snow ageing, mechanical compaction,

and the impact of liquid water with adjustments for deposits of new snow. Input variables (e.g. incoming longwave radiation,

soil temperature, net solar radiation), which are necessary for physical modelling, are not available in real time in Canada.

Furthermore, physical-based models are, as Painter et al. (2016) mentioned, the logical choice for distributed SWE estimates.

However, we aim for a conversion model based on data points which are sparsely scattered in time and space and that uses only55

variables available in real time. Further, physics-based models can be because of their complexity computationally expensive.

Recent studies have suggested the use of artificial neural networks (ANN) to estimate SWE. Snauffer et al. (2018) uses ANNs

for multi-source data fusion over British-Columbia, Canada. SWE data from reanalysis products and manual snow survey are
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used as network inputs and gridded SWE products are improved by the ANN. The following two studies uses ANNs to model

the relationship between snow depth and snow density, which could then be used to obtain estimates of SWE. Broxton et al.60

(2019) applied an ANN model to a set of snow measurements at a very high spatial resolution. Their study focused on two

approximately 100km2 areas in Arizona, USA, for both mid- and late-winter conditions, during which a total of 300 density-

depth tuples were obtained manually. These tuples were used to train the neural network. Their model, which consisted of a

simple network structure with one hidden layer containing 10 neurons, also incorporated other physiographic factors obtained

from lidar measurements. The Levenberg–Marquardt algorithm optimized the model over a run of 50 epochs. The Broxton65

et al. (2019) approach allows for the use of high-resolution lidar measurements of snow depth; the ANN model then converts

these measurements to snow density and subsequently to SWE to produce improved maps of depth, SWE, and snow density at

a very high resolution.

Odry et al. (2020) also applied ANN to estimate snow density from snow depth, but they focused on developing a method

that would be applicable over a very large spatial extent. In their study, they used almost 40000 measurements from approxi-70

mately 400 non-uniformly distributed sites across the province of Quebec, Canada. This study covered a period of 45 years. In

contrast to Broxton et al. (2019), the available snow measurements were spatially distant and temporarily irregular. The ANN

incorporated meteorological data as additional explanatory variables to support the estimation of density. Odry et al. (2020)

used an ensemble of multilayer perceptrons (MLPs, a type of ANN) to provide estimates, at least in part, of the uncertainty

associated with converting snow depth to density. A comparison of the ANN model of Odry et al. (2020) with the regression75

models of Jonas et al. (2009) and Sturm et al. (2010) in a leave-one-out setup showed that the ANN model provided the most

accurate results. However, Odry et al. (2020) also noted that all three models performed relatively poorly for very low or very

high snow densities. Given that high densities generally correspond to the beginning of the melt period, it is particularly crucial

to obtain accurate SWE values for this period of the year.

::
In

:::
this

:::::
study,

:::
we

:::::
build

:
a
::::::
model

::
to

:::::::
estimate

::::
SWE

:::::
from

:::::
in-situ

:::::
snow

:::::
depth

::::::::::::
measurements

:::
and

:::::::
several

::::::::
indicators

::::::
derived

:::::
from80

::::::
gridded

:::::::::::::
meteorological

::::
time

::::::
series. This study is a follow-up to the work of Odry et al. (2020). The current key knowledge

gaps are the structure of the ANN and the input variables including their uncertainties
:::::::::::::::
Odry et al. (2020)

::::::
showed

::::
that

:::::
ANN

::::::::
ensembles

::::
are

:
a
:::::

good
:::::::

method
:::
for

::
a
:::::
snow

:::::::::::
depth–SWE

:::::::::
conversion

::::::
model,

::::
but

:::
did

:::::
little

:::::
work

:::
on

:::
the

:::::::::::
optimization

::
of

::::
the

:::::::::
architecture. Furthermore, we suspect that ANNs are capable of estimating SWE directly

::::
being

:::
the

::::::
direct

:::::
output

::
of

:::
the

:::::
ANN,

because in theory ANN are capable of representing any continuous function, which is discussed in Sect. 2.1. Therefore, we85

will
:::::
mainly

:
test two hypotheses: (1) using SWE instead of density as the target variable for the ANN produces more accu-

rate estimates of SWE; (2) testing several options of ANN structural characteristics (e.g. optimization algorithm, activation

function, parameter initialization, increasing the number of parameters) improves estimates of SWE. Furthermore, we include

the input uncertainty on snow depth to test the input uncertainty of one variable. We will build two ANN models. One which

takes the same architecture for the entire data set and one which uses an individual architecture for each snow class to give a90

greater representation of the geophysical diversity of snow . We also take the opportunity to
::
So

:::
far,

::::
also

::
no

:::::
input

::::::::::
uncertainty

:
is
::::::::::

considered
::
by

::::::::::::::::
Odry et al. (2020),

::::::
which

::::
leads

:::
us

::
to

::
a
:::::
small

:::
test

:::
of

:::::
input

:::::::::
uncertainty

:::
on

::::
one

:::::
input

:::::::
variable,

:::::
snow

::::::
depth.

:::
The

:::::
input

::::::::
variables

::::::
section

::::
was

::::::::::
determined

:::
by

:::
the

::::::::::
Spearman’s

:::::::::
correlation

:::
in

:::::::::::::::
Odry et al. (2020),

:::::::::
indicating

:::
the

::::::::::
monotonic
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::::::::::
relationship.

::
In

:::
this

:::::
study

:::
we

::::::::
determine

:::
the

:::::
input

:::::::
variables

:::::::
directly

::
on

:::
the

:::::::
network

::::::
(expect

:::
for

::::::::::
pre-filtering

::
in

::::
Sec.

::::
3.2),

:::::::
because

::
the

::::::::::
monotonic

::::::::::
relationship

::
as

:::
the

::::
only

::::::
criteria

::::
can

::
be

::::::::::
misleading

::
in

::::::::::
representing

:::
the

::::::::::
complexity

::
of

:::::::
ANNs.

:::::
When

:::::::
looking

::
at95

::
the

:::::
snow

:::::::::::
classification

:::::::
scheme

:::::::::
introduced

::
by

::::::::::::::::
Sturm et al. (2009)

:
,
:::::::::::::::
Odry et al. (2020)

::::
used

:
a
::::
data

:::
set

:::::
which

:::::::
contains

::::
two

:::::
snow

::::::
classes.

::
In

::::
this

::::
study

:::
we

:
apply the proposed snow depth–SWE conversion framework to an extended data set scattered sparsely

and non-uniformly over the entire area of Canada, which tests its applicability to multiple
::
all

::::::::
proposed

:
snow class zones

:::::
except

::
of

:::
ice.

:::
We

::::
will

:::::
build

:::
two

:::::
ANN

:::::::
models.

::::
One

:::::
which

:::::
takes

:::
the

:::::
same

::::::::::
architecture

:::
for

:::
the

:::::
entire

::::
data

:::
set

:::
and

::::
one

:::::
which

::::
uses

:::
an

::::::::
individual

::::::::::
architecture

:::
for

::::
each

:::::
snow

::::
class

::
to

::::
give

:
a
::::::
greater

::::::::::::
representation

::
of

:::
the

::::::::::
geophysical

::::::::
diversity

::
of

:::::
snow.100

The remainder of the paper is organized as follows. In Sect. 2, we present the main background elements and the essential

literature review. This review includes the mathematical theory of MLPs, the applied snow climate classes (Sturm et al., 2009),

both
:::
the statistical regression models

:::::::
proposed

:::
by

::::::::::::::::
Sturm et al. (2010)

:::
and

::::::::::::::::
Jonas et al. (2009)

::::
which

::::
are used for comparison

against our neural network models, and the performance assessment metrics. Section 3 presents the experimental protocol,

including the available data and input variables and the procedure for determining the MLP architecture. Results are presented105

in Sect. 4, and our conclusions are summarized in Sect. 5.

2 Literature review

2.1 The multilayer perceptron as a basic tool

Following Goodfellow et al. (2016), a multilayer perceptron (MLP) is a fully connected, feed-forward artificial neural network,

meaning that information can only travel in one direction within the network. Being fully connected entails that no initial110

assumptions need to be made in regard to the data.

The goal is to approximate a desired function f such that y = f(θ,x), where y is the target variable (in our case SWE), x

represents the input variables, and θ represents some parameters, namely weights and biases. The use of non-linear activation

functions in each neuron enables the network to approximate non-linear functions f .

To determine the parameters, one can perform an optimization over the space of the weights and biases by using a training115

data set. To do so, the parameters are initialized commonly at random and close to zero by following either a uniform or

Gaussian distribution. For regression problems, the mean square error (MSE) is commonly used as the objective function in

the optimization. Goodfellow et al. (2016) show a derivation of the MSE from the maximum likelihood estimator. During

training, the training data set is presented multiple times to the model, and the term epoch is used to denote one run over the

entire training data set. It is recommended that between each epoch the order of the data points of the training set is permuted.120

This prevents the model from learning features in the order of insertion. The training of a MLP is related to an ordinary

optimization. The difference is that we optimize directly for a training data set with the goal that the measure of performance

of a validation data set is also optimized. Commonly, there will be a turning point where the training error continues to

decrease, but the validation error starts to increase. For a single deterministic MLP, this turning point would be chosen as the

best number of epochs for the model. When training an ensemble of MLP, however, it is ideal to maintain diversity among the125

ensemble members to cover the range of uncertainty pertaining to the target variable. If all members of the ensemble were to
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be trained until the aforementioned turning point, they would all become very similar, and it would become pointless to use an

ensemble in the first place. For this reason, we adopt here the protocol proposed by Boucher et al. (2010) and monitor rather

the performance of the entire ensemble at each epoch (see Sect. 4.1).

