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Abstract. Uncertainty in inputs can significantly impair parameter estimation in water quality modeling, necessitating 

accurate quantification of input errors. However, decomposing input error from model residual error is still challenging. This 

study develops a new algorithm, referred to as Bayesian error analysis with reshuffling (BEAR), to address this problem. 

The basic approach requires sampling errors from a pre-estimated error distribution and then reshuffling them with their 10 

inferred ranks via the secant method. This approach is demonstrated in the case of total suspended solids (TSS) simulation 

via a conceptual water quality model. Based on case studies using synthetic data, the BEAR method successfully isolates the 

input error and parameter error. The results of a real case study demonstrate that even with the presence of model structural 

error and output data error, the BEAR method can approximate the true input and bring a better model fit through an 

effective input modification. However, its effectiveness is limited by the assumption that the input uncertainty should be 15 

dominant and that the prior information of the input error model can be estimated. The application of the BEAR method in 

TSS simulation is effective for understanding a range of water quality conditions and the further developed algorithm can be 

extended to other water quality predictions. 

1 Introduction 

For robust water management, uncertainty analysis is of growing importance in water quality modeling (Refsgaard et al., 20 

2007). It can provide knowledge of error propagation and the magnitude of uncertainty impacts in model simulations to 

guide improved predictive performance (Radwan et al., 2004). However, the implementation of uncertainty analysis in water 

quality models (WQMs) is still challenging due to complex interactions among sources of multiple errors, generally caused 

by a simplified model structure (structural uncertainty), imperfect observed data (input uncertainty and observation 

uncertainty in calibration data) and limited parameter identifiability (parametric uncertainty) (Refsgaard et al., 2007). 25 

Among them, input uncertainty is expected to be particularly significant in a WQM, interpreted here as the observation 

uncertainty of any input data. Observation uncertainty is different from other sources of uncertainty in modeling since these 

uncertainties arise independently of the WQM itself, thus, their properties (e.g. probability distribution family and 

distribution parameters) can, at least in principle, be estimated prior to the model calibration and simulation by analysis of 
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the data acquisition instruments and procedures (McMillan et al., 2012). Rode and Suhr (2007) and Harmel et al. (2006) 30 

reviewed the uncertainty associated with selected water quality variables based on the empirical quality of observations. The 

general methodology developed in their studies can be extended to the analysis of other water quality variables. Besides the 

error coming from the measurement process, the error from surrogated data is another major source of input uncertainty 

(McMillan et al., 2012). Measurements of water quality variables often lack desirable temporal and spatial resolutions, thus, 

the use of surrogate or proxy data is necessary for improved inference of water quality parameters (Evans et al., 1997, 35 

Stubblefield et al., 2007). For a surrogate error, its probability distribution is easy to estimate from the residuals between the 

measurements and proxy values. These estimated error distributions are “prior knowledge” of input uncertainty before any 

model calibration and can serve as the a-priori uncertainty estimation in the modeling process. 

Input uncertainty can lead to bias in parameter estimation in water quality modeling (Chaudhary and Hantush, 2017, 

Kleidorfer et al., 2009, Willems, 2008). Improved model calibration requires isolating the input uncertainty from the total 40 

uncertainty. However, the precise quantification of time-varying input errors is still challenging when other types of 

uncertainties are propagated through to the model results. In hydrological modeling, several approaches have been developed 

to characterize time-varying input errors, and these may hold promise for application in WQMs. The Bayesian total error 

analysis (BATEA) method provides a framework that has been widely used (Kavetski et al., 2006). Time-varying input 

errors are defined as multipliers on the input time series and inferred along with the model parameters in the Bayesian 45 

calibration scheme. It leads to a high-dimensionality problem, which restricts the application of this approach to the 

assumption of event-based multipliers (the same multiplier applied to one storm event). In the Integrated Bayesian 

Uncertainty Estimator (IBUNE) (Ajami et al., 2007) approach, multipliers are not jointly inferred with the model parameters, 

but sampled from the assumed distribution and then filtered by the constraints of simulation fitting. This approach reduces 

the dimensionality significantly and can be applied in the assumption of the data-based multiplier (one multiplier for one 50 

input data) (Ajami et al., 2007). However, this approach results in an underestimation of the multiplier variance and 

misidentification of the uncertainty sources (Renard et al., 2009). From the above, a new strategy should be developed to 

avoid high dimensional computation and ensure the accuracy of error identification. 

To complete this goal, this study develops a new algorithm – Bayesian error analysis with reshuffling (BEAR). The 

derivation and details of the BEAR algorithm in quantifying input errors are described in Sect. 2. Section 3 introduces the 55 

build-up/wash-off model (BwMod) to illustrate this approach. Its model input, streamflow, often suffers from observational 

errors from a rating curve. By comparing the results with other calibration frameworks, the ability of the BEAR method is 

explored in a synthetic case and a real case. In this way, the new algorithm is tested in a simple situation (with an assumption 

of true output data and model structure) and in a realistic situation (with the interference of multiple error sources) 

respectively. Section 4 evaluates the BEAR method and its implementation. Finally, Section 5 outlines the main conclusions 60 

and recommendations for this work. 
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2 Methodology 

2.1 Basic theory of identifying the input error in model calibration 

A WQM in the ideal situation without any error can be described as  

 
* * *( | )M=Y X θ   (1) 65 

where the true output 
*

Y  is simulated by the perfect model M with the true inputs 
*

X  and the true model parameters 

*
. 

Here and in the following contents, a capital bold letter (e.g.
,X Y

) represents a vector and a lower case (e.g. 
,x y

) 

represents a variable.  

