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Abstract. Uncertainty in inputs can significantly impair parameter estimation in water quality modeling, necessitating accurate 

quantification of input errors. However, decomposing input error from model residual error is still challenging. This study 

develops a new algorithm, referred to as Bayesian error analysis with reordering (BEAR), to address this problem. The basic 

approach requires sampling errors from a pre-estimated error distribution and then reordering them with their inferred ranks 10 

via the secant method. This approach is demonstrated in the case of total suspended solids (TSS) simulation via a conceptual 

water quality model. Based on case studies using synthetic data, the BEAR method successfully improves the identification of 

the input errors in the model calibration. The results of a real case study demonstrate that even with the presence of model 

structural error and output data error, the BEAR method can approximate the true input and bring a better model fit through 

an effective input modification. However, its effectiveness is limited by the accuracy and selection of the input error model. 15 

The application of the BEAR method in TSS simulation can be extended to other water quality models.  

1 Introduction 

For robust water management, uncertainty analysis is of growing importance in water quality modeling (Refsgaard et al., 

2007). It can provide knowledge of error propagation and the magnitude of uncertainty impacts in model simulations to guide 

improved predictive performance (Radwan et al., 2004). However, the implementation of uncertainty analysis in water quality 20 

models (WQMs) is still challenging due to complex interactions among sources of multiple errors, generally caused by a 

simplified model structure (structural uncertainty), imperfect observed data (input uncertainty and observation uncertainty in 

calibration data) and limited parameter identifiability (parametric uncertainty) (Refsgaard et al., 2007). 

Among them, input uncertainty is expected to be particularly significant in a WQM, interpreted here as the observation 

uncertainty of any input data. Observation uncertainty is different from other sources of uncertainty in modeling since these 25 

uncertainties arise independently of the WQM itself, thus, their properties (e.g. probability distribution family and distribution 

parameters) can, at least in principle, be estimated prior to the model calibration and simulation by analysis of the data 

acquisition instruments and procedures (McMillan et al., 2012). Rode and Suhr (2007) and Harmel et al. (2006) reviewed the 

uncertainty associated with selected water quality variables based on the empirical quality of observations. The general 
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methodology developed in their studies can be extended to the analysis of other water quality variables. Besides the error 30 

coming from the measurement process, the error from surrogated data is another major source of input uncertainty (McMillan 

et al., 2012). Measurements of water quality variables often lack desirable temporal and spatial resolutions, thus, the use of 

surrogate or proxy data is necessary for improved inference of water quality parameters (Evans et al., 1997, Stubblefield et al., 

2007). For the surrogate error, its probability distribution is easy to estimate from the residuals between the measurements and 

proxy values. In this process, the measurement errors are ignored given the errors introduced from the surrogate process are 35 

commonly much more than the measurement errors (McMillan et al., 2012). These estimated error distributions are “prior 

knowledge” of input uncertainty before any model calibration and can serve as the a-priori uncertainty estimation in the 

modeling process. 

Input uncertainty can lead to bias in parameter estimation in water quality modeling (Chaudhary and Hantush, 2017, Kleidorfer 

et al., 2009, Willems, 2008). Improved model calibration requires isolating the input uncertainty from the total uncertainty. 40 

However, the precise quantification of time-varying input errors is still challenging when other types of uncertainties are 

propagated through to the model results. In hydrological modeling, several approaches have been developed to characterize 

time-varying input errors, and these may hold promise for application in WQMs. The Bayesian total error analysis (BATEA) 

method provides a framework that has been widely used (Kavetski et al., 2006). Time-varying input errors are defined as 

multipliers on the input time series and inferred along with the model parameters in a Bayesian calibration scheme. This leads 45 

to a high-dimensionality problem, which cannot be avoided (Renard et al., 2009) and restricts the application of this approach 

to the assumption of event-based multipliers (the same multiplier applied to one storm event). In the Integrated Bayesian 

Uncertainty Estimator (IBUNE) (Ajami et al., 2007) approach, multipliers are not jointly inferred with the model parameters, 

but sampled from the assumed distribution and then filtered by the constraints of simulation fitting. This approach reduces the 

dimensionality significantly and can be applied in the assumption of data-based multiplier (one multiplier for one input data) 50 

(Ajami et al., 2007). However, this approach is less effective because the probability of co-occurrence of all optimal 

error/parameter values is very low, resulting in an underestimation of the multiplier variance and misidentification of the 

uncertainty sources (Renard et al., 2009). From the above, a new strategy should be developed to avoid high dimensional 

computation and ensure the accuracy of error identification. 

To complete this goal, this study develops a new algorithm – Bayesian error analysis with reordering (BEAR). The derivation 55 

and details of the BEAR algorithm in quantifying input errors are described in Sect. 2. Section 3 introduces the build-up/wash-

off model (BwMod) to illustrate this approach. Its model input, streamflow, often suffers from observational errors from a 

rating curve. By comparing the results with other calibration frameworks, the ability of the BEAR method is explored in two 

synthetic cases and a real case. In this way, the new algorithm is tested in a controlled situation (with the knowledge of the 

true error and data value) and in a realistic situation (with the interference of multiple error sources) respectively. Section 4 60 

evaluates the BEAR method and its implementation. Finally, Section 5 outlines the main conclusions and recommendations 

for this work. 
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2 Methodology 

2.1 Basic theory of identifying the input error in model calibration 

A WQM in the ideal situation without any error can be described as  65 

 * * *( | )Y X θ= M  (1) 

where the asterisk * implies the true value without error, and the true output 
*

Y  is simulated by the perfect model M with the 

true input 
*

X  and the true model parameter 
* . Here and in the following contents, a capital bold letter (e.g. ,X Y ) represents 

a vector and a lower case (e.g. ,x y ) represents a scalar.  

In reality, the model input 
o

X  (typically the rainfall or streamflow in a WQM) inevitably suffers from input error X . This 70 

will result in a calibrated model parameter 
c  biased from the true value 

*  (Kleidorfer et al., 2009). Thus, under the 

assumption that the output data and model structure are generally without errors and the input errors are additive to the true 

input data *
X , the model residual   in a traditional calibration can be described by 

 * *( | ) ( | )Y Y Y X Y X= − = − = − +o s o o c c

XM M     (2) 

where 
s

Y  is the output simulated from the model M corresponding to the observed input 
o

X  and model parameter 
c
θ , and 75 

the observed output 
o

Y  is assumed without observational errors in the derivation, thus can be denoted as 
*

Y . 