During the optimization, a non-convex function is solved; this function contains multiple minima having a similar perfor-130

mance. The objective function with respect to the parameters is non-convex because of several symmetric configurations of a

neural network. Thus, exchanging the associated bias and weights of one neuron with another neuron in the same layer entails

the same results. Furthermore, ANN applications usually use input variables that are related to each other. The interchange-

ability of dependent input variables results in multiple parameter sets having a similar performance. The number of dimensions

in the optimization is equal to the number of parameters, and it is also argued by Goodfellow et al. (2016) that local minima135

are rare in high-dimensional spaces. Dauphin et al. (2014) point out that with increasing dimensions, the ratio of the number

of saddle points to the number of local minima increases exponentially. Therefore, an optimization method is needed that does

not become stuck in saddle points.

The concept of stochastic gradient methods has been introduced to avoid saddle points. These methods are based on the

ordinary steepest gradient method; however, rather than using the entire training data set (batch) at once, a number of data140

records (or "minibatches") are taken for each iteration during the optimization. Consequently, the optimization surface is

slightly altered at each iteration. This can even sometimes help to escape shallow local minima. For the interested reader,

Goodfellow et al. (2016) provide an overview of various optimization algorithms.

The related studies of Broxton et al. (2019) and Odry et al. (2020) both used the second-order Levenberg–Marquardt al-

gorithm. Broxton et al. (2019) worked with the Matlab deep learning toolbox and Odry et al. (2020) used an in-house built145

Matlab toolbox by Dr Kris Villez, derived from the Matlab deep learning toolbox. The conversion of the codes into Python

revealed that the Levenberg–Marquardt algorithm has an oscillating convergence of the training error because the minimum

is over-jumped multiple times. This results in a higher computational cost. The Matlab deep learning toolbox only shows

successful parameter updates where the error of the objective function is decreased. This conceals multiple failures. Further

discussion about the drawbacks of the Matlab toolbox is available in Kwak et al. (2011). Furthermore, the dimensions of op-150

timization increase exponentially with the size of a neural network. Therefore, we will only consider first-order optimizers, as

these are computationally more efficient. Goodfellow et al. (2016), in their overview of optimization methods, conclude that

stochastic gradient methods with adaptive learning rates are the best choice for a first-order optimizer. Schaul et al. (2014)

compare stochastic gradient methods by testing them on small-scale problems and found out that the algorithms RMSProp and

AdaDelta produce good results. The drawback of RMSProp is the need for a global learning rate, which must be defined by155

the user. To address this problem, Zeiler (2012) introduced the algorithm AdaDelta, which eliminates the requirement of this

global learning rate.

There are several reasons that support the use of an ensemble rather than a single model. First, random parameter initial-

ization can end up in different local minima on the parameter surface with similar performance. This situation is related to

the concept of equifinality, introduced by Bertalanffy (1968) for open systems stemming from the work of the biologist Hans160

Driesch. Therefore, using an ensemble accounts for the uncertainty of the model parameters. Second, the ensemble offers the
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possibility of probabilistic simulations. Therefore, probabilistic evaluation methods, introduced in Sect. 2.4, can be used. This

leads to greater insight into model performance. Third, the different members of the ensemble can be used in a Kalman filter

or a particle filter for data assimilation in a hydrological model.

Finally, in regard to the architecture of the MLP, through the universal approximation theorem, it is proven that any contin-165

uous function can be approximated by a feed-forward neural network with a single hidden layer under mild assumptions. This

theorem was first proven by Cybenko (1989) for the sigmoid activation function. Hornik (1991) showed the same theorem is

independent of the choice of the activation function but assumes that the output layer is linear, which is the case for regression

problems. The theorem does not make any claims about guidelines of the architecture or about the learning ability of the model.

In ANN applications, therefore, the perfect approximation of the function is not obtained. Rather, there is a trade-off between170

computational cost, the time to test different architecture compositions, and accurate approximation.

According to Goodfellow et al. (2016), the most common activation functions are the hyperbolic tangent (tanh) and the

rectified linear unit (ReLU) functions. The calculation of the derivative of tanh is computationally expensive, and the derivative

of the tanh function for large values is almost zero, which slows down learning. The derivative of the ReLU function is easy

to compute, and the derivative stays constant for large positive values. However, the derivative is zero for negative values,175

which stops the training within the optimization. This phenomenon is known as "dying neurons". The Leaky ReLU function

can tackle this issue by assigning a slightly positive slope, typically 0.01, to the negative part of the ReLU function.

2.2 Snow classification

In this section, we introduce a snow classification scheme proposed by Sturm et al. (2009). These snow classes are used to

train a different ensemble of MLP for each snow class. In accordance with the findings of Sturm et al. (2010) and Bormann180

et al. (2013), we expect that this approach will result in an improved accuracy for estimates of SWE compared to training an

ensemble over the data for Canada as a whole.

The snow classification system separates the world map into seven different snow classifications at a resolution of 0.5◦×0.5◦.
Snow can vary in character (e.g. snow found in areas close to coasts consists mainly of wet snow, whereas snow located in

the continental interior is characterized by dry snow). Therefore, the data within one snow class should be systematically more185

consistent and may show less variability than taking the snow data as a whole. This can help in our study, as the MLP must

capture fewer features, which may lead to a better optimization and, in turn, improved performance. The snow classes across

Canada are presented in Fig. 1.

Some sites close to the coast are classified as water, because the resolution of the snow classification map is coarse. Further-

more, the snow class ice only contains 124 records. For these two classes, we assign them to the nearest—in terms of physical190

distance—accepted snow class.

The empirical cumulative distribution function (ECDF) of snow depth, SWE, and snow density for each snow class is

depicted in Fig. 2. The number of records in each snow class is presented in Fig. 2b. The ephemeral snow class is found only

on Vancouver Island, which also explains the few records of this class. Furthermore, the high annual precipitation and marked

variability in elevation across Vancouver Island explains the very high variability of snow depth, SWE, and snow density for195
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Figure 1. Snow classes across Canada as defined by Sturm et al. (2009)

Figure 2. The empirical cumulative distribution function (ECDF) of the variables snow depth, SWE, and density for each snow class

this class. When comparing the taiga and tundra snow classes, one can observe that snow depth is lower in the tundra snow

class. Sturm et al. (1995) point out that tundra is characterized by a thin snow layer consisting mainly of wind slabs and depth

hoar. Nonetheless, the density distribution of the tundra snow class is higher; this may reflect the wind densification effect

and compaction of snow during a longer duration in this region. The maritime, mountain, and ephemeral snow classes have a

higher density distribution than the prairie and taiga snow classes because of the greater oceanic influence on the maritime and200

ephemeral regions. This influence results in wetter snow and, therefore, higher snow densities within these latter regions. Most

records of the mountain snow class are found in the Rocky Mountains along the border of British Columbia and Alberta, an area

influenced by the Pacific Ocean, thereby producing a higher density snow. A more thorough analysis of the data revealed that

the high number of records in the maritime and mountain snow classes is due to records from snow pillows in British Columbia,

collected between 1996 and 2011. Snow pillows continuously measure the weight of the snow, which is then presented as a205

daily measurement for some sites in this data set. British Columbia contains almost half of all snow data records for Canada.
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2.3 Regression models

In this section we introduce two regression models from the literature, which we use as benchmarks to compare with our

MLP-based conversion model, using the performance indicators described in Sect. 2.4.

2.3.1 The Sturm model210

Sturm et al. (2010) proposed a model to convert snow depth into bulk density for the snow cover. The estimated density is then

used to calculate SWE. As observed by Dickinson and Whiteley (1972), the range of snow density is smaller than the range

of snow depth. Therefore, Sturm et al. (2010) claim that estimating the snow density is probably the most accurate way to

estimate SWE. The regression model is formulated as:

ρsim = (ρmax− ρ0)[1− e−k1SDobs−k2DOY obs ] + ρ0, (1)215

where [ρmax,ρ0,k1,k2] are parameters, SDobs is the snow depth, and DOY obs is the number of days since 01 September. The

value of DOY obs is 0 on 01 January and therefore, corresponds to -122 for 01 September until 243 for 30 August. A different

regression model is run for each snow class. The snow classes are defined by Sturm et al. (2009). The parameters for each snow

class are obtained by carrying out an optimization on a training data set associated with that snow class. The RMSE between

the estimated and the measured snow density is used as an objective function in the optimization.220

2.3.2 The Jonas model

Jonas et al. (2009) propose a simple linear regression model that uses elevation classes to separate the data spatially and divide

the data into months. This model also estimates density, and from this density, it calculates the SWE. The regression is defined

as:

ρsim = a SDobs + b+ offsetreg, (2)225

where a and b are the parameters of the linear regression, SDobs is the observed snow depth, and offsetreg is a regional specific

parameter. The data set is split by month and into three elevation classes, denoted by x < 1400m, 1400m≤ x < 2000m, and

x≥ 2000m, where x is the elevation of the site. After that, the parameters a and b are derived by fitting a linear regression to

each portion of the data set. This process produces 36 independent linear regression models. After solving for the parameters

of the linear regressions, we perform a simulation without offsetreg. The regional specific parameter offsetreg is thus the230

average of the model residual between the simulated and observed density of samples in a given region. In our study, the snow

classes defined by Sturm et al. (2009) are used as these regions. Note that the separation into the snow classes for the offsetreg

calculation is applied independently after the linear regressions are performed for each month and elevation class. The offsetreg

parameter eliminates the regional bias.
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2.4 Model evaluation235

In this section, we introduce deterministic evaluation metrics (Sec. 2.4.1) followed by metrics that can be applied onto a prob-

abilistic ensemble simulation (Sec. 2.4.2 – 2.4.5). Gneiting and Raftery (2007) evaluate the quality of ensemble simulation

by scoring rules. A scoring rule quantifies the quality on the basis of the predicted distribution of the ensemble and the ob-

servation. A strictly proper scoring rule is defined such that it has a unique global minimum, which is the distribution of the

observation itself. This minimum shows the highest possible performance of the simulation. The probability density function240

(pdf) is usually derived by distribution fitting to the members of the ensemble or by simply taking the empirical cumulative

distribution function (cdf) over the members and deriving the pdf from this. In this study, only the empirical case is used to

eliminate the uncertainty added by the distribution fitting.