In reality, the model input 
o

X  (typically the rainfall or streamflow in a WQM) inevitably suffers from input error X . This 

will result in a calibrated model parameter 

c
 biased from the true value 

*
(Kleidorfer et al., 2009). Thus, under the 70 

assumption that the input errors are additive to the true input data 
*

X  and the output data and model structure are generally 

without errors, the model residual   in a traditional calibration can be described by 

 * *( | )o s c

XM= − = − +Y Y Y X    (2) 

Under the ideal situation without input errors, the residual will reduce to zero, like 

 * * *( | ) 0o s M= − − =Y Y = Y X   (3) 75 

To counter the influence of input errors in a traditional calibration, an appealing approach is to subtract estimated errors 
p

X  

from the observed input 
o

X . This is illustrated as the “proposed” approach and the superscript p represents the values in this 

“proposed” approach. The residual 
p

 will change to 

 * * *( | ) ( | )P o p p P p P

X XM M= − = − = − + −Y Y Y X Y X      (4) 

If the equivalence between X  and 
p

X  can be ensured for each data point, the modified input 
p

X  then becomes the same 80 

as the true value 
*

X . The proposed calibration (Eq. (4)) will result in an ideal calibration (Eq. (1)), where the optimal 

parameters 
p

 will converge to their true values 
*

 and the model residual 
P  will decrease to zero. Thus, the precise 

identification of input errors will result in the ideal model parameters and minimized residual error.  

Selecting the optimal input error series according to the statistical characteristics of the residual error is the basic theory of 

current methods (Ajami et al., 2007, Kavetski et al., 2006). The challenge is to optimize the input errors effectively when 85 

parameter errors impact this optimization. The BATEA method considers input errors and model parameters as a whole and 

infers them by taking advantage of the correlation among them. This results in a high dimensionality problem that cannot be 

avoided (Renard et al., 2009). The IBUNE method makes use of the stochasticity of sampled errors and selects the most 
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suitable error and parameter sample to minimize the residual error. This is less effective because the probability of co-

occurrence of all optimal error/parameter values is very low (Renard et al., 2009). An improved strategy is necessary to 90 

properly infer input errors through minimising total model residual error. 

2.2 The innovation of the secant method 

The secant method can be applied to address this problem. This is an iterative process to produce better approximations to 

the roots of a real-valued equation (Ralston and Jennrich, 1978). Here, the root is the optimal value of each input error and 

the equation is the corresponding model residual equal to zero. A traditional approach to updating this is impractical because 95 

the estimated input error will fully complement the model error and always lead to a zero residual error regardless of the 

model parameters. More discussion on this is stated in Sect. 4.1. 

This study attempts to transform this optimization into the rank domain. Here, the rank is defined as the order of any 

individual value relative to the other sampled values, and determines the relative magnitude of each error in all data errors. 

For most WQM studies, the probability distribution of any input errors 
( )f   can be estimated as per prior information. If 100 

there is knowledge of the error distribution, the error value only depends on its rank in this distribution and this error 

distribution can then constrain the value range of sampled errors. Therefore, the secant method is very useful in the rank 

domain, where the root turns to the optimal rank of each input error (rather than its value) and the equation is still the 

corresponding model residual equal to zero. This new approach, referred to as the Bayesian error analysis with reshuffling 

(BEAR) method, should be implemented in two steps: sampling the errors from the estimated error distribution and 105 

reshuffling these sampled errors corresponding to the inferred error ranks via the secant method. 

The secant method (Ralston and Jennrich, 1978) can be repeated as 

 
, 1 , 2

, , 1 , 1

, 1 , 2

i q i qp

i q i q i q p p

i q i q

k k
k k 

 

− −

− −

− −

−
= −

−
 (5) 

until a sufficiently accurate target value is reached. In this study, the target value is a residual of zero ( , 0p

i q =
) indicating a 

perfect model fit (with input errors estimated exactly). Here, ,i qk
 represents the estimated rank for ith input error at the qth 110 

iteration, , 1

p

i q −  is the residuals corresponding to the input error rank , 1i qk − . The error rank of each data point is updated 

respectively via Eq. (5), where i =1,…n. n is the data length and also the number of the estimated errors as these errors are 

data-based. 

After calculating Eq. (5), it is possible that the rank ,i qk
 is out of the rank range (for example, less than 1 or more than n), or 

not an integer. Sorting ,i qk
 in all the ranks , ( 1,..., )i qk i n=

 can address this problem by effectively scaling the calculated ranks 115 
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,i qk
 to an integer from 1 to n. Thus, in Eq. (5), ,i qk

 should be changed to ,i qK
, representing the pre-rank. After sorting ,i qK

 

for all the errors, the post-rank ,i qk
 will then belong to reasonable values. 

From the above, estimating the rank of input errors via the secant method can be described as the following two steps: 

Update the rank of each input error ,i qK
 
( 1,..., )i n=

 via the secant method respectively: 

 
, 1 , 2

, , 1 , 1

, 1 , 2

i q i qp

i q i q i q p p

i q i q

k k
K k 

 

− −

− −

− −

−
= −

−
  (6) 120 

Sorting ,i qK ( 1,..., )i n=
 in all the error pre-ranks q

K
 to obtain a reasonable rank:  

 
, ,( )i q i qk k K=   (7) 

where k( ) means calculating its rank. 