It should be noted that the derivation of the BEAR method is based on the assumption that the model only suffers from input 

error and parameter error, but other sources of error (i.e. model structural error and output observational error) can also impair 

the estimation of the model parameters and are inevitable in the WQM. Considering this realistic situation, the ability of the 

BEAR method will be tested in a case study where the interference of other sources of error has been considered. 80 

To counter the influence of input errors in a traditional calibration, an appealing approach is to subtract estimated errors 
p

X  

from the observed input 
o

X . This is illustrated as the “proposed” approach and the superscript p represents the values in this 

“proposed” approach. The residual p  will change to 

 * * *( | ) ( | )Y Y Y X Y X= − = − = − + −P o p p P p P

X XM M      (3) 

If the equivalence between 
X  and 

p

X  can be ensured for each data point, the modified input 
p

X  then becomes the same as 85 

the true value 
*

X . The proposed calibration (Eq. (3)) will turn into an ideal calibration where the optimal parameters p  will 

lead to the same simulation corresponding to the true values *  and the model residual 
p  will decrease to zero. If the inverse 

file:///C:/Users/z5040224/AppData/Local/Youdao/Dict/Application/7.5.2.0/resultui/dict/
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problem (from the zero residual to find the optimal parameter) is not unique, the calibrated parameter p  may not converge to 

the true parameter * , but lead to the same simulation as the true parameter. In this study, these parameters are also denoted 

as *  and called ideal model parameters. Besides, if the identified input error and the model parameter can compensate each 90 

other, multiple combinations of model parameter and input error may yield zero residual and their estimates will be biased 

from the ideal values. A possible way to weaken this compensation effect will be explored in Sect. 4.2. Although the 

aforementioned problems cannot be avoided, selecting the optimal input error series according to the model residual error is 

the basic theory of not only this study but also current methods identifying the input errors (i.e. BATEA (Kavetski et al., 2006). 

and IBUNE (Ajami et al., 2007)).  95 

The above approach does not improve the input error model itself but improves the WQM specification to have parameters 

closer to what would be achieved under no error conditions. Then the model can be more effectively used for scenario analysis 

(where we may know the hydrologic regime of a catchment in a hypothetical future), for forecasting under the assumption of 

perfect inputs (where the driving hydrologic forecast is independently obtained via a numerical weather prediction and a 

hydrologic model) or for regionalization of the WQM (where the model is transferred to a catchment without data). In all of 100 

these cases, an ideal model should have unbiased parameter estimates. This is our goal in identifying the optimal input errors, 

not to use the model for predictions with input data suffering the same errors. 

2.2 The introduction of the secant method 

Considering the limitations of BATEA and IBUNE framework discussed in the introduction, an improved strategy should be 

explored to avoid the high dimension challenge and meanwhile promote the error estimation accuracy. This study attempts to 105 

transform the input error quantification into the rank domain to realize it. Here, the rank is defined as the order of any individual 

value relative to the other sampled values, and determines the relative magnitude of each error in all data errors. For example, 

in the 1st iteration in Table A 1, the error at 15th time step, -0.29, is the smallest value among all the sampled errors, therefore, 

its rank is 1. In current methods, an assumption of input error model is necessary to set, which provides an overall distribution 

for the estimated input errors. If there is knowledge of the error distribution (i.e. cumulative distribution function (CDF) of 110 

input errors), the error value only depends on its rank in this distribution. Therefore, under the condition of a certain input error 

model, the rank estimation will bring similar results as the direct value estimation. Besides, the rank estimation has a few 

advantages over the direct value estimation. The discussion on this is stated in Sect. 4.1. 

In the rank domain, the challenge turns to find a way to effectively adjust the input error rank to minimize the residual error. 

The secant method can be applied to address this problem. It is an iterative process to produce better approximations to the 115 

roots of a real-valued equation (Ralston and Jennrich, 1978). Here, the root is the optimal rank of each input error and the 

equation is the corresponding model residual equal to zero. The secant method (Ralston and Jennrich, 1978) can be repeated 

as 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
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until a sufficiently accurate target value is reached. In this study, the target value is a residual of zero ( , 0p

i q = ), indicating a 120 

perfect model fit with input errors estimated exactly. Here, ,i qk  and ,

p

i q  represents the estimated rank of input error and the 

model residual at ith time step and qth iteration respectively. The error rank of each data point is updated respectively via 

Eq.(4), where i =1,…n. n is the data length and also the number of the estimated errors as these errors are data-based. 

After calculating Eq.(4) , it is possible that the rank ,i qk  is out of the rank range (for example, less than 1 or more than n), or 

not an integer. Sorting ,i qk  in all the ranks , ( 1,..., )i qk i n=  can address this problem by effectively assigning to each of them 125 

a new integer rank based on its position in the sorted list. Thus, in Eq.(4), ,i qk  should be changed to ,i qK , representing the 

pre-rank. After sorting ,i qK  for all the errors, the post-rank ,i qk  will then belong to reasonable values. The specific calculation 

of the error rank is demonstrated in the 7th and 8th row in Table A 1. 

From the above, estimating the rank of input errors via the secant method can be described as the following two equations: 

Update the rank of each input error ,i qK  via the secant method respectively for 1,...,i n= : 130 
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Sorting ,i qK  ( 1,..., )i n=  in all the error pre-ranks qK  to obtain a reasonable rank:  

 , ,( )=i q i qk k K  (6) 

where k( ) means calculating its rank.  