Furthermore, an ensemble is said to be reliable if the relative frequency of the event, for a given simulation probability, is

equal to the simulation probability.245

2.4.1 Deterministic evaluation metrics

Deterministic evaluation metrics quantify the performance based on the single outcome of a deterministic model and the

observation. Here, the median of the ensemble is considered as a deterministic simulation on which these metrics can be

applied. The most popular measures are the Mean Absolute Error, the Root Mean Square Error and the Mean Bias Error.

The Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Bias Error (MBE) are defined as250

MAE =
1

n

n∑
i=1

|ysimi − yobsi | (3)

RMSE =

√√√√ 1

n

n∑
i=1

(ysimi
− yobsi)

2 (4)

MBE =
1

n

n∑
i=1

ysimi
− yobsi (5)

In Eq. 3–5, n is the number of records, ysimi
is the simulated output of the model and yobsi the observation, both associated

with the ith record. Note that the RMSE is similar to the MAE, but gives records with large errors a greater weight and255

therefore, penalizes outliers more.

2.4.2 The ignorance score

Roulston and Smith (2002) introduced the ignorance score, which is defined as:

IGS(fM ,o) =−log2(fM (o)), (6)

where fM is the simulated pdf, and o ∈ R is the observation. Since the values of a pdf are between 0 and 1, the ignorance260

score takes values greater or equal 0. Furthermore, it is not defined for fM (o) = 0. It assigns the minimum value of zero if
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the probabilistic forecast predicts the observation with a probability equal to 1, indicating a perfect simulation. Therefore, the

ignorance score is a strictly proper scoring rule. To assess the model, the average of the ignorance scores over all n records is

taken, defined as:

IGS =
1

n

n∑
j=1

−log2(fMj(oj)), (7)265

where fMj is the pdf derived from the ensemble of the jth simulation, and oj is the jth observation.

In the empirical case, i.e. without distribution fitting, we consider the sorted predicted ensemble with m members by

{s1,s2, ...,sm}. The cumulative distribution function is simply the staircase function over the members. From this, we construct

a pdf by assigning each area between two members:

fM (x) =
1

m(si− si−1)
∀x ∈ [si−1,si].270

If the observation coincides with a member, the larger probability of the two adjacent areas is taken. Furthermore, fM (x) is set

to 0.001, if the observation lies outside of the ensemble.

2.4.3 The continuous ranked probability score

Given that the ignorance score evaluates the simulated probability function only at the point of observation, no information

about the area surrounding the observation or the shape of the probability function is included. The continuous ranked proba-275

bility score (CRPS) addresses this drawback by working directly on the cdf. The CRPS of one record is defined as:

CRPS(FM ,o) =

∞∫
−∞

(FM (w)−1[o,∞)(w))
2dw, (8)

where FM is the cdf derived from the ensemble, and o ∈ R is the observation. The integrand is the squared difference between

the cdf derived by the ensemble and the cdf derived by the observation. The CRPS takes values in R+
0 , where zero is assigned

if the predicted cdf is equal to the cdf derived by the observation. This is the perfect simulation. This describes the CRPS as a280

strictly proper scoring rule. When calculating the empirical CRPS, the staircase function over the members within the ensemble

is taken as the cdf.

Hersbach (2000) presents a decomposition of the empirical CRPS into a reliability part and the potential CRPS. We denote

the ensemble of one record by {x1, ...,xm}. The reliability part is then defined as:

Reli=

m∑
i=0

gi (oi− pi)2 , (9)285

where oi is the relative frequency of the observation being smaller than the midpoint of the bin [xi,xi+1], pi is i
m , the value of

the cdf of the ensemble at xi, and gi is the average bin size of [xi,xi+1]. To get the reliability score of the model, the average

over all records is taken.
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Small values of the reliability portion testify to the high reliability of the ensemble simulation. The reliability portion is

highly related to the rank histogram, introduced in the next section (Sect. 2.4.4). The difference is that the reliability part290

takes the spread of the ensemble into account, which is not incorporated into the rank histogram. When the reliability part

is subtracted from the empirical CRPS, the potential CRPS remains. The potential CRPS is the same as the CRPS when the

reliability part is equal to zero, which indicates a perfectly reliable model. The potential CRPS is related to the average spread

of the ensemble. A narrow ensemble leads to a small potential CRPS.

2.4.4 The rank histogram295

The rank histogram was developed independently and almost simultaneously by Anderson (1996), Hamill and Colucci (1997),

and Talagrand et al. (1997). It determines the rank of each observation within the associated predicted ensemble. The ranks of all

observations are then presented in a histogram. A perfectly reliable ensemble forecast shows a flat rank histogram. Furthermore,

the rank histogram can reveal information about bias and under- and overfitting. For instance, if the rank histogram shows a

decreasing trend with higher ranks, the model has a positive bias. An increasing trend with higher ranks shows a negative300

bias. Furthermore, a u-shaped rank histogram indicates a too-small ensemble spread. This limited spread is related to an

overconfident model, which means that the model ignores some parts of the uncertainty. Several reasons explain this, including

the fit of the model. If a model is trained too long, it is trained too specifically on the training data. Consequently, the model

performs well on the training data, but it lacks generality, meaning that the model is incapable of simulating an unseen data set.

In contrast, a bell shape indicates a too-large ensemble spread. Note that a flat histogram is a necessary condition for a model305

to be reliable, but this is not a sufficient condition. Examples and further discussion are given by Hamill (2001).

2.4.5 The reliability diagram

The reliability diagram is a visual tool for determining the reliability of an ensemble forecast. The relative frequency of the

observation, given the probability of the ensemble, is plotted against the probability of the ensemble.

To construct a reliability diagram, we work with the empirical staircase function over the ensemble members as cdf.310

Let us assume that we have k bins, denoted by b1, ..., bk. These bins represent a probability and, therefore, their sizes are

bs1, ..., bsk ∈ (0,1]. Furthermore, all bins are centred on 0.5, therefore indicating an interval around the median. Thus, a bin bi

is indicated by the interval [si,ei]. We find the si- and ei-quantiles within the ensemble distribution, denoted by seni and eeni ,

respectively. Interpolation is used if si and ei lie between the steps. Therefore, the interval [seni ,eeni ] shows the interval around

the median of the ensemble distribution, which has the probability equal to bsi. Then, we determine the relative frequency of315

the observations found within this interval, denoted by oi. The points (bsi,oi) are plotted against the line of the identity func-

tion. If all points fall on that line, the model is perfectly reliable, meaning that the relative frequency of the observation is equal

to the simulated frequency.
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2.4.6 Skill scores

Skill scores enable comparing simulated model outputs of different magnitudes. The skill score SS is defined as:320

SS =
scores− scoreref
scoreperf − scoreref

, (10)

where scores is the score of the actual simulation, scoreref is the score of a reference simulation, and scoreperf is the score

of a perfect simulation. Climatology or persistence is often used as a reference simulation. A skill score takes values from

(−∞,1]. A value of 1 indicates that the actual simulation is a perfect simulation. A negative skill score indicates that the actual

simulation is less accurate than the reference simulation.325

A variation of climatology is taken as a reference simulation, because SWE measurements are not continuous over time in

the data set. Records from the training and validation data sets at the same location and within a time window of ±15 days

around the date of the corresponding observation are used to build up a reference ensemble having 20 members. For 77 % of

the testing records, an ensemble from climatology could be obtained in this manner. In the calculation of the skill score in Eq.330

(10), the mean over the individual scores is taken within the fraction. This enables us to use only the portion of records where

we found the 20 members to calculate the reference scores.

2.4.7 Sensitivity score

Following Olden and Jackson (2002), we set input-output records as references where the output is the 20th, 40th, 60th, and

80th percentiles of the target variable SWE in the validation data set. We take the average of 1000 records around the percentile335

to maintain the generality of the reference record, because single records can deviate from normality. Subsequently, one input

variable is perturbed at a time by taking uniformly distributed values between the maximum and minimum values in the

validation set of the considered input variable. The perturbed inputs are inserted into the network, and the perturbed output is

generated. The sensitivity score is then calculated by

SensS =
1

4

4∑
j=1

1

20

20∑
m=1

√√√√ 1

n

n∑
i=1

(
ypertim − yrefjm

)2
(11)340

where is ypertim is the perturbed output of record i and ensemble member m and yrefjm is the output of the reference

percentile j and ensemble member m. Thus, the sensitivity score is the RMSE between the perturbed and reference output,

averaged over the four reference percentiles and all members. Therefore, it measures the change in the output of the trained

ensemble network associated with the change in one input variable.
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Figure 3. Distribution of the records in the Canadian historical snow survey (CHSS) data set for (a) snow depth, (b) SWE, (c) snow density,

(d) elevation and (f) the date of the record; The year starts on 01 September to cover the Northern Hemisphere winter season over two calendar

years; (e) distribution of number of records for each site; note the whole x-range is shown with
:::
that

::::
upper

::::::
outliers

::::::
(0.1%)

::
are

:::::::
excluded

::
in

:::
(a),

::
(b)

:::
and

:::
(c);

::::::::::
furthermore,

::
the

:::::
upper

::::
2.5%

::
of

::::::
stations

::
are

:::
not

:::::
shown

::
in

:::
(e); the maximum

:
in
:::
(e)

:
is
:
at 3203

:::
and

:::
the

::::
mean

::
at

::::
about

::
82

::::::
records

:::
for

:::
each

::::::
station;

3 Experimental protocol345

3.1 Data availability

Environment and Climate Change Canada (ECCC) through Brown et al. (2019) and Ministère de l’Environnement et de la Lutte

contre les Changements Climatiques (MELCC) provided a Canada-wide snow data set, which includes SWE, snow depth, and

snow density. For the remainder of this paper, this data set will be denoted as the Canadian historical snow survey (CHSS).