2.3 Approximate Bayesian Computation - Sequential Monte Carlo (ABC – SMC) 

This study chooses Approximate Bayesian Computation via Sequential Monte Carlo (ABC–SMC) as the calibration scheme. 125 

ABC-SMC was first proposed by Sisson et al. (2007) and developed in the research of Toni et al. (2008). The ABC method 

is especially useful for problems in which the likelihood function is analytically intractable or costly to compute in 

traditional Bayesian approaches. For formal Bayesian approaches,, the likelihood function must be set carefully to meet the 

assumption about the residual error distribution, and this setting impacts the parameter estimation (Smith et al., 2015, 

McInerney et al., 2017, Wu et al., 2019). In the ABC method, setting an objective function is more general allowing for 130 

potentially complex input error distributions where the likelihood is difficult to write. 

In the ABC–SMC approach, the parameter 
p

 is first sampled from a prior distribution 
( )pP 

 (referred to as population 

1). Then it is propagated through a sequence of intermediate distributions 
( )( , )p o p

sP OF θ Y Y
, s=1,…, F-1 (referred to as 

intermediate population 2, …, F-1), until it represents a sample from the target distribution 
( )( , )p o p

FP OF Y Y
 

(referred to as the posterior distribution). The tolerance s  of the objective function is chosen that 1 >…> F 0, thus the 135 

distributions sequentially evolve towards the target posterior. 

2.4 Algorithm and an example of the BEAR method 

According to the previous derivations, the algorithm quantifying input errors via the BEAR method is demonstrated in Fig. 1 

and an illustrative example is presented in Table 1 and Fig. 2. Based on an ABC-SMC calibration scheme, the BEAR 

method works by replacing the observed input with a modified input that is obtained through the estimated input error rank 140 
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via the secant method. In Fig. 1, s refers to the number of the sequential updating populations in the ABC-SMC scheme, 

which increases until the objective function (measuring the fit between the calibration data and model outputs) of the sth 

population is less than the final tolerance  . The final tolerance   (i.e. the stopping criterion) is difficult to set before 

calibration due to the unknown range of objective function values, but in practice, it can be estimated after several 

population calibrations, according to the actual calculation range of the objective function and the target accuracy. In this 145 

study, the calibration stops when 1000 proposed parameter sets are rejected in a row. The first tolerance 1  should be set 

sufficiently large to start the update. Any intermediate tolerance s  is set as the 30% quantile of the objective function results 

of the previous population s-1, such that it reduces automatically with a new population calculation. 

In each calibration population, the input error ranks are updated over q iterations, where q increases until the objective 

function is less than tolerance s . When q=1 and q=2, the input errors are randomly sampled from the estimated error 150 

distribution because two sets of samples are prerequisites for the updating via the secant method (Table 1). Regarding these, 

a series of error ranks 
p

qk
, modified inputs 

p

qX
, model outputs 

p

qY
, and model residuals 

p

q  are calculated, demonstrated as 

the 1st and 2nd iteration in Table 1. In later iterations (q>=3), the error rank 
p

qk
 is updated via the secant method (Eq. (6) 

and (7)), demonstrated in the first two columns in the 3rd and 4th iteration in Table 1. According to the new rank ,

p

i qk
, the 

value with the same rank in the 2nd iteration is the estimated error in the new iteration. For example, the new rank at the 1st 155 

time step in the 3rd iteration is 6, and its corresponding value in the 2nd iteration is -0.02, therefore, -0.02 is set as the 

updated input error at the 1st time step in the 3rd iteration. After the same reshuffling strategy, the re-ranked input errors will 

then lead to a new series of the modified inputs 
p

qX
, model outputs 

p

qY
 and model residuals 

p

q .  

Note however if the model parameters are far away from the true values, especially in the initial population, iterative 

updating of the error ranks will have little effect in reducing the model residual. Therefore, the maximum times of iterations 160 

should be set, referred to as Q. If q exceeds Q, the algorithm returns to the step resampling the model parameters (seen in 

Fig. 1). An example of four iterations is demonstrated in Table 1 and Fig. 2. 

In the example given in Table 1, before reshuffling errors (i.e. the 1st iteration and 2nd iteration), the input errors do not 

approach the true values shown in Fig. 2, having much larger objective function results than the 3rd and 4th iteration. After 

the error reshuffling, the objective function calculated in the 4th iteration is smaller than the result in the 3rd iteration, 165 

illustrating that the estimated errors in the 4th iteration are closer to the true values than the 3rd iteration. This is also 

supported by Fig. 2 where the red line (4th iteration) has a stronger correlation with the black line (true input error) than the 

yellow line (3rd iteration). From the above, the true input errors can be approximated through updating the error ranks to 

minimize the objective function of the residuals.  
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2.5 Comparison with other methods 170 

To evaluate the ability of the BEAR method in quantifying input errors, three methods are compared, denoted as method T, 

D, R. Method “T” is the “traditional” method, regarding the observed input as error-free without identifying input errors (i.e. 

Eq. (2)), while the other two methods employ a latent variable to counteract the impacts of input error and build the modified 

input (i.e. Eq. (4)). In method D, “D” refers to the probability “Distribution” of input error, which is additional information 

considered in the calibration. This error distribution can be estimated before calibration according to the studies in the 175 

introduction. Especially in the context of proxy errors, the probability distribution can be easily calculated via the residuals 

between the measurements and the corresponding proxy values. From this error distribution, potential input errors are 

randomly sampled and filtered by the minimization of the objective function, which is similar to the basic framework of the 

IBUNE method (Ajami et al., 2007). Method R represents the BEAR method developed in this study. “R” refers to the 

“Reshuffling” strategy via the secant method, which is an additional process to that used in method D to improve the input 180 

error quantification. 