Thus, the procedure of input error quantification has been developed via the following key steps: 1) Sample the errors from 135 

the assumed error distribution to maintain the overall statistical characteristics of the input errors; 2) Update the input error 

ranks to minimize the model residual via the secant method (Eq. (5) and (6)); 3) Reorder these sampled errors according to the 

updated error ranks; 4) Repeat 2) and 3) for a few iterations until a defined target is achieved. This new algorithm is referred 

to as Bayesian error analysis with reordering (BEAR). An example to illustrate how the BEAR method works is presented in 

Appendix A. 140 
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2.3 Integrating the BEAR method into the Sequential Monte Carlo approach 

The core strategy of the BEAR method is to identify the input errors by estimating their ranks, which can be easily integrated 

into formal Bayesian inference schemes (for example, Markov chain Monte Carlo (MCMC, (Marshall et al., 2004)) and 

Sequential Monte Carlo (SMC, (Jeremiah et al., 2011, Del Moral et al., 2006))) and other calibration schemes (for example, 

the generalized likelihood uncertainty estimation (GLUE, (Beven and Binley, 1992))). Based on the traditional calibration 145 

approach, the BEAR method works by replacing the observed input with a modified input that is obtained through the estimated 

input error rank via the secant method. This study applies the SMC sampler and derives the BEAR method from a Bayesian 

theoretical foundation in Appendix B. In the SMC approach, the model parameter is first sampled from a prior distribution and 

then propagated through a sequence of intermediate populations by repeatedly implementing the reweighting, mutation and 

resampling processes, until the desired posterior distribution is achieved (Del Moral et al., 2006). The details of the SMC 150 

algorithm can be found in the study of Jeremiah et al. (2011). 

Figure 1 demonstrates the integration of the BEAR method into the SMC sampler. In the SMC scheme, s refers to the number 

of sequential populations. A population means a group of parameter vectors (particles) that is updated in each iteration. The 

maximum number of the population S is set as 200 in this study. In each sequential population, N particles of model parameters 

are calibrated. N is set as 100 in this study. For each particle of the model parameters, the corresponding input error ranks are 155 

updated over q iterations, where q increases until the acceptance probability is larger than a number randomly sampled from 0 

to 1. It should be noted that if the model parameters are far away from the true values, especially in the initial population, 

iterative updating of the error ranks will have little effect in reducing the model residual. Therefore, the maximum number of 

iterations should be set, referred to as Q. Q is set as 20 in this study. If q exceeds Q, the algorithm returns to the mutation step 

in Fig. 1. 160 

2.4 Comparison with other methods 

The application of the BATEA framework is limited by high dimension computation (Renard et al., 2009). It probably becomes 

impractical in quantifying the data-varying errors (rather than the event-varying errors in the study of BATEA (Kavetski et al., 

2006)), where the dimension easily exceeds 1000 (Haario et al., 2005). Therefore, the BATEA method is not considered in the 

comparison. In this study, three methods, including the “Traditional” method, “IBUNE” method and “BEAR” method, are 165 

compared to evaluate the ability of the BEAR method in estimating the model parameters and quantifying input errors. 

“Traditional” method regards the observed input as error-free without identifying input errors (i.e. Eq. (2)), while the other 

two methods employ a latent variable to counteract the impact of input error and build the modified input (i.e. Eq.(3)). In the 

“IBUNE” method, potential input errors are randomly sampled from the assumed error distribution and filtered by the 

maximization of the likelihood function (Ajami et al., 2007). Although the comprehensive IBUNE framework additionally 170 

deals with the model structural uncertainty via the Bayesian Model Averaging (BMA) method, this study only compares the 
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capacity of its input error identification approach. The “BEAR” method adds a reordering process into the “IBUNE” method 

to improve the accuracy of input error quantification. 

3 Case studies 

3.1 Water quality model: the build-up/wash-off model (BwMod) 175 

This study tests the BEAR algorithm in the context of the build-up/wash-off model (BwMod), which is a group of models to 

simulate two processes in sediment dynamics, including the build-up of sediments during dry periods and the wash-off process 

during wet periods. The two formulations were developed in a small-scale experiment (Sartor and Boyd, 1972), while in 

applications at the catchment scale, the conceptualized parameters largely abandon their physical meanings and the 

formulations can be considered a “black-box” (Bonhomme and Petrucci, 2017). This study chooses Eq. (7) to describe the 180 

build-up process and Eq. (8) to express the wash-off of sediments, representing the non-linear relationship between the wash-

off load (output) and the runoff-rate (input). These two equations were applied in the research of Sikorska et al. (2015) and in 

this study are integrated with the BEAR method. This study will test the BEAR algorithm in a case of simulating the daily 

sediment dynamics of one catchment, thus, the time scale is typically set as daily and the spatial scale is set as the catchment. 

This version of BwMod has four parameters (Table 1). The model input is streamflow, which typically comes from the 185 

observation of a rating curve. As discussed in the introduction, the error distribution can be estimated prior to the model 

calibration via a rating curve analysis. The output of the BwMod is the concentration of total suspended solids (TSS), whose 

transport can be efficiently simulated by the conceptualization of the build-up/wash-off process (Bonhomme and Petrucci, 

2017, Sikorska et al., 2015). Although BwMod is relatively simple compared with process-based WQMs, its nonlinearity and 

the use of surrogates for the input data can make it a typical WQM scenario to test the BEAR algorithm. 190 

The overall BwMod equations are: 

 ( ) ( ),

, ,  =  − −
a t

max a t a t

dS
S S s S

dt
 (7) 

where the descriptions of κ and Smax are shown in Table 1, 
,a tS  (kg) is the sediment amount available on the catchment surface 

to be washed-off at time t; ( ),  a ts S  ( kg/s ) is the amount of sediment in the stream at time t, described by the function  

 
, ,( ) ( )=  b

a t t a ts S a Q S  (8) 195 

where the descriptions of a and b are shown in Table 1, and tQ  is the streamflow at the catchment outlet at time t. 
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The output TSS concentration ,TSS tC  ( 3kg/m ) is derived via:   

 
( ),

,  =
a t

TSS t

t

s S
C

Q
 (9) 

3.2 Case study 1: Synthetic data suffering from input errors and parameter errors 

To test the capability of the secant method in identifying the input error ranks in the process of the model parameter estimation, 200 

the BEAR method is first implemented in a controlled situation with synthetic data, where the model is affected only by input 

errors and parameter errors. The true input 
*

X  is set as the daily streamflow data of the catchment in the real case (USGS ID: 