For this study, we use the above-mentioned CHSS snow data, collected from 01 January 1980 to 16 March 2017. It consists of350

234 779 measurements from 2878 sites. Figure 3 presents some characteristics of the CHSS data set. The distributions of SWE

and SD present a right-skewed gamma distribution. Snow density is almost normally distributed in a range from 50kgm−3 to

600kgm−3 with a few outliers at higher values. This distribution is related to the retrieval of two different data sets. The data

from ECCC is bounded by the interval [50,600] for snow density, reflecting snow having a density of up to 600kgm−3. Above

this threshold, snow begins to transform into ice. The higher densities encountered in the MELCC data are due to the presence355

of an ice layer in the snow pack or to measurement artifacts.
::::
Note

::::
that

::
in

::::::
Figure

::
3a

::
–

::
c,

:::
the

:::::
upper

::::
0.1%

:::::::
outliers

:::
are

::::::::
excluded

::::
from

:::
the

::::
plot. Figure 3e shows a histogram of the number of records for each site,

::::::
where

:::
the

:::::
upper

::::
2.5%

:::::::
stations

:::
are

::::::::
excluded

::::
from

:::
the

::::
plot. The mean is about 82 records per site and the maximum is 3203. This shows the temporal sparsity of the data

set. Figure 4 shows the location of sites within the CHSS data set.
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Figure 4. Location of the sites of the Canadian historical snow survey (CHSS) data set

We retrieved daily total precipitation, snow density, as well as the maximum and minimum temperatures for each site of360

the CHSS from the ERA5 atmospheric reanalyses of the European Centre for Medium-Range Weather Forecasts (ECMWF)

provided by the Copernicus Climate Change Service (C3S). We apply a temperature correction, dependent on elevation, to

the minimum and maximum temperatures, because the reanalysis grid has a relatively low spatial resolution. The modified

temperature tmod is defined as:

tmod = torig + lapserate (elevsite− elevgrid), (12)365

where torig is the original temperature of ERA5, elevsite and elevgrid are the elevation of the site and the grid point of ERA5

reanalysis, respectively. We apply a constant lapse rate of−6 ◦C km−1, a value consistent with studies in the Rocky Mountains

(e.g. Dodson and Marks, 1997; Bernier et al., 2011) and the global mean environmental lapse rate of−6.5 ◦Ckm−1 (Barry and

Chorley, 1987).

3.2 Explanatory variables370

From the
::::
snow

:::::
depth,

:::::
snow

:::::::
density, total precipitation, temperature, and snow density data, we calculate

:::
and

:::::::::::
temperature,

:::
we

:::::
obtain the following explanatory variables. This initial pool of variables is based on Odry et al. (2020), except for snow density

from ERA5. Snow density is included to test its influence on the simulation.
:::::
Snow

::::::
density

::
is
:::
not

::::::::
available

::
in

::::::::
real-time

::::
and

::::
thus,

::::::
cannot

::
be

::::
used

::
in

:::::::::
operation.

– averaged daily snow density (ERA5),375

– snow depth,

– number of days since the beginning of winter,

– number of days without snow since the beginning of winter,
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– number of freeze-thaw cycles; threshold for freezing and thawing is set at −1 ◦C of the maximum and at 1 ◦C of the

minimum temperature, respectively380

– the degree-day index, i.e. accumulation of positive daily temperatures since the beginning of the winter,

– the snow pack aging index, i.e. the mean number of days since the last snowfall weighted by the total solid precipitation

on the day of the snowfall,

– the number of layers in the snowpack estimated from the timeline and intensity of solid precipitation. A new layer is

considered to be created if there is a three-day gap since the last snowfall,385

– accumulated solid precipitation since the beginning of the winter,

– accumulated solid precipitation during the last n days,

– accumulated total precipitation during the last n days,

– mean average temperature during the last n days (average temperature is taken as the mean of the maximum and mini-

mum temperatures).390

We set the beginning of winter as 01 September because the seasonal distribution of the CHSS data set has the first snow

records starting from mid-September, with the exception of some outliers. The separation of precipitation into solid and liquid

parts is done by:

p(tav) =
1

(1+ e−1.54+1.24 tav )
, (13)

where p(tav) is the probability of snow, dependent on the average temperature tav . Jennings et al. (2018) showed by using395

precipitation data from the Northern Hemisphere that this logistic regression model outperforms any temperature threshold

separation model. To determine how many days are considered in the last three explanatory variables, we calculate the Spear-

man correlation between the target variable SWE or snow density and the range of 1 to 10 days. The results are presented in

Table 1. The results in this table, along with the other above-mentioned variables, are used as input variables for the network.

Note that for accumulated solid and total precipitation the strongest correlation can be found at the upper limit for target vari-400

able SWE. However, we want to include the effect of short term variables and consider only a range of up to 10 days for the

short term variables. Further discussion is given in the conclusion (Sec. 5).

Furthermore, we want to test the incorporation of input uncertainty on one variable, namely snow depth. According to the

WMO (2014), the error of snow depth measurements should not exceed ±1cm if the snow depth is less than 20cm and ±5%

if the snow depth is greater or equal to 20cm. To give an equal weight to the uncertainty of inputs and parameters, we perturb405

each record of the training data set 20 times with the above-mentioned variability. The model is then trained on the perturbed

data.

3.3 Tested characteristics

The data set is divided randomly into three parts: training, validation, and testing sets (Hastie et al., 2009), each having a

proportion of one-third. The training set is used for training the MLP ensembles. The validation set is used to optimize the410
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Table 1. Variables having the largest absolute Spearman correlation between the target variable and the last three explanatory variables for n

ranging between 1 to 10 days

Variable SWE Snow density

Accum. solid precipitation in the last 10 days 3 days

Accum. total precipitation in the last 10 days 10 days

Mean average temperature in the last 6 days 7 days

architecture of the network. The results are presented in Sec. 4.1. The testing set is used for the final model evaluation on an

unseen data set and to compare with the regression models in Sect. 4.2 and 4.3, respectively. The column Reference in Table

2 shows the initial setup of a single MLP. This setup is used for all 20 members in the ensemble. Note that we always track

the performance of the model on the validation data set over a range of epochs until evaluation metrics show worse results,

indicating overfitting of the model. This determines the correct training time. The number of neurons in the hidden layer for415

the reference setup is derived from the proposed rules of thumb of Heaton (2008) and Hecht-Nielsen (1989). The number of

members is set at 20 because this number showed consistent results during several trials. From there, characteristics , shown

the column Options in Table 2 in the
:::
The

::::::::::::
characteristics

::::::
shown

::
in

:::::
Table

::
2

:
(first six rows

:
in
:::::::
Options

:
), are tested one at a time

according to the ceteris paribus principle. Subsequently, characteristics that show improvements are tested in combination.

Further testing of other combinations can reveal correlations between characteristics, but will not be covered in this study. The420

results of these tests are shown in Sec. 4.1.1. To determine the selection of input variables, we carry out a sensitivity analysis

of their importance. This refers to row seven in Table 2. The sensitivity score, introduced in Sect. 2.4.7, is used to determine

the order of the importance of input variables. Subsequently, a stepwise reduction of input variables, starting with the least

important variable, is performed. The results are shown in Sect. 4.1.2. Two models are then built. One model uses the data set

of the whole territory to train on and consists of one ensemble of MLPs. For the other model, the data set is split into snow425

classes and this results in one individual ensemble for each snow class.
:::::
Thus,

::
in

:::
the

::::::
MMLP

::::::
model

:::
the

::::
snow

:::::
class

:
is
::::::::::
determined

:::
and

:::
the

:::::::::
associated

:::::
MLP

::::::::
ensemble

::
is

:::::
taken.

:::::
This

::::::
returns

::::
one

::::::::
ensemble

:::
for

:::
one

:::
set

:::
of

::::
input

:::::::::
variables,

::
as

::
in

:::
the

::::::
single

:::::
MLP

::::::::
ensemble

::::::
model. We will refer to the the first model as single MLP ensemble model (SMLP) and to the latter as multiple MLP

ensembles model (MMPL). For each model, we perform a cross-analysis over the number of epochs and the number of hidden

neurons. We showed in Sec. 2.2 that different snow classes show different variability of snow records. The MMLP model tries430

to capture this through ANN ensembles with different sizes, because adding neurons to the hidden layer increases the ability to

approximate more complex snow pattern. The number of parameters (the weights and biases) of the model are thus increased.