3 Case studies 

3.1 Water quality model: the build-up/wash-off model (BwMod) 

This study tests the BEAR algorithm in the context of the build-up/wash-off model (BwMod), which is a group of models to 

simulate two processes in sediment dynamics, including the build-up of sediments during dry periods and the wash-off 185 

process during wet periods. The two formulations were developed in a small-scale experiment (Sartor and Boyd, 1972), 

while in applications at the catchment scale, the conceptualized parameters largely abandon their physical meanings and the 

formulations can be considered a “black-box” (Bonhomme and Petrucci, 2017). This study chooses Eq. (8) to describe the 

build-up process and Eq. (9) to express the wash-off of sediments, representing the non-linear relationship between the 

wash-off load (output) and the runoff-rate (input). These two equations were applied in the research of Sikorska et al. (2015) 190 

and in this study, are written in the MATLAB programming language with the integration of the BEAR method. The time 

scale is typically set as daily, and the spatial scale is set as the catchment in this study. This version of BwMod has four 

parameters (Table 2). The model input is streamflow, which typically comes from the observation of a rating curve. As 

discussed in the introduction, the error distribution can be estimated prior to the model calibration via a rating curve analysis. 

The output of the BwMod is the concentration of total suspended solids (TSS), whose transport can be efficiently simulated 195 

by the conceptualization of the build-up/wash-off process (Bonhomme and Petrucci, 2017, Sikorska et al., 2015). Although 

BwMod is relatively simple compared with process-based WQMs, its nonlinearity and the use of surrogates for the input 

data can make it a typical WQM scenario to test the BEAR algorithm. 

The overall BwMod equations are: 
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 ( ) ( ),

, , 牋
a t

max a t a t

dS
S S s S

dt
=  − −   (8) 200 

where ,a tS
 (kg) is the sediment amount available on the catchment surface to be washed-off at time t; 

( ),  a ts S
 (kg∙ 𝑠−1) is 

the amount of sediment in the stream at time t, described by the function  

 , ,( ) b

a t t a ts S a Q S=     (9) 

The output TSS concentration ,TSS tC
 (kg ∙ 𝑚−3) is derived via:   

 
( ),

,  
a t

TSS t

t

s S
C

Q
=   (10) 205 

3.2 Case study 1: Synthetic data 

First, the BEAR method is tested in a controlled situation with synthetic data, where the model is affected only by input 

errors and parameter errors. The true input 
*X  is set as the daily streamflow data of the catchment in the real case (USGS 

ID: 04087030), covering 1095 days from 2009/10/01 to 2012/09/29. The observed input 
oX  is generated based on two types 

of input error models: an additive formulation and a multiplicative formulation, and the errors are assumed to follow a 210 

normal distribution with mean 


 as 0.2 and standard deviation (SD)   as 0.5. An additive formulation (denoted as ‘add’ in 

Table 3) is suitable to illustrate error generation, while the multiplicative formulation (denoted as ‘mul’ in Table 3) is 

specifically applied for errors induced from a log-log regression procedure, which is common for water quality proxy 

processes (Rode and Suhr, 2007). In the additive formulation, the generated input may be negative. If so, the negative input 

should be truncated to a positive value. In the multiplicative formulation, the generated input will stay positive. The true 215 

output 
*Y  is the simulated TSS concentration via BwMod corresponding to the true input 

*X  and model parameters set as 

the reference values in 

. The observed output 
o

Y  is assumed to be the same as the true simulation 
*Y , i.e. without error. 

In the calibration, the objective function is set as the Mean Squared Error (MSE). Considering the unknown initial sediment 

loads in real applications, the calibration sets 90 days as a warm-up period to remove the influence of antecedent conditions.  220 

Following the algorithm described in Sect. 2.4, the model parameters and the time-varying input errors are estimated. In each 

population of the ABC-SMC calibration scheme, 50 sets of model parameters are updated. In the first population, the model 

parameters are sampled from a uniform distribution with the prior range described in Table 2. 
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The prior information about error parameters (i.e.   and 


) contains two conditions: one is fixed as the reference values 

(denoted as ‘fixed’ in Table 3), the other one is given the prior range, which needs to infer the error parameters in the 225 

calibration (denoted as ‘inferred’ in Table 3).  

To sum up, this study considers four scenarios in the synthetic case, including two sets of synthetic data generating from two 

input error models and two types of prior information about the error parameter (the details are shown in Table 3). Each 

scenario is calibrated via method T, method D and method R respectively. Their algorithms are described in Sect. 2.5 and 

their results are compared in Fig. 3 and Fig. 4. Figure 3 shows the statistical characteristics of the overall estimations. Figure 230 

4 demonstrates the temporal dynamics of input estimations and model simulations.  

Evaluating the input error quantification, method R always has much higher correlations with the true error series than 

method D in all calibration scenarios (shown in Fig. 3(3)). When the error parameters are inferred, the estimations of   via 

method D are smaller than the reference value (shown in Fig. 3(1)). This conclusion has also been reported in the study of 

Renard et al. (2009). The reason for this is that the randomness of the likelihood function leads to an underestimation of the 235 

SD of input errors. Compared with method D, the   estimation via method R is less biased from its true value (shown in 

Fig. 3 (1)), while the estimation of 


 is worse via method R (shown in Fig. 3(2)). 