04087030), covering 1095 days from 2009/10/01 to 2012/09/29. The true output 
*

Y  is the simulated TSS concentration via 

BwMod corresponding to the true input 
*

X  and model parameters set as the reference values in Table 1. In case study 1, the 

observed output 
o

Y  is assumed to be the same as the true simulation 
*

Y , i.e. without error. The observed input 
o

X  is generated 205 

based on two types of input error models: an additive formulation and a multiplicative formulation, and the errors are assumed 

to follow a normal distribution with mean   as 0.2 and standard deviation (SD)   as 0.5. If the input errors are estimated 

based on a rating curve, like the procedure in the following real case, the mean of input error should be 0. But in order to test 

the ability of the BEAR method in wider applications, a systematic bias 0.2 has been considered in the synthetic case even 

though this is unlikely to manifest in real situations. An additive formulation (denoted as ‘add’ in Table 2) is suitable to 210 

illustrate the error generation in measurements, while the multiplicative formulation (denoted as ‘mul’ in Table 2) is 

specifically applied for errors induced from a log-log regression procedure, which is common for water quality proxy processes 

(Rode and Suhr, 2007). In the additive formulation, the generated input may be negative. If so, the negative input should be 

truncated to a positive value. In the multiplicative formulation, the generated input will stay positive. Given the description in 

the introduction, the input error model can be pre-estimated independent of calibration by analysing the input data in some 215 

studies. While in other cases, the input error model cannot be estimated or its accuracy is in question. Therefore, two scenarios 

about the prior information of  have been considered: one is fixed as the reference values (denoted as ‘fixed’ in Table 2), the 

other one is estimated as the hyperparameters with the model parameters (denoted as ‘inferred’ in Table 2). Therefore, 

Synthetic case 1 considers four scenarios, including two sets of input data generating from two input error models and two 

types of prior information about the error parameter   (the details are shown in Table 2).  220 

Each scenario is calibrated via the traditional method, the IBUNE method and the BEAR method respectively. Their algorithms 

are described in Sect. 2.4. Considering the unknown initial sediment loads in real applications, the calibration sets 90 days as 

a warm-up period to remove the influence of antecedent conditions. To compare the ability of different methods in estimating 

the input error and model parameter, this study selects the following statistical characteristics. The SD of the estimated input 

errors represents the accuracy of the input error distribution (0.5 is the reference value). The correlation between the estimated 225 
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input error and the true input error evaluates the capability of the method in catching the temporal dynamics of input error. 

The Nash-Sutcliffe efficiency (NSE) of the modified input vs true input measures the precision of the input data after removing 

the estimated input errors. In the calibration part, the simulated output corresponds to the modified input and estimated model 

parameters, and its NSE compared to the true output measures the goodness-of-fit. In the validation part, the simulated output 

corresponds to the true input and estimated model parameters, and its NSE compared to the true output can assess the accuracy 230 

of the model parameter estimation. These statistical characteristics are calculated as the weighted-average values considering 

the weights of each estimation in the posterior distribution and compared in Fig. 2. Figure C 1 in Appendix C demonstrates 

the temporal dynamics of input estimations and model simulations of synthetic case 1. In Fig. C1, “Reliability” is the ratio of 

observations caught by the confidence interval of 2.5%-97.5%, and the average width of this interval band is referred to as 

“Sharpness” (Yadav et al., 2007, Smith et al., 2010).  235 

Evaluating the model simulation, the BEAR method always produces the best output fit in all scenarios, supported by the 

highest green bars in Fig. 2(4). Although its correlations with the true error series are much higher than the IBUNE method 

(red bars) in all scenarios (in Fig. 2(2)), the BEAR method cannot ensure a better input estimation (in Fig. 2(3)) and its ability 

depends on the prior information of the input error parameter. When the error parameters are fixed at the reference values (in 

the scenarios add-fixed and mul-fixed), the BEAR method always outperforms the other two methods in the input modification 240 

and model parameter estimation, as its NSE is the highest (green bars in Fig. 2(3) and (5)). Without the reordering strategy, 

the IBUNE method even gives worse input modification, model simulation and parameter estimation than the traditional 

method, demonstrated by the lower red bars than blue bars in Fig. 2(3), (4) and (5). When the error parameters are inferred (in 

the scenarios of add-inferred and mul-inferred), the IBUNE method can improve the input data and the model parameter 

estimation compared with the traditional method (in Fig. 2(3) and (5)) although the estimations of   via the IBUNE method 245 

are always smaller than the reference value (in Fig. 2(1)). This result has also been reported in the study of Renard et al. (2009), 

which indicates that the randomness of the likelihood function leads to an underestimation of   of input errors. Unlike the 

IBUNE method, the performance of the BEAR method depends on the setting of the input error model. In the add-inferred 

scenario, the BEAR method is still better than other methods, having a bigger NSE (in Fig. 2(3), (4) and (5)) and the closer   

estimation to reference value (in Fig. 2(1)). While in the mul-inferred scenario, the modified inputs and estimated parameters 250 

via the BEAR method are worse than the IBUNE method (in Fig. 2(3) and (5)). 

3.3 Case study 2: Synthetic data suffering from input errors, parameter errors and output observation errors 

Case study 1 is an ideal situation that is used to test the effectiveness of the BEAR method in isolating the input error and the 

model parameter error. However, in real-life cases, other sources of errors (i.e. model structural error and output data error) 

will impact this effectiveness. To explore the ability of the BEAR method with the interference of other sources of errors, the 255 

output observational errors with the increasing standard deviations are considered to build the synthetic data based on the 

scenario 3 and 4 in the case study 1 (the details has been shown in Table 2). 
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Figure 3 demonstrates in the mul-fixed scenario where the prior information of standard deviation of input errors is accurate, 

the BEAR method always brings a better input modification than other methods, although its ability is impaired by the impact 

of the output observational errors as the NSEs reduces with the increasing SD of the output observational error. The IBUNE 260 

method leads to an even worse modified input than the input data without modification in the Traditional method. In the mul-

inferred scenario where the standard deviation of input errors cannot pre-estimated accurately and given in a wide range, the 

BEAR method brings worse input data while the IBUNE method can modify the input data.  