This complicates the optimization and entails a longer training time to obtain the desired parameters. The results are shown in

Sec. 4.1.3 and 4.1.4 for the cross-analysis and the final structure of the SMLP and MMLP model, respectively.
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Table 2. A summary of the reference MLP ensemble setup and the tests performed to obtain the final MLP architecture. The parameter

initialization 1 is given by Goodfellow et al. (2016), where m indicates the number of inputs, the parameter initialization 2 is given by Glorot

and Bengio (2010), where m and n indicate the number of inputs and outputs, respectively. The parameter initialization 3 is our suggestion;

SMLP refers to the single MLP ensemble model and MMLP to multiple MLP ensembles model; note that we track the performance of the

model on the validation data set over a range of epochs until evaluation metrics show worse results to determine the correct training time;

Tested for Characteristic Reference Options

SMLP Target variable SWE Density

Input uncertainty of snow depth No Yes

Activation function in the hidden layer tanh ReLU Leaky ReLU

Optimization algorithm AdaDelta RMSProp

Parameter initialization U (−1,1) ∼ U
(
− 1√

m
, 1√

m

)1
∼ U

(
−
√

6
m+n ,

√
6

m+n

)2 ∼ U (−2,2)3

Shuffling data before each epoch No Yes

SMLP Input variables 12 1-12

SMLP and Number of hidden neurons 10 2-200

MMLP Number of epochs suitable range suitable range

not tested Batch size 100

Number of members in the ensemble 20

4 Results435

The results are divided into three sections. In Sect. 4.1, we discuss the determination of the MLP ensembles’ architecture,

following mainly the outline of Sect. 3.3. Section 4.2 presents the performance of the final SMLP and MMLP models on the

testing data set. In Sect. 4.3, we compare the final SMLP and MMLP models and the regression models introduced in Sect.

2.3.

4.1 Results for tested characteristics440

First in Sec. 4.1.1, we discuss the results of the more general architecture characteristics of the MLPs, referring to the first six

rows in Table 2. Sec. 4.1.2 contains the discussion on input variable selection. In Sec. 4.1.3, we discuss the results used for the

determination of the number of neurons and number of epoch, for SMLP and MMLP models individually. The final setup of

both models are presented in Sec. 4.1.4
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Figure 5. Comparison of (a)–(c) snow density and (d)–(e) SWE as target variables. (a) and (d) show the accuracy measures MAE, RMSE and

MBE; (b) and (e) show the CRPS and its decomposition; (c) and (f) show the ignorance score; The scores are evaluated using the validation

data set. We use the Reference setup presented in Table 2

4.1.1 Determination of the architecture of the MLPs445

A comparison of the two target variables is performed by using the initial MLP architecture presented in Table 2, and Fig. 5

presents the results of this comparison. The ensemble of MLPs, with SWE as the target variable, shows slightly better values

for the RMSE in Fig. 5d compared with Fig. 5a. Furthermore, in Fig. 5e the reliability part of the CRPS increases later when

SWE is the target variable compared with when the target is variable density (Fig. 5b). This behaviour is also consistent with

the ignorance score, which has its minimum at epoch 20 in Fig. 5f, whereas in Fig. 5c, the ignorance score for snow density450

increases from the beginning. This is consistent with the rank histograms in Fig. 6. The higher variability of SWE has a positive

effect on the rank histogram, meaning that the spread of the ensemble remains sufficiently large up to epoch ten. From these

results, we can derive that the lower variability of snow density results in too-little spread of the ensemble already after one

epoch. This observation allows us to proceed with the target variable SWE. Nonetheless, even with SWE, the spread of the

ensemble becomes too narrow, too quickly. This issue is addressed by incorporating input uncertainties, as we show in the455

following section.

We apply input uncertainty because we cannot train for a sufficient enough period to obtain the best error scores measured

by RMSE, MAE, and CRPS. This inability is due to a loss of reliability and overfitting. This type of overfitting is related to
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Figure 6. Rank histogram for different numbers of epochs (a) with snow density and (b) SWE as the target variables. We use the reference

setup presented in Table 2

the ensemble and does not describe the overfitting of one single MLP. To better understand, we examine the RMSE in Fig.

5, which is related to the MSE, the objective function in the optimization of the MLP. The RMSE continues to decrease be-460

yond 15 epochs (optimal trade-off between accuracy and reliability). Therefore, the single MLP remains in an underfit state.

Adding regularization would shift the MLP to a more underfit state by simplifying the network. Table 3 shows that incorporat-

ing input uncertainty decreases the ignorance score, whereas the other measures are unaffected. Therefore, input uncertainty
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widens the spread of the ensemble. Further improvements can likely be achieved by incorporating the input uncertainty of the

meteorological data through use of the ERA5 ensemble.465

Table 3 presents all results for the tested characteristics listed in the row two to six in Table 2. The change of the activation

function from tanh in the reference setup to ReLU and Leaky-ReLU does not produce any improvement. Using the ReLU

function as the activation function in the network shows a similar but delayed behaviour in the performance scores. In terms of

accuracy, we obtain similar results as with the tanh case via a longer learning. Nonetheless, the increase of the reliability part

is not delayed as much as the decrease in accuracy. This entails a worse trade-off between accuracy and reliability. When the470

activation function is set to the Leaky-ReLU activation function, we observe almost no change relative to the ReLU case. The

analogous argumentation can be applied.

For the RMSProp algorithm, we set the global learning rate at 0.1, 0.01, 0.001, and 0.0001 during testing. The best result

is produced for the trial having a learning rate of 0.0001. The learning rate of 0.001 produces an earlier decrease in accuracy

scores and an earlier increase for the reliability part. The trials having a learning rate of 0.1 and 0.01 converge at higher values475

for RMSE and MAE. The higher learning rates can over-jump desirable minima and end up in worse ones. In summary, the

overall learning rate must be small enough to achieve the best results. Even lower learning rates will entail a later behaviour.

Therefore, the same trade-off between reliability and accuracy can be obtained if training time is increased. When we compare

RMSProp to AdaDelta, we note no improvement. Consequently, the AdaDelta method is preferred because there are no learning

rates that need to be adjusted.480

In regard to the parameter initialization, the equation 1 in Table 2 is a uniform distribution U (−0.29,0.29) in our application.

The narrow interval results in a too-narrow ensemble, which entails a high value for the reliability part and ignorance score. The

second trial, using the parameter initialization 2 (in our case U (−0.68,0.68)), shows a very similar behaviour as the reference

setup but with a lower number of epochs. This matches the interval of the random initialization being more narrow than that

in the reference setup. It entails that the spread of the ensemble narrows more quickly and results in an early increase of the485

reliability part and an early minimum in the ignorance score at ten epochs. The third trial, using the parameter initialization
3, shows a delayed behaviour. However, this initialization has a better score for the reliability part of the CRPS but shows

no improvement for the accuracy scores. We can conclude that to maintain a reliable ensemble, the interval of the uniform

distribution must be sufficiently large. Nonetheless, an increase in the interval does not offer much improvement for the trade-

off between reliability and accuracy.490

Note that shuffling the data produces an almost identical result as that for the reference set-up. However, it eliminates bias,

which is almost zero beyond 15 epochs.

4.1.2 Input variable selection

The results of the sensitivity scores for each explanatory variable are presented in Table 4. Recall that this sensitivity score is the

average RMSE of the four reference percentiles and all ensemble members (see Sect. 2.4.7). Therefore, the value of this score495

is proportional to the importance of a variable for the conversion model. As shown in Table 4, snow depth is, unsurprisingly,

the most important input variable. The model by Odry et al. (2020) uses six input variables and five out the six most important
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Table 3. Comparison of all tested characteristics worth considering; Parameter initialisation 2 and 3 as in Table 2; The number of epochs

is selected so that the trade-off between reliability and accuracy of the ensemble is increased. The underlined numbers in bold indicate an

improvement throughout the testing. Combo combines para. init.3, shuffled data, and input uncertainty, and is used as the final set up

Ref. Input ReLU Leaky RMSProp Shuffle Para. init.1 Para. init.2 Para. init.3 Combo

uncert. ReLU (rate 0.0001) data

Epochs 15 4 15 10 30 15 25 7 30 2

MAE 39.1 39.5 41.4 42.7 40.3 39.0 38.2 43.4 39.7 37.9

RMSE 76.5 78.5 82.3 87.3 78.1 75.7 72.1 80.2 79.4 76.4

MBE 2.1 1.9 1.7 1.7 1.0 0.4 2.8 1.6 1.9 0.3

CRPS 30.9 30.9 32.5 33.2 31.6 30.9 33.9 34.4 30.3 29.3

Reliability 11.8 11.5 11.7 10.4 10.6 11.9 25.2 13.6 7.5 8.9

Ign. score 7.79 7.49 7.83 7.86 7.81 7.76 8.35 7.94 7.77 7.4

Table 4. Ordered results of the sensitivity analysis from the least to most influential variable; The score is calculated following Sec. 2.4.7;

The value of this score is proportional to the importance of a variable

Variable Score

Snow density ERA5 23.2

Number of freeze-thaw cycles 34.6

Average temperature of the last six days 63.9

Number of layers in snow pack 102.4

Total precipitation in the last ten days 102.5

Average age of the snow cover 116.9

Accum. positive degrees since the beginning of winter 124.9

Accum. solid precipitation since the beginning of winter 160.2

Number of days since the beginning of winter 184.6

Total solid precipitation in the last ten days 191.0

Days without snow since the beginning of winter 193.2

Snow depth 972.0

variables are coherent with the variable selection by Odry et al. (2020). However, the order of variables with scores lying close

together can change, since the parameters are initialized randomly.