For the model simulation, method R always produces the best output fit in all scenarios, supported by the highest red 

boxplots in Fig. 3(4). Also in Fig. 4, regardless of the calibration scenarios, the output uncertainty bands of method R (red 

parts) almost overlaps the true output (green line), being much better than method T (pink parts) and method D (blue parts).  240 

However, the input uncertainty bands vary depending on the calibration scenarios. When the error parameters are fixed at the 

reference values (in the scenarios add-fixed and mul-fixed), method R always outperforms the other two methods regardless 

of input error models, as its Nash–Sutcliffe efficiency coefficient (NSE) are the highest (shown in Fig. 3(5)). In Fig. 4(1) and 

Fig. 4(3), the input uncertainty bands of method R (red parts) generally converge to the true value (green line), being better 

than method D (blue parts). Without the reshuffling strategy, Method D even gives worse input estimation and model 245 

simulations than method T, demonstrated by the lower blue boxplots than pink boxplots in Fig. 3(5)) and Fig. 3(4). This 

illustrates that the ill-posed error sources in method D exert a negative impact on the model simulations. When the error 

parameters are inferred (in the scenarios of add-inferred and mul-inferred), the performance of method R depends on the 

input error models. For the scenario of add-inferred, method R is still better than other methods, having the biggest NSE 

(shown in Fig. 3(5)) and the closest error parameter estimation to the reference value (shown in Fig. 3(1) and Fig. 3(2)), 250 

although the input uncertainty band is more negatively biased from the true value (green line) than method D in Fig. 4(2). 

For the scenario of mul-inferred, the modified inputs via method R are further from the reference value than method D 

(shown in Fig. 3(5)), which might result from worse 


 estimations for the input error (shown in Fig. 3(2)). 
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3.3 Case study 2: Real data 

The above synthetic case only exhibits input error and parameter error, which focuses on testing the ability of the BEAR 255 

method in quantifying time-varying input errors while estimating model parameters. In real-life applications, the impacts of 

model structural error and output data error cannot be ignored. In order to explore the BEAR method in more general 

situations, e.g. with other errors’ interference, a real case of one catchment located in southeast Wisconsin, USA is 

demonstrated. Table 4 is a description of the test catchment and data (Baldwin et al., 2013). The daily TSS concentration and 

streamflow data are collected from the USGS database on National Real-Time Water Quality (https://nrtwq.usgs.gov/). 260 

The daily streamflow data in the USGS database comes from a stage-streamflow rating curve, where the stage and 

streamflow form a log-log linear relationship and the streamflow proxy errors follow a normal distribution with 


 as 0 and 

  as 0.103. This prior information is used in the real calibration, denoted as O-fixed scenario in Table 3. Because the BEAR 

method is implemented under the assumption that the input uncertainty is so significant that other sources of uncertainties 

can be ignored, another input data source with more significant data uncertainty, the streamflow simulation from a 265 

hydrological model, has been considered. This study selects GR4J (Perrin et al., 2003) as the hydrological model and 

calibrates its parameters with the USGS streamflow data as calibration data. If the USGS streamflow data is regarded as the 

true input data, the residual error after the model calibration can approximate the data error of GR4J simulation, which 

follows a normal distribution in log space with 


 as 0 and   as 0.764. The BwMod calibration using this input data source 

and the prior information on data error is denoted as S-fixed scenario in Table 3. To explore the ability of the BEAR method 270 

in other situations where the prior information about the input error is not sufficient, two scenarios with a wider range of the 

error parameters has also been considered, denoted as O-inferred and S-inferred in Table 3. The real case is also calibrated 

via three methods (i.e. method T, method D and method R) and adopts the same setting of the calibration algorithm as the 

synthetic case. 

Figure 5 uses several statistics to evaluate the calibration scenarios. For all scenarios in Fig. 5(b1), method R always 275 

produces a better fit to the output data than method D, consistent with the synthetic case shown in Fig. 3(4). In Fig. 5(b2), 

“Reliability” here is the ratio of observations caught by the confidence interval of 5%-95%, and the average width of this 

interval band is referred to as “Sharpness” (Yadav et al., 2007, Smith et al., 2010). In the S-fixed and S-inferred scenarios 

with significant input errors, the results of method R show much higher reliability with a larger sharpness. However, in the 

O-fixed scenario with insignificant input errors (i.e.  =0.103), the reliability and sharpness of method R are smaller than 280 

method D. Fig. 5(a) demonstrates that the   estimations vary depending on the calibration methods, but stay almost 

identical between two data sources. This illustrates that the impacts of other sources of errors significantly impair the error 

quantification, and their impacts are varied for different methods. 

In the real case shown in Fig. 6, method R still produces the best fit to the output and the uncertainty band of the modified 

input via method D is centered on the observed data. In Fig. 6(c), the uncertainty bands of the modified input are consistent 285 

in all scenarios except the O-fixed scenario with insignificant input errors (i.e.  =0.103). The uncertainty bands are closer 
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to the observed streamflow (green line), even in (c3) and (c4) where the input data comes from the simulated streamflow 

(black line). According to the results of method T in Fig. 6(a), the simulations corresponding to the observed streamflow (in 

(a1) and (a2)) catch the dynamics of observed TSS concentration better than the simulations corresponding to the simulated 

streamflow (in (a3) and (a4)). Here, the observed streamflow from the rating curve should be closer to the true input data, 290 

and could be regarded as the reference value. Given that, the modified inputs via method R are more reasonable. 