3.4 Case study 3: Real data 

To explore the ability of the BEAR method in real-life applications, a real case of one catchment located in southeast 265 

Wisconsin, USA is demonstrated. Table 3 is a description of the test catchment and data (Baldwin et al., 2013). The daily TSS 

concentration and streamflow data are collected from the USGS database on National Real-Time Water Quality 

(https://nrtwq.usgs.gov/). The daily streamflow data in the USGS database comes from a stage-streamflow rating curve, where 

the stage and streamflow form a log-log linear relationship and the streamflow proxy errors follow a normal distribution with 

  as 0 and   as 0.103. This prior information is used in the real calibration, denoted as O-fixed scenario in Table 2, where 270 

“O” represents the input data that comes from the observations of the rating curve. According to the results of Figure 3 and the 

assumption of the methodology derivation, the BEAR method works better when the input uncertainty is more significant, so 

another input data source with more significant data uncertainty, a streamflow simulation from a hydrological model, has been 

considered. This study selects GR4J (Perrin et al., 2003) as the hydrological model and calibrates its parameters with the USGS 

streamflow data as calibration data. If the USGS streamflow data is regarded as the true input data, the residual error after the 275 

model calibration can approximate the data error of GR4J simulation, which follows a normal distribution in log space with 

  as 0 and   as 0.764. The BwMod calibration using this input data source and the prior information on data error is denoted 

as S-fixed scenario in Table 2, where “S” represents the input data that comes from the simulations of GR4J model. To explore 

the ability of the BEAR method in other situations where the prior information about the input error is not sufficient, two 

scenarios with a wider range of the error parameters has also been considered, denoted as O-inferred and S-inferred in Table 280 

2. The real case is also calibrated via three methods (i.e. the traditional method, the IBUNE method and the BEAR method) 

and adopts the same setting of the calibration algorithm as the synthetic case. 

Figure 4(2) demonstrates the BEAR method always produces a better fit to the output data than the IBUNE method, consistent 

with the synthetic case shown in Fig. 2(4). In Fig.4(3), except for the O-fixed scenario, the results of the BEAR method (in 

green) show much smaller sharpness than the traditional method (in blue) and the IBUNE method (in red) with almost the 285 

same reliability. According to the results of the traditional method in Fig. C2, the simulations from the “O” streamflow (in 

(a1)) catch the dynamics of observed TSS concentration better than the simulations from the “S” streamflow (in (a3)). Thus, 

compared with the simulated streamflow via GR4J (“S” streamflow), the observed streamflow from the rating curve (“O” 

streamflow) should be closer to the true input data. In Fig. C2, the modified inputs via the BEAR method are closer to the “O” 

https://nrtwq.usgs.gov/
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streamflow (blue dots) than the “S” streamflow (pink dots), even in (c3) and (c4) where the original input data comes from the 290 

“S” streamflow. However, the modified input via the IBUNE method is always centred on the original input data it uses. Given 

being always closer to the “O” streamflow, the modified inputs via the BEAR method are more reasonable than the IBUNE 

method.  

4 Discussion 

4.1 The effectiveness of rank estimation 295 

The novelty of the BEAR method lies in transforming a direct error value estimation to an error rank estimation. In a continuous 

sequence of data, the potential error values have an infinite number of combinations, while the error rank has limited 

combinations, dependent on the data length. For example, in Table A1, the estimated error at the 1st time step could be any 

value. Even under a constrain of the range from the minimized to the maximized sampled errors (i.e. [-0.29,0.16] in the 1st 

iteration), its value estimation still has infinite possibilities due to the continuous nature of the error. In contrast, the rank is 300 

discrete, having only 20 possibilities (i.e. the integrity in [1,20]). From this point of view, it is more efficient to estimate the 

error rank than estimate the error value,  

However, the rank estimation will suffer from the sampling bias problem. The sampling bias problem is that even 

corresponding to the same rank, the error sampled at different times could be largely different, especially for a small sample 

size (depending on the data length) or a large   of the assumed error distribution. This problem can be addressed by selecting 305 

the optimal solution from multiple sampling according to the maximum of likelihood function. In three cases of this study, the 

sample size is larger than 1000, where the sampling bias problem can be neglected and one error sampling is enough. But in 

some cases where the sample size is small (i.e. around 10), multiple sampling should be undertaken. 

Besides, to avoid the high-dimension calculation, modifying each input error according to its corresponding residual error only 

works in the rank domain. In the value domain, if there is no constraint on the estimated input errors, they will fully compensate 310 

for the residual error to maximize the likelihood function and subsequently be overfitted. There are two ways to impose 

restrictions. One is to regard errors and model parameters as a whole in calibration, like the BATEA framework (Kavetski et 

al., 2006), resulting in a high dimensional computation. The other is to sample error randomly from the assumed error model, 

like the IBUNE framework (Ajami et al., 2007), whose precision cannot be guaranteed due to the error randomness. However, 

in the BEAR method, the inference focuses on the error rank where the value range of the sampled errors can be effectively 315 

limited by the assumed error model. Additionally, adjusting the order of the sampled errors according to the inferred error rank 

can reduce the randomness in the IBUNE framework (Ajami et al., 2007), which significantly improves the accuracy of the 

error estimation (as demonstrated by much higher NSEs than the IBUNE method in Fig. 2). The reordering step is implemented 

when the model parameter has been updated and aims to find the optimal input error series corresponding to the minimized 

residual error. After the reordering step, the optimal input error is a deterministic function of the model parameter. Thus, unlike 320 
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formal Bayesian inference, the BEAR method does not update the posterior distribution of the input errors, but identifies the 

input error through the deterministic relationship between the input error and model parameter. 

4.2 The impacts of prior information of input error model 

The IBUNE method takes advantage of stochastic error samples to modify the input observations (Ajami et al., 2007). Figure 

C 5 demonstrates compared with O-fixed and O-inferred scenarios, S-fixed and S-inferred scenarios uses simulated streamflow 325 

whose input error is more significant, and the resultant simulations (black line) via the IBUNE method are further away from 

the observed outputs (red dots). As per the findings in the previous study of Renard et al. (2010), if the   of input errors is 

inferred with the model parameters, the IBUNE method will underestimate   (in Fig. 2(1) and Fig. 4(1)). If   is fixed via 

prior information, the input modification and model simulation cannot be improved, especially in the scenarios with large 

intrinsic   of input errors (in Fig. 2 and Fig. 3). From the above, the ability of the IBUNE method depends on the input data 330 

quality and the improvement of the input data and model simulation only happens when the   of the estimated input error is 

small. The availability of prior information is insignificant for the IBUNE method, especially when the intrinsic   of the 

input error is large. 