Figure 7 illustrates how reducing the number of input variables gradually affects the SWE estimation error and the corre-500

sponding CRPS and ignorance score. This reduction follows Table 4; the least influential input variable (snow density from
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Figure 7. Stepwise reduction of input variables, ordered according to their influence as determined in Table 4. The scores are evaluated using

the validation data set. The setup Combo from Table 3 is used;

ERA5) is removed first, and so on. Figure 7a and b show that the RMSE, MAE, and CRPS do not increase significantly when

the number of input variables decreases to the six most influential variables. A larger increase (worsening) is only observed

below this number. This pattern reflects the input variables being dependent on each other as all, except for snow density and

snow depth, are derived from the same meteorological data. Therefore, adding more variables does not provide more informa-505

tion to the model. This result is consistent with the study of Odry et al. (2020). When observing the reliability part of the CRPS

(Fig. 7b), the score begins to increase below ten input variables. However, the ignorance score in Fig. 7c increases even when

only one variable is eliminated. Thus, more input variables help widen the spread of the ensemble. Nevertheless, the ignorance

score tends to flatten as the number of input variables increases. Snow density from ERA5 shows the smallest importance and

therefore, can be excluded for operational use. However, we want to preserve the spread of the ensemble and obtain a good510

portrait of the uncertainty of SWE estimation by using all 12 variables as inputs in the final setup.

4.1.3 Determining the number of epochs and the number of hidden neurons

First, we determine the number of hidden neurons and number of epochs for SMLP. Figure 8a–d show a general decrease in

the MAE, CRPS, ignorance score, RMSE, and the reliability part of the CRPS when the number of neurons in the hidden layer

is increased. A greater number of neurons in the hidden layer enables the model to learn more features of the training data set.515

This entails a better performance of the validation data set. However, there is a threshold beyond which these accuracy values

start degrading. This threshold occurs at a smaller number of hidden neurons for a smaller number of epochs. For the MBE in

Fig. 8f, we observe no specific trend. Note that the thresholds are earlier for the ignorance score than for the reliability part of

the CRPS. Consequently, one can assume that the reliability will also increase for higher numbers of hidden neurons for three,

four, and five training epochs. The earlier increase in the ignorance score can be explained by observing the rank histograms of520

1–3 training epochs in Fig. 9. A bell shape in the rank histogram indicates that the spread of the ensemble is too wide, resulting

in low values overall for the empirical pdf. The ignorance score is computed using the logarithm of the probability density

corresponding to the observation. Therefore, overdispersed ensembles are strongly penalized by this score. The formula of the
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Figure 8. Results using the setup Combo from Table 3 for different numbers of training epochs and neurons in the hidden layer. It shows (a)

the MAE, (b) the RMSE, (c) the MBE, (d) the CRPS, (e) the reliability part of the CRPS, (f) the potential CRPS and (g) the ignorance score.

The scores are evaluated on the validation data set.

reliability part of the CRPS in Eq. (9) demonstrates that the difference between the observed frequency, given the predicted

distribution, and the predicted probability is squared. Therefore, if the difference is small, this will dominate the reliability525

part and result in a small value even with a large ensemble spread. Thus, the reliability score penalizes the outliers in the

trials having more than four or five epochs. Therefore, we set the number of epochs at five and the number of neurons in the

hidden layer at 120. This provides the best trade-off between accuracy and reliability because 120 hidden neurons is the point

where accuracy stagnates and where the ignorance score increases for five epochs. Except for the case of one training epoch,

the reliability part of the CRPS is poorest for five epochs, but it also leads to an acceptable rank histogram in Fig. 9e. The530

ensembles trained for two and three epochs show a bell shape, indicating underdispersion, which is an unacceptable condition.

Second, we perform the same analysis for each snow class, to finalize the ensembles, one for each snow class for the MMLP

model. The behaviour
::::
Table

::
5
:::::
shows

:::
the

:::::::
optimal

::::::::::
combination

::
of

:::
the

:::::::
number

::
of

::::::
hidden

:::::::
neurons

:::
and

:::::::
number

::
of

::::::
epochs

:::
for

::::
each

::::
snow

:::::
class.

:::
The

::::::::
behavior is similar to the previous case. However, as the amount of available data to train decreases, the number

of required training epochs increases. Also, snow classes with smaller datasets show smaller variability in the records, which535

can be easily represented by a simpler network with less hidden neurons, because of the lower complexity of the problem.

4.1.4 Final setup of SMLP and MMLP

Table 6 shows the final setup of the two models SMLP and MMLP. The computational cost of training for the MMLP model

is five times larger than that of to the SMLP model. The training was performed in 62 min and 13
::
13

::::
min

::::
and

::
62

:
min for the

MMLP and SMLP
:::::
SMLP

:::
and

:::::::
MMLP model, respectively. The simulations on the testing data set takes

:::
take

:
3.5 sec and 18.1540

sec for the SMLP and MMLP, respectively. The difference is mainly due to the loading process of six ensembles for the MMLP

compared to one loading process for the SMLP, because the actual computation should be identical, except for assigning the
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Figure 9. Rank histograms of the single MLP ensemble (SMLP) with 120 neurons in the hidden layer for different numbers of epochs,

evaluated on the vaildation data set

Table 5. Optimal combination of the number of hidden neurons and number of epochs for each snow class within the multiple ensembles

model. Optimal combination is determined analogous to the single ensemble model in Fig. 8

Ephemeral Prairie Tundra Taiga Mountain Maritime

Nb. records
(training data set) 1124 3754 4451 7962 22414 38711

Nb. epochs 50 30 30 20 20 20

Nb. neurons 12 24 48 96 192 192

records to the correct ensemble in the MMLP model. All computations were performed on a Dell XPS 13 9370 with an Intel(R)

Core(TM) i7-85550U CPU processor of 8 GB RAM.

4.2 MLP model performance on a testing set545

In this section, we use the testing data set and evaluate the performance of the SMLP and MMLP models. Table 7 reveals that

the MMLP model has a better overall performance, as all performance metrics are smaller,
::::::
except

::::
MBE. Fig. 10a and b show a

scatter plot where the median of the simulated ensemble is plotted against the the observations. Note that both models simulate

negative medians for some data records. For the SMLP model, the minimum of the median is −36mm and for 0.6 % of the

records in testing data set the model simulates negative SWE values. For the MMLP the minimum is −42mm and the ratio of550

negative simulation is 0.3 %. The reliability diagram, introduced in Sec. 2.4.5, shown in Fig. 10c and d, reveals a closer fit to

the identity line for the MMLP model and therefore, a more reliable estimate of SWE. The same conclusion can be drawn from

the rank histograms presented in Fig. 10e and f. As mentioned in Sec. 2.4.4, a flatter rank histogram indicates a more reliable

estimate.

Figure 11 shows the distribution of the residuals of the simulated ensemble median and the observations. The distribution555

of the residuals for the multiple MLP model is narrower, indicating less error overall. Both are approximately symmetrical

around zero, which strengthens the result of the MBE being almost zero (Table 7). For the SMLP model, 50% of the errors
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Table 6. Final setup of the MLPs for the single MLP ensemble model (SMLP) and the multiple MLP ensembles model (MMLP); The

ensembles in the MMLP model differ only in terms of their number of hidden neurons and number of epochs.
::
As

::
a

:::::::::
comparison,

:::
the

::::
setup

::
of

::
the

:::::
ANN

:::::::
ensemble

:::::::
proposed

::
by

::::::::::::::
Odry et al. (2020)

:
is
:::::::
presented

::
as
::::
well.

Characteristic SMLP MMLP
:::::::::::::
Odry et al. (2020)

number of ensembles 1 6 (one for each snow class)
:
1

Target variable SWE SWE
::::
snow

::::::
density

Input uncertainty of snow depth Yes Yes
::
No

:

Activation function in the hidden layer tanh tanh
:::
tanh

Optimization algorithm AdaDelta AdaDelta
::::::::::::::::
Levenberg-Marquardt

Parameter initialization ∼ U (−2,2)3 ∼ U (−2,2)3
:::::::::
∼ U (−1,1)

:

Shuffling data before each epoch Yes Yes
::
No

Input variables 12 12
:
6
:

Number of hidden neurons 120 Table 5
:
6
:

Number of epochs 5 Table 5
::
10

Batch size 100 100
:::
full

:::
data

:::
set

Number of members in the ensemble 20 20
::
20

Table 7. Performance evaluation of the model with a single MLP ensemble covering Canada (SMLP) and the multiple MLP ensembles

(MMLP), evaluated using the testing data set

SMLP MMLP

MAE 32.8 29.3

RMSE 61.0 51.5

MBE 0.4 0.6

CRPS 25.1 21.9

Reliability 6.4 3.7

Pot. CRPS 18.6 18.2

Ign. score 7.28 7.22

are between [−17.1,18.4]mm, and 90% are between [−77.6,73.3]mm. For the MMLP model, 50% of the errors are between

[−15.8,18.0]mm, and 90% are between [−68.8.1,68.6]mm.

Next, we apply skill scores to ensure a valid comparison between SWE estimates of differing magnitudes. The climatology560

of SWE from the CHSS data set is used as the reference simulation (see Sect. 2.4.6).
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Figure 10. The histogram
:::::
scatter

:::
plot

:
in (a) and (b) shows the median of the simulated ensemble against the observation for the single MLP

ensemble (SMLP) and the multiple MLP ensembles (MMLP), respectively.
:::
Note

:::
that

:::
the

::::
axes

:::
are

::
cut

::
of
::

at
::::::::
2000mm.