4 Discussion 

4.1 The effectiveness of rank estimation 

The novelty of the BEAR method lies in transforming a direct error value estimation to an error rank estimation. In a 

continuous sequence of data, the potential error values have an infinite number of combinations, while the error rank has 295 

limited combinations, dependent on the data length. It is far more efficient to estimate the error rank than estimate the error 

value. Compared with the IBUNE framework (Ajami et al., 2007), the BEAR method additionally infers the error ranks to 

adjust the order of the sampled errors and reduce their randomness, which significantly improves the accuracy of the error 

estimation (as demonstrated by much higher NSEs than method D in Fig. 3). The application of the secant method plays an 

essential role in this by inferring each error rank according to the residual error.  300 

Note that modifying each input error according to the corresponding residual error only works in the rank domain. In the 

value domain, if there is no constraint on the estimated input errors, they will fully compensate for the residual error with the 

aim of minimizing the objective function and subsequently be overfitted. There are two ways to impose restrictions. One is 

to regard errors and model parameters as a whole in calibration, resulting in the high dimensional computation (Kavetski et 

al., 2006). The other is to sample error randomly from the assumed error model IBUNE (Ajami et al., 2007), whose precision 305 

cannot be guaranteed. While in the rank domain, the value range of the sampled errors can be effectively limited by the 

assumed error model.  

One thing to note in the rank estimation is that even corresponding to the same rank, the error sampled at different times 

could be largely different, especially for a small sample size (depending on the data length) or a large standard deviation of 

the assumed error distribution. This problem can be addressed by selecting the optimal solution from multiple samples 310 

according to the minimization of an appropriate objective function. The secant method is a successive approximation 

algorithm and one single iteration cannot guarantee the optimal results. Considering these two points, the BEAR method set 

q iterations in the algorithm (Fig. 1). q increasing until the objective function becomes smaller than the tolerance. 

4.2 The impacts of prior information of input error model 

Method D employs the same framework as IBUNE (Ajami et al., 2007), taking advantage of stochastic error samples to 315 

modify the input observations. In Fig. 4 and Fig. 6, the uncertainty bands of modified inputs (blue parts) encompass the input 

observations (black line), illustrating that the intrinsic quality of the input observation determines the algorithm performance. 
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Figure 6 demonstrates that if the input error is insignificant in the residual, like in the O-fixed and O-inferred scenarios of the 

real case, the resultant simulations will fit the observed output (green line) well. Otherwise, the simulations are far away 

from the observed outputs (black line) due to inaccurate input observations (in the S-fixed and S-inferred scenarios in the real 320 

case). As per the finding in the previous study of Renard et al. (2010), if the SD of input errors is inferred with the model 

parameters, method D will underestimate the SD (Fig. 3(1) and Fig. 5(a2)). If the intrinsic SD of input errors is large, a fixed 

SD cannot improve the input modification and model simulation, demonstrated by a wider band in Fig. 6(b3) than in Fig. 

6(b4). If the SD of input errors is small, the prior information will constrain the impacts of other sources of errors. From the 

above, the data quality is more important than the availability of prior information for method D, especially when the 325 

intrinsic SD of the input error is large. 

However, the findings in method R are quite different. Although method R infers the input error by minimizing the model 

residual error, it is much more effective than method D to minimise the residual errors. For the synthetic case (Fig. 4(c)) and 

real case (Fig. 6(c)), the model simulations via method R (red parts) are very close to the output observations (green line). In 

other words, the estimated input error mainly depends on the output observations. Therefore, in the real case with the same 330 

output observation (Fig. 6(c)), the modified inputs are consistent among the scenarios. Given this, the model structure error 

plays an important role in estimating the input error. 

To constrain the impacts of the other sources of error, accurate prior information about the input error model is important in 

method R. In the synthetic case, fixed scenarios always produce a higher NSE of the modified input (Fig. 3(5)) and a larger 

correlation in the estimation error (Fig. 3(5)) than inferred scenarios. This illustrates that prior information can limit the 335 

impacts of model parameter error. In Fig. 6(a1), the modified inputs in the real case are around the reference value (green 

line), while in Fig. 6(a2), the modified inputs are biased from the reference value (green line). It should be noted that this 

difference is obvious in the scenarios with insignificant input error (where the model structural error is relatively large). 

When the input error is dominant, like the S-inferred scenario, method R becomes more effective to estimate the input error, 

bringing a more precise estimation of the error SD than the O-inferred scenario and similar results to the S-fixed scenario. 340 

To sum up, for method R, an accurate input error model can constrain the adverse impacts of the other sources of errors, 

especially when the other sources of error are dominant. But for method D, the input data quality is more important than this 

prior information. 

4.3 The extension to other modeling scenarios 

In this study, the BEAR method was developed in the calibration of BwMod at the daily time scale, whose input and output 345 

correspond at each time step. Therefore, in Eq. (6), the model residual , 1

p

i q −  and input error rank , 1i qk −  are at the same time 

step i. If the water quality system exhibits response delays, the time lag between the forcing data and the response (described 

as the lag) should be considered in the algorithm and Eq. (6) needs to be modified as per Eq. (11). 
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, 1 , 2

, , 1 , 1

, 1 , 2

i q i qp

i q i q i lag q p p

i lag q i lag q

k k
K k 

 

− −

− + −

+ − + −

−
= −

−
 (11) 

If the response caused by an input is not instantaneous but exhibits persistence (i.e. occurs over several time steps), the 350 

autocorrelation in the output should be addressed to ensure the independence assumption of the rank updating is satisfied. 

Current ways to deal with this problem in hydrologic modeling can provide a reference in the potential modification of the 

BEAR method. The persistence of residual errors can be represented by an autoregressive moving average (ARMA) model 

(Kuczera, 1983) or autoregressive (AR) model (Schaefli et al., 2007, Bates and Campbell, 2001). However, the ability of 

these approaches needs further discussion in systems with correlated responses. 355 

5 Conclusion 

Taking advantage of the prior information of an input error model, a new method, Bayesian error analysis with reshuffling 

(BEAR), is developed to approach the time-varying input errors in WQM inference. Through the investigation of synthetic 

data and real data, this method is shown to be robust and effective. The novelties of this algorithm are: (1) Estimating the 

error rank rather than directly estimating the error value which significantly improves the effectiveness of input error 360 

quantification by reducing the potential search space for input errors. (2) The modification of the secant method links the 

error rank of each input data to its corresponding residual, which addresses the high dimensionality problem in current 

calibration methods. 