However, the findings in the BEAR method are quite different. Accurate prior information about the input error model is 

important in the BEAR method. Figure 3 demonstrates fixed scenarios calibrated via the BEAR method always produce a 335 

higher NSE of the modified input than inferred scenarios. This is likely because the prior information can constrain the input 

error distribution and reduce the impacts of other sources of errors. The availability of prior information of the input error 

relies on studies about benchmarking observational errors of water quality and hydrologic data, and the selection of a proper 

input error model is important. Comparing the results in Figure 2, when the input error model is an additive formulation, the 

BEAR method consistently brings the best performance regardless of the prior information of the error  . When the input 340 

error model is a multiplicative formulation, the BEAR method cannot improve the input data if the prior information of the 

error   is not accurate. This illustrates that the compensating effect between the input error and parameter error is weaker in 

the additive form of the input error. This is probably related to the specific model structure, as the exponent parameter b in 

BwMod has a stronger interaction with the multiplicative errors than the additive errors. Thus, more comprehensive 

comparisons should be undertaken to explore the capacity of different input error models in different model applications. 345 

To sum up, the ability of the BEAR method depends on the accuracy of prior information of the input error parameter and the 

selection of the input error model. The IBUNE method can modify the input data when the standard deviation of the estimated 

input error is much smaller than the true value. It is most likely to make use of the stochastic errors to improve the original 

input data, but not effectively identify the input error. 
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4.3 The extension to other modeling scenarios 350 

In this study, the BEAR method was developed in the calibration of BwMod at the daily time scale, whose input and output 

can be regarded as the correspondence at each time step. Therefore, in Eq.(5), the model residual , 1

p

i q −  and input error rank 

, 1i qk −  are at the same time step i. If the water quality system exhibits delayed response, the time lag between the forcing data 

and the response (described as lag) should be considered in the algorithm and Eq. (5) needs to be modified as Eq. (10). 

 , 1 , 2

, , 1 , 1

, 1 , 2


 

− −

− + −

+ − + −

−
= −

−

i q i qp

i q i q i lag q p p

i lag q i lag q

k k
K k  (10) 355 

If the response caused by an input is not instantaneous but exhibits persistence (i.e. occurs over several time steps), the 

autocorrelation in the output should be addressed to ensure the independence assumption of the rank updating is satisfied. 

Current ways to deal with this problem in hydrologic modelling can provide a reference to the potential modification of the 

BEAR method. Autocorrelation in the residual errors can be represented by an autoregressive moving average (ARMA) model 

(Kuczera, 1983) or autoregressive (AR) (Schaefli et al., 2007, Bates and Campbell, 2001). The correlated part of the error is 360 

removed from the residual error and the remaining part will be only impacted by the input error. Thus, the correspondence 

between the input error and the residual error part is ensured and the latter process will be the same as the application of the 

BEAR method in this study. Following this idea, the autoregressive (AR) model has been integrated with the BEAR method 

in the study of Wu et al. (2021) to deal with the autocorrelation of residual errors in a hydrologic model. The results prove this 

integration is effective to improve the input error estimation.  365 

However, this treatment may not guarantee the improvement of the input error estimation in this study where the sediment 

concentrate is simulated at the daily time scale (Figure D 1). At this time scale, one input (streamflow) may not impact the 

response (sediment concentration) for multiple time steps and autocorrelation may not be well represented via a simple 

autocorrelation function. When the temporal resolution of the data is high (i.e. minute) and one model output is affected by 

many inputs, the memory effect may be addressed effectively via the AR model. Therefore, the specific representation of the 370 

autocorrelation in the residual error needs further discussion through comparisons in different time scales or with different 

characteristics in the memory effect. 

5 Conclusion 

Taking advantage of the prior information of an input error model, a new method, Bayesian error analysis with reordering 

(BEAR), is proposed to approach the time-varying input errors in WQM inference. It contains two main processes: sampling 375 

the errors from an assumed error distribution and reordering them with the inferred ranks via the secant method. Through the 

investigation of synthetic data and real data, this method is shown to be effective but its ability is limited by the accuracy and 

selection of the input error model. The novelties of this algorithm are: (1) The estimation focuses on the error rank rather than 
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the error value, which enhances the constraints of the input error model on the estimated errors and avoids the high 

dimensionality problem resulting from calibrating all the errors along with the model parameter as a whole. (2) The 380 

introduction of the secant method realizes updating the error rank of each input data according to its corresponding residual 

and tackles the nonlinearity challenge in the WQM transformation. 

However, the work in this study still identifies a few areas needing to be explored. Firstly, the availability of prior knowledge 

of the input error model is important. When this information is not reliable or even cannot be estimated, a significant issue is 

the selection of a suitable error assumption. Thus, a general measure should be found to judge whether an error model is 385 

appropriate, especially in real cases where the “true” information is limited. Secondly, extensions of the BEAR method to 

other water quality modeling scenarios are subject to problems such as delayed and autocorrelated responses. Related studies 

in hydrologic modeling to deal with the delay and persistency of responses could be references in the modification of the 

BEAR method. Thirdly, if the sampling and reordering strategy is developed within a more comprehensive framework to 

quantify multiple sources of error, the interactions amongst these error sources might be well-identified and the quantification 390 

of individual errors might be improved. This study provides a starting point for developing the rank estimation via the secant 

method to identify input error. Further study is necessary to modify the algorithm and improve confidence in extended case 

studies or model scenarios. 
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 395 

Figure 1 Flowchart of the algorithm to quantify the input errors via Bayesian error analysis with reordering (BEAR) method in the 

SMC calibration scheme (The grey charts demonstrate the BEAR method while the white charts demonstrate the SMC algorithm. 