:::::::
Zoomed

::
out

::::::
scatter

::::
plots

::
are

:::::
shown

::
in

:::
Fig.

:::
15. The reliability diagrams are presented in (c) for the SMLP and in (d) the MMLP. Further, the rank histograms are

presented in (e) for the SMLP and in (f) the MMLP. All shown results are for the testing data set

The separation into different snow classes reveals that, as expected, the multiple MLP model eliminates bias in all snow

classes, as shown in Fig. 12a. Furthermore, for all snow classes, the two MLP models perform better than climatology, as

indicated by positive MAE, RMSE, and CRPS skill scores in Fig. 12a and b.
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Figure 11. Distribution of the residuals of the simulated ensemble median and the observations. The boundary of the box shows the 1st and

3rd quartiles; the caps at the end of the whiskers show the 5th and 95th percentiles

Furthermore, Figure 12a shows that both models perform best within the ephemeral snow class in terms of accuracy, although565

the results need to be taken with some reservations; the low amount of data and the high variability of SWE in this snow class

induce a rather poor reference simulation (climatology). Also, the reliability part of the CRPS in Fig. 12b shows a large

improvement of the multiple MLP model for the ephemeral snow class. In contrast, the ignorance score in Fig. 12c shows a

slightly poorer skill score for this same snow class. A deeper analysis of the ephemeral snow
::::
class

:
in Fig. 13 class shows that

the MMLP model leads to an almost reliable rank histogram, with only a slight tendency toward underdispersion, whereas the570

single MLP model shows a overdispersed rank histogram. This pattern explains the large improvement in the reliability part of

the CRPS. The average spread of the ensemble for the multiple MLP model in this class is twice that of the single MLP model.

The larger spread entails lower values in the empirical pdf and therefore lower ignorance scores.

The tundra snow and taiga snow classes have the lowest skill scores in terms of both accuracy and reliability. In particular,

the reliability part of the CRPS in Fig. 12b results in a large decrease of the skill score. As the variability of SWE is low in575

these areas, as presented in Fig. 2, the reference simulation based on climatology produces a reliable ensemble and causes a

poor reliability skill score for the actual simulation.

The maritime snow class shows a slightly better accuracy than the mountain snow class. This difference may relate to the

complexity of snow accumulation patterns in mountainous regions owing to the high spatial and temporal variability of all

physical processes and variables in these areas. Also the temperature correction, as explained in Sect. 3.2, induces larger errors580

where height is highly variable. The improved reliability skill score for the multiple MLP model is explained by fewer outliers

for the mountain and maritime snow classes. The slight decrease in the ignorance skill score for the maritime snow class can

be explained by different average spreads of the simulated and reference ensembles.

In the next step, the testing data set is divided into elevation classes from 0m to 2100m, with a step size of 300m and

one class for sites above 2100m. The results are not shown, as the main conclusions are identical to those obtained from the585

separation into snow classes. Both types of MLP ensembles (single and multiple) outperform climatology.
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Figure 12. Comparison of the performance of the single MLP (SMLP) and multiple MLP (MMLP) models using (a) the skill score (SS)

of the MAE, RMSE and the relative bias (RB), (b) the skill score of the CRPS and reliability and (c) the skill score of the ignorance score

evaluated for the different snow classes. All results are for the testing data set. (d) The number of records in each snow class within the testing

data set

Figure 13. Comparison of the rank histogram of (a) the single MLP (SMLP) and (b) multiple MLP (MMLP) for the ephemeral snow class

using the testing data set

Furthermore, an analysis over the course of the year shows an improved accuracy for the MLP models compared with

climatology for all months, except for July, August, and September. During these three months, there is generally very little
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Table 8. Comparison of the overall performance evaluation using deterministic performance evaluation metrics of the two MLP models and

the regression models, evaluated using the testing data set

Benchmark Jonas Sturm SMLP MMLP

MAE 74.2 44.5 47.7 32.8 29.3

RMSE 145.4 114.7 117.0 61.0 51.5

MBE -35.3 2.2 -0.5 0.4 0.6

snow across the country and, consequently, very little data. Additionally, the beginning of the winter, subjectively taken as

01 September, causes a reset to zero for several input variables; the variables of temperature, snow depth, and SWE data590

remain, however, within their usual ranges. This greatly complicates the proper training of the MLPs. Overall, except these

three problematic months, the accuracy and reliability remain relatively constant throughout the year with a slightly improved

performance in spring and early summer compared with climatology.

4.3 Comparison of MLP models with regression models

The regression models are trained and validated using the same perturbed snow depth data sets that are used to optimize the595

MLP models. The testing data set is then used for comparison purposes in this section.

There is a possibility of producing an ensemble simulation by performing the deterministic regression models on perturbed

snow depth and obtaining multiple members. However, given that the spread in the simulated ensemble of the MLP models is

explained mainly by the various parameter initializations, this approach entails an ensemble that is too narrow when regression

models are used. This leads to a comparison of models that has little meaning: the optimization of the Sturm model could be600

initialized with different parameter sets; however, the Jonas model has a perfect set of parameters. Therefore, we must compare

the models using exclusively deterministic evaluation techniques.

In addition to the regression models, we also considered a simple benchmark model, which takes the average observed snow

density in the training and validation data sets as a constant snow density and then calculates SWE for the testing data set.

The results are presented in Table 8. Both models using MLP ensembles outperform the simple benchmark as well as the605

Sturm and Jonas models.

Figure 14 compares the MLP models with the regressions and the simple benchmark for each snow class. The two MLP

models outperform both the regressions and the benchmark model for all snow classes. The Sturm model eliminates the bias,

as depicted by the relative bias (RB) being equal to zero in Fig. 14c. This removal of bias occurs because the model uses an

individual regression model for each snow class. In Fig. 14a and b, the MAE and RMSE skill scores of the Sturm and Jonas610

models follow mainly the skill scores of both MLP models. However, the Sturm and Jonas models show a decrease in the

RMSE-SS for the mountain snow and maritime snow classes, which indicates a greater number of outliers. One can derive

that a single regression model is not sufficient for the high variability in the mountainous region or the spatially large maritime
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Figure 14. Comparison of the performance of the two MLP and regression models by using (a) the skill score of the MAE, (b) the skill score

of the RMSE, and (c) the relative bias (RB) of the SWE simulation, as evaluated for different snow classes. Results are shown for the testing

data set.

region, which includes two coasts. The better performance of the Jonas model for the mountain snow class reflects this model

being built and tested for a mountainous region in the Swiss Alps. The benchmark model performs well in the Prairies; this615

result indicates a stable relationship between snow density and snow depth in this snow class. The poor performance of the

taiga snow class for the benchmark model is caused by the high positive RB of the benchmark model, as presented in Fig. 14c.

Figure 15 shows the simulated SWE against the observed SWE. The benchmark model can explain 81.3% of the variability

in SWE. Figure 15a shows that the model often underestimates SWE, which also explains the negative bias observed in Table

8. The Jonas and Sturm models explain approximately 7 % more SWE variability. Figure 15b and c reveal that outliers with620

high values occur for lower- and medium-range SWE observations.
::::
Note

:::
that

:::
the

::::
axes

:::
are

:::
cut

::
off

::
at
:::::::::
4000mm.

:::::
Thus,

:::::
0.03%

::::
and

:::::
0.01%

:::
of

:::
the

::::
data

:::::
points

:::
are

:::
not

::::::
shown

:::
for

:::::
Jonas

::::
and

:::::
Sturm

::::::
model,

:::::::::::
respectively. The 17 SWE observations above 2500mm

in the testing data set are consistently overestimated but follow the identity line. Compared with the two MLP models, the

Sturm and Jonas models perform better at these higher values. The training data set contains 18 SWE measurements above

2500mm. This small portion makes it problematic for any model to properly train on. However, it seems that the linearity625

of the Jonas model and the log-linearity of the Sturm model can extrapolate high SWE values better than the MLP models.

Overall, compared with the benchmark model, the single and multiple MLP models explain approximately 15 % and 16 %

more SWE variability, respectively. Figure 15d and e show that up to 2500mm, the estimates of both MLP models follow

mainly the identity line with a some outliers at approximately 500mm. Above 2500mm, the model seems to have an upper

boundary that results in an underestimate. This upper boundary is less restrictive for the multiple MLP model, which performs630

better for the high SWE records. The resulting R2 values for the benchmark and Sturm model are similar to those in the study

of Odry et al. (2020), which considered only the province of Quebec. The MLP model in the latter study achieved an R2 value

of 0.919. Therefore, we improve on this by 5 % and 6 % for the single and multiple MLP models, respectively.
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Figure 15. Scatter plot of median of the SWE ensembles and observed SWE for each model, evaluated on the testing data set;
::::
note

:::
that

:::
the

:::
axes

:::
are

::
cut

:::
off

::
at

:::::::
4000mm;

::::
thus,

::::::
0.03%

:::
and

:::::
0.01%

::
of

:::
the

:::
data

:::::
points

:::
are

:::
not

:::::
shown

::
for

:::::
Jonas

:::
and

:::::
Sturm

:::::
model,

:::::::::
respectively;

5 Conclusions

This study tackles some important knowledge gaps regarding the conversion of snow depth to SWE, using ANN-based models.635

The main focus is on the architecture of the network, and two hypotheses are tested. The first hypothesis holds that using SWE

rather than density as the target variable for the ANN will produce more accurate estimates of SWE. The second hypothesis

states that in-depth testing of several ANN structural characteristics (e.g. optimization algorithm, activation function, parameter

initialization, increasing the number of parameters) can improve the estimates of SWE. We thus investigate whether the ANN

model must be trained specifically for different regions, as determined by snow climate classes (Sturm et al., 2009), or whether640

the model could be trained only once, for Canada as a whole. The uncertainty of snow depth measurements is included.