However, the work in this study still identifies a few areas needing to be explored. Firstly, the availability of prior 

knowledge of the input error model is important. When this information is not reliable or even cannot be estimated, a 365 

significant issue is the selection of a suitable error assumption. Thus, a general measure should be found to judge whether an 

error model is appropriate, especially in real cases where the “true” information is limited. Secondly, extensions of the 

BEAR method to other water quality modeling scenarios are subject to problems such as delayed and autocorrelated 

responses. Related studies in hydrologic modeling to deal with the delay and persistency of responses could be references in 

the modification of the BEAR method. Thirdly, if the sampling and reshuffling strategy is developed within a more 370 

comprehensive framework to quantify multiple sources of error, the interactions amongst these error sources might be well 

identified and the quantification of individual errors might be improved. This study provides a starting point for developing 
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the rank estimation via the secant method to identify input error. Further study is necessary to modify the algorithm and 

improve confidence in extended case studies or model scenarios. 
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 450 

Figure 1: Flowchart of the algorithm to quantify the input errors via Bayesian error analysis with reshuffling (BEAR) method 
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Figure 2: Demonstration of the results in Table 1 before and after reshuffling the errors via the secant method 

  455 
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Figure 3: Comparison of statistical characteristics of four calibration scenarios in the synthetic case (including add-fixed, add-

inferred, mul-fixed and mul-inferred; notations are given in Table 3) via three calibration methods (including method T, method D 

and method R, their algorithms are explained in Sect. 2.5) 

  460 
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Figure 4:Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

method T, method D and method R; algorithms are explained in Sect. 2.5) for a select period of four calibration scenarios in the 

synthetic case (including add-fixed, add-inferred, mul-fixed and mul-inferred; notations are given in Table 3) 

  465 
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Figure 5:Comparison of statistical characteristics of four calibration scenarios in the real case (including O-fixed, O-inferred, S-

fixed and S-inferred, their notations are given in Table 3) via three calibration methods (including method T, method D and 

method R, their algorithms are explained in Sect. 2.5) 

  470 
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Figure 6:Comparison of time series of real data and uncertainty bands estimated via three calibration methods (including method 

T, method D and method R, algorithms are explained in Sect. 2.5) for a select period of four calibration scenarios in the real case 

(including O-fixed, O-inferred, S-fixed and S-inferred, notations are given in Table 3) 

  475 
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Table 1-1 An example illustrating the rank updating approach via the secant method  

Time 

Step i 

Observed data  1st iteration (random sample)  2nd iteration (random sample) 

o

ix  
*

iy   
, ,1

p

X i  
,1ik  

,1

p

ix  ,1

p

iy  ,1

p

i   
, ,2

p

X i  
,2ik  

,2

p

ix  ,2

p

iy  ,2

p

i  

1 2.24 24.1  0.07 13 2.18 23.8 0.29  -0.01 9 2.25 24.0 0.13 

2 1.87 23.6  -0.12 3 1.99 24.0 -0.49  -0.02 6 1.90 23.8 -0.23 

3 1.37 23.1  0.07 14 1.30 22.5 0.58  0.03 14 1.34 22.6 0.43 

4 1.02 22.2  0.16 20 0.86 21.2 0.98  0.03 13 0.99 21.7 0.41 

5 0.90 22.2  0.05 12 0.85 21.4 0.78  -0.09 3 0.98 22.0 0.21 

6 0.99 21.5  0.10 17 0.89 21.8 -0.29  0.00 10 0.99 22.2 -0.70 

7 0.76 21.5  0.07 15 0.69 20.8 0.66  -0.02 8 0.78 21.2 0.23 

8 0.87 21.4  -0.03 9 0.90 22.0 -0.59  0.06 16 0.81 21.5 -0.09 

9 0.60 21.4  0.03 10 0.57 20.1 1.31  0.11 17 0.49 19.5 1.88 

10 0.62 21.3  -0.08 7 0.70 21.0 0.31  0.11 18 0.51 19.8 1.52 

11 0.70 21.3  0.09 16 0.61 20.4 0.87  -0.09 4 0.78 21.5 -0.20 

12 0.85 21.6  -0.11 4 0.97 22.4 -0.76  0.01 12 0.85 21.8 -0.17 

13 1.55 24.2  -0.11 5 1.66 24.7 -0.46  -0.12 1 1.67 24.7 -0.53 

14 3.20 27.2  -0.08 6 3.28 27.7 -0.54  -0.11 2 3.31 27.8 -0.60 

15 1.91 24.6  -0.29 1 2.21 24.9 -0.25  0.00 11 1.91 24.2 0.43 

16 1.51 23.6  0.14 19 1.37 22.8 0.80  0.15 20 1.36 22.9 0.72 

17 1.26 22.7  0.03 11 1.23 22.7 0.07  -0.08 5 1.34 23.1 -0.36 

18 1.09 22.1  -0.08 8 1.16 22.6 -0.56  0.04 15 1.05 22.2 -0.12 

19 1.06 22.0  0.14 18 0.92 21.8 0.23  -0.02 7 1.08 22.5 -0.47 

20 0.98 22.4  -0.17 2 1.15 22.8 -0.40  0.11 19 0.87 21.6 0.82 

Objective function 2
,

1

1
( )

n

i q
in


=
  

0.40      0.47 
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Table 1-2 An example illustrating the rank updating approach via the secant method 

