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Abstract. Uncertainty in inputs can significantly impair parameter estimation in water quality modeling, necessitating accurate 

quantification of input errors. However, decomposing input error from model residual error is still challenging. This study 

develops a new algorithm, referred to as Bayesian error analysis with reshufflingreordering (BEAR), to address this problem. 

The basic approach requires sampling errors from a pre-estimated error distribution and then reshufflingreordering them with 10 

their inferred ranks via the secant method. This approach is demonstrated in the case of total suspended solids (TSS) simulation 

via a conceptual water quality model. Based on case studies using synthetic data, the BEAR method successfully improves the 

identification of the input errors in the model calibration. The results of a real case study demonstrate that even with the 

presence of model structural error and output data error, the BEAR method can approximate the true input and bring a better 

model fit through an effective input modification. However, its effectiveness is limited by the assumption that the input 15 

uncertainty should be dominantaccuracy and that the prior informationselection of the input error model can be estimated.. 

The application of the BEAR method in TSS simulation is effective for understanding a range of water quality conditions and 

the further developed algorithm can be extended to other water quality predictions.models.  

1 Introduction 

For robust water management, uncertainty analysis is of growing importance in water quality modeling (Refsgaard et al., 20 

2007). It can provide knowledge of error propagation and the magnitude of uncertainty impacts in model simulations to guide 

improved predictive performance (Radwan et al., 2004). However, the implementation of uncertainty analysis in water quality 

models (WQMs) is still challenging due to complex interactions among sources of multiple errors, generally caused by a 

simplified model structure (structural uncertainty), imperfect observed data (input uncertainty and observation uncertainty in 

calibration data) and limited parameter identifiability (parametric uncertainty) (Refsgaard et al., 2007). 25 

Among them, input uncertainty is expected to be particularly significant in a WQM, interpreted here as the observation 

uncertainty of any input data. Observation uncertainty is different from other sources of uncertainty in modeling since these 

uncertainties arise independently of the WQM itself, thus, their properties (e.g. probability distribution family and distribution 

parameters) can, at least in principle, be estimated prior to the model calibration and simulation by analysis of the data 
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acquisition instruments and procedures (McMillan et al., 2012). Rode and Suhr (2007) and Harmel et al. (2006) reviewed the 30 

uncertainty associated with selected water quality variables based on the empirical quality of observations. The general 

methodology developed in their studies can be extended to the analysis of other water quality variables. Besides the error 

coming from the measurement process, the error from surrogated data is another major source of input uncertainty (McMillan 

et al., 2012). Measurements of water quality variables often lack desirable temporal and spatial resolutions, thus, the use of 

surrogate or proxy data is necessary for improved inference of water quality parameters (Evans et al., 1997, Stubblefield et al., 35 

2007). For the surrogate error, its probability distribution is easy to estimate from the residuals between the measurements and 

proxy values. In this process, the measurement errors are ignored given the errors introduced from the surrogate process are 

commonly much more than the measurement errors (McMillan et al., 2012). These estimated error distributions are “prior 

knowledge” of input uncertainty before any model calibration and can serve as the a-priori uncertainty estimation in the 

modeling process. 40 

Input uncertainty can lead to bias in parameter estimation in water quality modeling (Chaudhary and Hantush, 2017, Kleidorfer 

et al., 2009, Willems, 2008). Improved model calibration requires isolating the input uncertainty from the total uncertainty. 

However, the precise quantification of time-varying input errors is still challenging when other types of uncertainties are 

propagated through to the model results. In hydrological modeling, several approaches have been developed to characterize 

time-varying input errors, and these may hold promise for application in WQMs. The Bayesian total error analysis (BATEA) 45 

method provides a framework that has been widely used (Kavetski et al., 2006). Time-varying input errors are defined as 

multipliers on the input time series and inferred along with the model parameters in a Bayesian calibration scheme. This leads 

to a high-dimensionality problem, which cannot be avoided (Renard et al., 2009) and restricts the application of this approach 

to the assumption of event-based multipliers (the same multiplier applied to one storm event). In the Integrated Bayesian 

Uncertainty Estimator (IBUNE) (Ajami et al., 2007) approach, multipliers are not jointly inferred with the model parameters, 50 

but sampled from the assumed distribution and then filtered by the constraints of simulation fitting. This approach reduces the 

dimensionality significantly and can be applied in the assumption of data-based multiplier (one multiplier for one input data) 

(Ajami et al., 2007). However, this approach resultsis less effective because the probability of co-occurrence of all optimal 

error/parameter values is very low, resulting in an underestimation of the multiplier variance and misidentification of the 

uncertainty sources (Renard et al., 2009). From the above, a new strategy should be developed to avoid high dimensional 55 

computation and ensure the accuracy of error identification. 