Furthermore, we use existing regression models, developed for the same purpose, as benchmarks to obtain a better perspective

on how our model performs. We were able to find a structural configuration of the ANNs that leads to noticeable improvements

compared to the initial basic configuration proposed by Odry et al. (2020).
:
A

::::
final

::::::::::
comparison

::
is

:::::
given

::
in

:::::
Table

::
6. Therefore,

hypothesis 2 is also verified, at least for the available data in Canada.645

Our snow-depth-to-SWE model uses the inputs of snow depth, estimated snow density, and other explanatory variables

derived from meteorological data. The available snow data includes snow depth, SWE, and snow density measurements from

across Canada, collected over almost 40 years.

We then use an ensemble of multiple MLPs to address the issue of the random parameter initialization during optimiza-

tion. The approach also provides a probabilistic estimate to gain greater insight into model performance. A trade-off between650
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reliability and accuracy is used as a means of evaluation, which gives a more comprehensive analysis of SWE-estimation

models.

Many previous models (e.g. Odry et al., 2020; Jonas et al., 2009; Sturm et al., 2010; Painter et al., 2016; Broxton et al.,

2019) determine SWE by estimating snow density and calculating SWE on the basis of snow density and snow depth. This

study investigates a direct estimate of SWE. This approach shows a slight increase in accuracy and a large gain in reliability655

compared to indirect estimates,
:::
as

::::::::
presented

::
in

::::
Fig.

:
5
::::

and
::
6. Consequently, the study uses SWE as the target variable rather

than snow density.

In our investigation of model structures, we built two models. One model uses a single MLP ensemble for all of Canada.

The second model trains one MLP ensemble for each snow class, as defined by Sturm et al. (2009). Model evaluation of the

independent testing data set indicates that the multiple ensemble model outperforms the single ensemble model. Both models660

show weak performances for high values of SWE. Furthermore, both MLP models outperform existing regression models and

a benchmark model based on climatology, and they improve on the basic MLP ensemble model proposed earlier by Odry et al.

(2020). Also, the current study uses a broad snow data set with records of all snow classes (except the ice snow class, for

which we have too little records for a proper analysis) and thus considers diverse snow characteristics across a large domain.

Therefore, the model structure is expected to be applicable to other areas in the world. However, new training is advisable.665

A sensitivity analysis reveals that a greater number of input variables increases the reliability of the ensemble. Therefore,

adding more variables could further heighten the model’s reliability. After proposing SWE as the new target variable in this

study, short term and long term variables regarding precipitation with respect to SWE need to be analyzed,
:
. In Table 1, different

correlation were found for SWE and snow density, when looking at short term variables for 1 to 10 days. Odry et al. (2020)

showed in their Table 4 that snow density is negatively correlated with recent snow fall, because it is lighter than the underlying670

snow. This negative correlation peaks at 3 days for the data set used in this study (Table 1). The correlation between SWE and

accumulated solid precipitation increases for variables of larger time range due to diverse densification factors, resulting in a

more stable relationship between the two variables. Therefore, a deeper analysis of the information content carried by recent

accumulated solid precipitation with respect to SWE is favourable
::::::::
favorable. Furthermore, topological variables e.g.

::::
such

::
as the

slope and aspect of measurement site can be used. This might even improve the estimation accuracy, because these variables675

carry additional information compared to input variables derived from meteorological data. To test the the ability of ANNs in

itself, the model can be trained on more precise meteorological data on a limited number of sites close together to ensure a

consistent data set.

Regarding the limitations of this study, both models show poor performance for high SWE values, mainly because the

amount of available training data is low for those extreme values. Furthermore, the model is not predictive and especially680

cannot account for the effect of climate change.
:
It
::

is
::::::

noted
:::
that

:::
the

:::::::
models

:::::::
requires

:::::
more

::::
data

::::::::
compared

:::
to

:::
the

:::::::::
regression

::::::
models

::::::::
proposed

::
by

:::::::::::::::::
Sturm et al. (2010)

:::
and

:::::::::::::::
Jonas et al. (2009),

:::::::
because

::::::::
multiple

::::::::
indicators

:::
are

:::::::::
calculated

:::::
from

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::
time

::::::
series. The amount of data needed to train the model properly cannot be prescribed universally, as it

depends on the variability of the data set. For instance, if an area shows many different snow classes, more data is needed

to obtain satisfactory results. This also changes the number of epochs and number of neurons needed. Since the testing of685
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different characteristics in Sec. 4.1.1 showed only little improvement, we expect that the determination of the importance

of input variables and a cross analysis of number of hidden neurons in the network with number of training epochs using a

validation data set is sufficient to obtain satisfactory results
:
.

::
As

::::::::::
mentioned

::
in

::::
Sec.

::::::
4.1.2,

:::::
snow

::::::
density

::::::
would

::::
not

:::
be

::::
used

:::
in

::::::::::
operational

::::
use.

:::::::::::
Furthermore,

:::
the

::::::::
recently

::::::::
available

:::::::
Regional

::::::::::::
Deterministic

:::::::::
Reforecast

:::::::
System

:::::::
(RDRS)

::::::
would

:::
be

::::
used

::::
for

:::
the

:::::::::::::
meteorological

::::
data

:::::
when

:::::::
training

:::
the

:::::::
model.690

:::::
RDRS

::::
has

:::::::
similar

:::::::::
dynamics

::::
and

:::::::
physics

:::
as

::::
the

::::::::::
operational

::::::
Global

:::::::::::::
Environmental

::::::::::
Multiscale

::::::
Model

::::::::
(GEM).

:::::
This

:::::
model

::::::
could

::::
then

:::
be

:::::
used

:::
to

::::::::
simulate

:::::
SWE

:::::
from

::::::
in-situ

::::::
snow

:::::
depth

:::::::::::::
measurements

:::
by

:::::
sonic

:::::::
sensors

:::::::::
provided

:::
by

::::::::::::::::::::::::::::::::::::::::::
Meteorological Service of Canada and ECCC (2020)

:
.
:::
As

::::::::::::
meteorological

:::::
data,

::::
one

:::::
could

:::
use

:::
an

:::::::::
operational

:::::::::
"nowcast"

:::::
from

::
an

::::::::::
atmospheric

::::::
model

::::
that

:::::::
include

:
a
::::

land
:::::

data
::::::::::
assimilation

::::::
system

:::::
such

::
as

:::
the

:::::::::
Canadian

:::::
Land

::::
Data

:::::::::::
Assimilation

:::::::
System

:::::::::
(CaLDAS;

:::::::::::::::::::::::
Carrera et al. (01 Jun. 2015)

:
).

:::::::
CalDAS

::
is

:::::
forced

:::
by

:::::::
real-time

:::::::::::
precipitation

:::::::
analyses

::::
from

:::
the

::::::::
Canadian

:::::::::::
Precipitation695

:::::::
Analysis

::::::
(CaPA;

::::::::::::::::
Fortin et al. (2015)

:
),
::::::
which

::::::::
combines

:::::::::
simulated

::::::::::
background

::::::::::
precipitation

:::::
fields

:::::
with

:::::::
observed

::::
data

:::
(in

::::
situ

:::
and

:::::::
radars).

:::::::::::
Furthermore,

:::
the

::::::::
proposed

:::::::
method

:::
can

:::
be

::::::
applied

:::::
onto

:::::::::
assimilated

:::::
snow

:::::
depth

::::
data

:::
in

::::::::
CaLDAS.

::::::::
Currently

:::
in

::::::::
CaLDAS,

::::
only

:::::
snow

:::::
depth

:::
data

::
is
::::::::::
assimilated

:::
and

:::::::::::
subsequently

::::::::
converted

::
to

:::::
SWE

:::::
using

:::
the

::::::::
simulated

::::::
density

::
to

::::::::
initialize

:::
the

:::
land

:::::::
surface

:::::::
scheme.

:::
The

::::::::
proposed

:::::::
method

:::::
would

:::::
allow

:::
for

::::
two

::::::::
important

::::::::
upgrades:

:::::
First,

::
it

:::::
would

:::::
allow

::
to
:::::::::
assimilate

:::::
snow

::::
depth

::::
data

:::::::::
(converted

:::
to

:::::
SWE)

::
as

::::
well

:::
as

::::
SWE

:::::
data,

::::
thus

:::::::::
increasing

:::
the

:::::::
quantity

::
of

::::::::::
assimilated

:::::::::::
observations,

:::
and

:::::::
second,

::
it700

:::::
would

:::::
avoid

:::::
using

:::
the

::::::::
simulated

:::::::
density,

:::::
which

::
is

::::
very

::::
hard

::
to

:::::::
simulate

:::::::::
accurately.

Finally, this study shows an optimal performance of networks having large numbers of neurons in the hidden layer at

amounts far above the commonly used rules of thumb. This provides a motivation to look into network structures having

multiple layers. Montúfar (2014) also showed that the number of neurons needed to approximate a function in a deep network

with multiple layers increases exponentially in a network with one hidden layer. Therefore, deep networks are possibly more705

efficient. Goodfellow et al. (2016) provides multiple examples that foster this claim empirically. As a result, there could remain

numerous means of improving SWE estimates from snow depth using machine learning techniques, and the methods proposed

here could be refined. It could also be useful to investigate the application of other types of machine-learning algorithms,

including random forests.

Code and data availability. The code including some testing data is available on GitHub. The whole data set, excluding data for which we710
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