The details of the BEAR method can refer to Appendix A. The details of the SMC algorithm can refer to the study of Jeremiah et 

al. (2011), including the Mutation step, the Reweight step and calculating the acceptance probability. rand(0,1) means a number 

randomly sampled from 0 to 1.) 400 
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Figure 2: Comparison of statistical characteristics of four calibration scenarios in the synthetic case 1 (including add-fixed, add-

inferred, mul-fixed and mul-inferred; notations are given in Table 2) via three calibration methods (including the traditional method, 

the IBUNE method and the BEAR method, their algorithms are explained in Sect. 2.4) 405 
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Figure 3 Comparison of Nash-Sutcliffe efficiency (NSE) of the modified input v.s true input under the interference of the output 

observational errors with the increasing standard deviations in two calibration scenarios in the synthetic case 2 (including mul-fixed 

and mul-inferred; notations are given in Table 2) via three calibration methods (including the traditional method, the IBUNE method 410 

and the BEAR method, their algorithms are explained in Sect. 2.4) 
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Figure 4: Comparison of statistical characteristics of four calibration scenarios in the real case (including O-fixed, O-inferred, S-

fixed and S-inferred, their notations are given in Table 2) via three calibration methods (including the traditional method, the IBUNE 415 

method and the BEAR method, their algorithms are explained in Sect. 2.4) 
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Table 1 Descriptions of BwMod parameters 

Model Parameter Description Unit 
Reference value in 

the synthetic case 

Prior range in 

the case study 

BwMod 

a wash-off coefficient - 0.04 (0, 2) 

b wash-off exponent - 1.6 (0, 3) 

κ sediment accumulate rate - 0.1 (0, 1) 

Smax 
maximum amount of sediment possible 

to be accumulated 
kg 7000 (0, 15000) 

 420 

Table 2 Summary of the calibration scenarios in case studies 

Scenario in 

the synthetic 

case 1 

Notation 
Input error model in the 

synthetic input generation 

Prior information of input error model in 

calibration 
 

1 add-fixed 
* 2, ~ (0.2,0.5 )o N= +X X    

* 2, ~ (0.2,0.5 )o N= +X X     

2 add-inferred 
* 2, ~ ( , ), =0.2, (0,1)o N    = + X X     

3 mul-fixed 
* 2exp( , ~ (0.2,0.5 )o N= )X X    

* 2exp( , ~ (0.2,0.5 )o N= )X X     

4 mul-inferred 
* 2exp( , ~ ( , ), =0.2, (0,1)o N    = ) X X     

Scenario in 

the synthetic 

case 2 

Notation 
Observational error model in 

the synthetic output generation 

Prior information of input error model in 

calibration 
 

1 mul-fixed * 2exp( , ~ (0, )o

YN = )Y Y  

2=0,0.1,0.2,0.3,0.4Y  

* 2exp( , ~ (0.2,0.5 )o N= )X X     

2 mul-inferred 
* 2exp( , ~ ( , ), =0.2, (0,1)o N    = ) X X     

Scenario in 

the real case 
Notation 

Input data source  

in the real case 

Prior information of input error model in 

calibration 
 

1 O-fixed 
Observations from the rating 

curve (USGS database) 

* 2exp( , ~ (0, ), =0.103X X  = )o N    

2 O-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     

3 S-fixed 
Simulations from a 

hydrological model 

* 2exp( , ~ (0, ), =0.764X X  = )o N    

4 S-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     
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Table 3 Characteristics of the study catchments and calibration data 425 

USGS station number location State 
Drainage area 

(km2) 

04087030 
Menomonee River at 

Menomonee Fall 
Wisconsin, USA 89.83 

land use 

Period of Data 
Number of Data 

(days) Urban 

(percent) 

Agricultural 

(percent) 

Natural 

(percent) 

35 38 27 2009/10/01 - 2012/09/29 1095 

 



21 

Appendix A: The illustration of the BEAR method 

Table A 1 An example illustrating the BEAR method 

 

 430 

 

Figure A 1 Demonstration of the input error estimated in Table A.1 
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The BEAR method for identifying the input errors is implemented after generating the model parameters and contains two 

main parts: sampling the errors from an assumed error distribution and reordering them with the inferred ranks via the secant 435 

method. An example is illustrated in Table A 1 and the explanation about the specific steps is presented in the following 

contents. 

(1) In the 1st iteration (q=1), the errors are randomly sampled from the assumed error distribution (row 1), and then are 

sorted to get their ranks (row 2). This error series is employed to modify the input data, which leads to a new model 

simulation and model residual (row 3).  440 

(2) Repeat step (1) in the 2nd iteration (q=2) as two sets of samples are prerequisites for the updating via the secant 

method. The results are shown in row 4, 5 and 6. Figure A 1(a) demonstrates that the ranges of the error distribution 

are the same between the true input errors (black line) and the sampled errors (blue and green lines) as they come 

from the same error distribution under the condition that prior knowledge of the input error distribution is correct. 

However, the values at each time step cannot match due to the randomness of the sampling. 445 

(3) At the 1st time step in the 3rd iteration (i=1, q=3 in Eq. (4)), the pre-rank 1,3K  is calculated via the secant method 

(illustrated as the following Eq. (4)). The details are demonstrated in solid boxes in Table A.1. 

 1,2 1,1

1,3 1,2 1,2

1,2 1,1

9 13
=9-(-0.13) 5.8

0.13 ( 0.29)


 

− −
= − =

− − − −

p

p p

k k
K k  

(4) Repeat step (3) for all the time steps. The calculated pre-ranks are shown in row 7. 

(5) Sort all the pre-ranks to get the integral error rank (row 8). 450 

(6) According to the updated error ranks (row 8), the sampled errors in the 2nd iteration (row 4) are reordered. The 

example for the 1st time step is demonstrated in dotted boxes in Table A.1. The error rank at the 1st time step is 

updated as 6, and the rank 6 corresponds to the error value -0.02 in the 2nd iteration. Therefore, -0.02 is the input 

error at the 1st time step in the 3rd iteration. Following this example, the sampled errors at all the time steps are 

reordered. The results are shown in row 9. Figure A 1 (b) demonstrates that after reordering the errors with the inferred 455 

ranks, the estimated errors are much closer to the true input error, and the mean square error (MSE) of the model 

residual reduces in Table A 1. 