Time 

Step i 

3rd iteration (the secant method)  4th iteration (the secant method) 

,3iK  
,3ik  

, ,3

p

X i  
,3

p

ix  ,3

p

iy  ,3

p

i  
 

,4iK  
,4ik  

, ,4

p

X i  
,4

p

ix  
,4

p

iy  
,4

p

i  

1 5.63 6 -0.02 2.21 23.9 0.23  13.17 11 0.00 2.24 24.0 0.15 

2 8.76 10 0.00 1.88 23.8 -0.20  34.76 20 0.15 1.72 23.3 -0.20 

3 14.00 12 0.01 1.36 22.7 0.34  4.65 7 -0.02 1.39 22.9 0.19 

4 8.08 9 -0.01 1.03 21.9 0.24  3.26 4 -0.09 1.11 22.2 -0.07 

5 -0.33 2 -0.11 1.01 22.1 0.12  0.72 3 -0.09 0.98 22.0 0.24 

6 21.84 17 0.11 0.88 21.7 -0.19  19.51 17 0.11 0.88 21.7 -0.18 

7 4.28 4 -0.09 0.85 21.6 -0.14  5.54 9 -0.01 0.77 21.2 0.24 

8 17.25 16 0.06 0.81 21.5 -0.08  16.00 16 0.06 0.81 21.5 -0.10 

9 -6.12 1 -0.12 0.72 21.0 0.40  -3.32 1 -0.12 0.72 21.0 0.39 

10 4.18 3 -0.09 0.70 21.0 0.31  -0.87 2 -0.11 0.73 21.1 0.17 

11 6.29 7 -0.02 0.72 21.1 0.22  5.44 8 -0.02 0.71 21.0 0.26 

12 14.38 14 0.03 0.82 21.6 -0.03  14.36 13 0.03 0.82 21.6 -0.03 

13 30.82 19 0.11 1.44 24.0 0.17  14.54 14 0.03 1.52 24.3 -0.07 

14 41.98 20 0.15 3.05 27.5 -0.26  33.77 19 0.11 3.09 27.5 -0.30 

15 4.71 5 -0.08 1.99 24.6 0.09  3.46 5 -0.08 1.99 24.5 0.12 

16 29.64 18 0.11 1.40 23.1 0.55  11.63 10 0.00 1.52 23.4 0.22 

17 10.06 11 0.00 1.26 22.8 -0.11  13.56 12 0.01 1.25 22.8 -0.03 

18 16.83 15 0.04 1.05 22.2 -0.14  15.00 15 0.04 1.05 22.2 -0.13 

19 14.37 13 0.03 1.02 22.2 -0.27  20.79 18 0.11 0.95 21.9 0.08 

20 7.60 8 -0.02 1.00 22.2 0.23  3.80 6 0.04 0.94 22.0 0.44 

Objective function 2
,

1

1
( )

n

i q
in


=
    0.06       0.04 

Note:
, , , ,

p o p

i q i q X i qx x = − , 
, ,( | )p p p

i q i qy M x = , M is BwMod with the model parameter p (a=0.04, b=1.6,𝜅 = 0.1, Smax=70000),

*

, ,

p p

i q i i qy y = − . 

In 1st and 2nd iteration: 
, ,1

p

X i and 
, ,2

p

X i are randomly sampled from N(0,0.01),
, , ,( )p

i q X i qk k = .  

In 3rd and latter iterations:
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p

i q p p

i q i
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i q i q
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− −

− −
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−
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−
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, ,( )i q i qk k K= ; 
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, ,2
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X j  shuffled with 
,i qk
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Table 2 Descriptions of BwMod parameters 480 

Model Parameter Description Unit Reference value Prior range 

BwMod 

a wash-off coefficient - 0.04 (0, 2) 

b wash-off exponent - 1.6 (0, 3) 

κ sediment accumulate rate - 0.1 (0, 1) 

Smax 
maximum amount of sediment possible 

to be accumulated 
kg 7000 (0, 15000) 

 

 

Table 3 Summary of the calibration scenarios in case studies 

Scenario in the 

synthetic case 
Notation 

Input error model in the 

synthetic data generation 
Prior information of input error model in calibration  

1 add-fixed 
* 2, ~ (0.2,0.5 )o N= +X X    

* 2, ~ (0.2,0.5 )o N= +X X     

2 add-inferred 
* 2, ~ ( , ), ( 0.5,0.5), (0,5)o N    = +  − X X     

3 mul-fixed 
* 2exp( , ~ (0.2,0.5 )o N= )X X    

* 2exp( , ~ (0.2,0.5 )o N= )X X     

4 mul-inferred 
* 2exp( , ~ ( , ), ( 0.5,0.5), (0,5)o N    = )  − X X     

Scenario in the 

real case 
Notation 

Input data source  

in the real case 
Prior information of input error model in calibration  

1 O-fixed 
Observations from the rating 

curve (USGS database) 

* 2exp( , ~ (0, ), (0.10,0.11)o N  = ) X X     

2 O-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     

3 S-fixed 
Simulations from a 

hydrological model 

* 2exp( , ~ (0, ), (0.76,0.77)o N  = ) X X     

4 S-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     
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Table 4 Characteristics of the study catchments and calibration data 

USGS station 

number 
location State 

Drainage area 

(km2) 

04087030 
Menomonee River at Menomonee 

Fall 
Wisconsin, USA 89.83 

land use 

Period of Data 
Number of Data 

(days) Urban 

(percent) 

Agricultural 

(percent) 

Natural 

(percent) 

35 38 27 2009/10/01 - 2012/09/29 1095 
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