(7) The reordered input error will lead to a new input data, a new model simulation and a new model residual. The residual 

result and its MSE statistic are shown in row 10 and 11 respectively. 

(8) Check the convergence: If the objective function or likelihood function meets the convergence criterion, stop and the 460 

input error estimation is accepted. Otherwise, q=q+1, repeat step (3)~(8) until q is larger than the maximum numbers 

of iteration Q.  
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Appendix B: Theoretical foundation of the BEAR methodEquation Chapter (Next) Section 1 

(1) Basic notation 465 

In general, a model M() simulates the output 
s

Y  given the observed input 
o

X and model parameters  ，as follows: 

 
s ( , )Y X = oM   (1) 

Here and in the following, s represents the simulated value, o represents the observed value, and * represents the true value. 

(2) Input errors 

The input errors  X  are assumed to be represented by input multipliers, which are sampled from an uncorrelated lognormal 470 

distribution, and the observed input X
o  can then be related to the true input *

X  by the following equation: 

 
* 2exp( , ~ ( , )X X  = )o

X X X XN    (2) 

where  X  are assumed to follow a Gaussian distribution with mean X  and variance 
2

X . 

(3) Output observational errors and model structural errors 

In the derivation, these two parts are assumed to be error-free, therefore, 475 

 
*

Y Y=o

 (3) 

 
*() ()=M M  (4) 

(4) Remnant errors 

Based on the previous assumptions, the observed output equals the true output, and the difference between the simulated output 

and the observed output,  , will be equal to the difference between the simulated output and the true output, as follows: 480 

 
s o * 2, ~ (0, )Y Y Y  = + = +   (5) 

where the remnant errors   are assumed to follow a Gaussian distribution with mean 0 and variance 
2 . 

(5) Bayesian inference 

According to the study of Renard et al. (2010), the posterior distribution of all inferred quantities is given by Bayes’ theorem, 

as follows: 485 
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( , , , , | , )

( | , , ) ( | , ) ( , , , )

o o

X X X

o o

X X X X X X

Y X

Y X

 

   

p

p p p

  

    
 (6) 

The full posterior distribution comprises the following three parts: the likelihood of the observed output ( | , , )o o

X
Y X p , 

the hierarchical parts of the input multiplier ( | , )X X Xp    and the prior distribution of deterministic parameters and 

hyperparameters ( , , , )p   X X . 

Renard et al. (2009) argue that in the IBUNE method, X  are randomly sampled in each evaluation of the likelihood function 490 

and their different values at different evaluations will lead to the nondeterministic nature of the likelihood function (Equation 

(6)). In Bayesian inference, the likelihood function should return a fixed value for a given set of arguments. However, the 

randomness of the likelihood function in the IBUNE method breaks this theoretical foundation. Conversely, in the BEAR 

method, the secant method is applied to find a deterministic relationship between the rank of each input error and its 

corresponding model residual error. The residual errors depend on the model parameters  . The magnitude of the whole input 495 

errors (i.e. their cumulative distribution function (CDF)) is related to the hyperparameters of the multipliers ,X X  . Given 

the value of each input error is determined by the CDF of the whole input errors and its relative rank among them, X depends 

on , X X  and  , as follows: 

 = ( , , )X X X f    (7) 

Considering X  are sampled from 
2( , )X XN   , ( | , )X X Xp   is fixed when ,X X  are determined and do not need to 500 

be considered in Equation (6). Therefore, the posterior distribution of all inferred parameters (Equation (6)) in the BEAR 

method will turn into: 

 
( , , , , | , )

( | , , , ) ( , , , )

o o

X X X

o o

X X X X

Y X

Y X

 

 

p

p p

  

    
 (8) 

The above derivation states if the relationship between the input errors and model parameters (Equation (7)) can be determined, 

the problem of parameter estimation and input error identification (Equation (6)) can then be interpreted as the updating 505 

, ,X X    (Equation (8)) in the Bayesian inference. There are two ways to realize this determined relationship: one is to 

estimate the parameters and input errors together, as the BATEA approach, which will suffer from the high-dimensionality 

problem (Renard et al., 2010); the other one is to explore the relationship between each input error rank and model parameters 
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via the secant method first, and then transform the error rank into the error value according to the estimated error parameters 

,X X  , as the BEAR approach in this study. 510 
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Appendix C: The time series of results in the case study 

 

Figure C 1(1) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 515 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of add-

fixed scenarios in the synthetic case 1(notations are given in Table 2) 
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 520 

Figure C 2(2) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of add-

inferred scenarios in the synthetic case 1(notations are given in Table 2) 

 

  525 
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Figure C 3(3) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of mul-

fixed scenarios in the synthetic case 1(notations are given in Table 2) 

 530 
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Figure C 4(4) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of mul-

inferred scenarios in the synthetic case 1(notations are given in Table 2) 535 

 

  



31 

 

 

Figure C 2(1) Comparison of time series of real data and uncertainty bands estimated via three calibration methods (including the 540 

traditional method, the IBUNE method and the BEAR method, algorithms are explained in Sect. 2.4) for a select period of O-fixed, 

O-inferred scenarios in the real case (notations are given inTable 2) 
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Figure C 5(2) Comparison of time series of real data and uncertainty bands estimated via three calibration methods (including the 

traditional method, the IBUNE method and the BEAR method, algorithms are explained in Sect. 2.4) for a select period of S-fixed 545 

and S-inferred scenarios in the real case (notations are given inTable 2) 
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Appendix D: The results after applying the autoregressive (AR) model 

 

Figure D 1 Comparison of Nash-Sutcliffe efficiency (NSE) of the modified input v.s true input under the interference of the output 550 

observational errors with the increasing standard deviations in two calibration scenarios in synthetic case 2 (including mul-fixed and 

mul-inferred; notations are given in Table 2) via three calibration methods (including the IBUNE method and the BEAR method 

and the BEAR-AR method, the BEAR-AR method is the BEAR method after applying the autoregressive (AR) model to deal with 

the residual error) 

 555 
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