To complete this goal, this study develops a new algorithm – Bayesian error analysis with reshufflingreordering (BEAR). The 

derivation and details of the BEAR algorithm in quantifying input errors are described in Sect. 2. Section 3 introduces the 

build-up/wash-off model (BwMod) to illustrate this approach. Its model input, streamflow, often suffers from observational 

errors from a rating curve. By comparing the results with other calibration frameworks, the ability of the BEAR method is 60 

explored in atwo synthetic casecases and a real case. In this way, the new algorithm is tested in a simplecontrolled situation 

(with an assumptionthe knowledge of the true outputerror and data and model structurevalue) and in a realistic situation (with 



3 

the interference of multiple error sources) respectively. Section 4 evaluates the BEAR method and its implementation. Finally, 

Section 5 outlines the main conclusions and recommendations for this work. 

2 Methodology 65 

2.1 Basic theory of identifying the input error in model calibration 

A WQM in the ideal situation without any error can be described as  

 * * *( | )Y X θ= M  (1) 

where the true asterisk * implies the true value without error, and the true output 
*

Y  is simulated by the perfect model M with 

the true input 
*

X  and the true model parameter 
* . Here and in the following contents, a capital bold letter (e.g. ,X Y ) 70 

represents a vector and a lower case (e.g. ,x y ) represents a variablescalar.  

In reality, the model input 
o

X  (typically the rainfall or streamflow in a WQM) inevitably suffers from input error X . This 

will result in a calibrated model parameter 
c  biased from the true value 

*  (Kleidorfer et al., 2009). Thus, under the 

assumption that the output data and model structure are generally without errors and the input errors are additive to the true 

input data *
X , the model residual   in a traditional calibration can be described by 75 

 * *( | ) ( | )Y Y Y X Y X= − = − = − +o s o o c c

XM M     (2) 

Under the ideal situation without input errors, the residual will reduce to zero, like 

 * * *( | ) 0o s M= − − =Y Y = Y X   (3) 

where 
s

Y  is the output simulated from the model M corresponding to the observed input 
o

X  and model parameter 
c
θ , and 

the observed output 
o

Y  is assumed without observational errors in the derivation, thus can be denoted as 
*

Y . 80 

It should be noted that the derivation of the BEAR method is based on the assumption that the model only suffers from input 

error and parameter error, but other sources of error (i.e. model structural error and output observational error) can also impair 

the estimation of the model parameters and are inevitable in the WQM. Considering this realistic situation, the ability of the 

BEAR method will be tested in a case study where the interference of other sources of error has been considered. 

To counter the influence of input errors in a traditional calibration, an appealing approach is to subtract estimated errors 
p

X  85 

from the observed input 
o

X . This is illustrated as the “proposed” approach and the superscript p represents the values in this 

“proposed” approach. The residual p  will change to 

file:///C:/Users/z5040224/AppData/Local/Youdao/Dict/Application/7.5.2.0/resultui/dict/
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 * * *( | ) ( | )Y Y Y X Y X= − = − = − + −P o p p P p P

X XM M      (3) 

If the equivalence between 
X  and p

X  can be ensured for each data point, the modified input 
p

X  then becomes the same as 

the true value 
*

X . The proposed calibration (Eq. (3)) will turn into an ideal calibration where the optimal parameters p  will 90 

lead to the same simulation corresponding to the true values *  and the model residual p  will decrease to zero. If the inverse 

problem (from the zero residual to find the optimal parameter) is not unique, the calibrated parameter p  may not converge to 

the true parameter * , but lead to the same simulation as the true parameter. In this study, these parameters are also denoted 

as *  and called ideal model parameters. Besides, if the identified input error and the model parameter can compensate each 

other, multiple combinations of model parameter and input error may yield zero residual and their estimates will be biased 95 

from the ideal values. A possible way to weaken this compensation effect will be explored Sect. 4.2. Although the 

aforementioned problems cannot be avoided, selecting the optimal input error series according to the model residual error is 

the basic theory of not only this study but also current methods identifying the input errors (i.e. BATEA (Kavetski et al., 2006). 

and IBUNE (Ajami et al., 2007)).  

The above approach does not improve the input error model itself but improves the WQM specification to have parameters 100 

closer to what would be achieved under no error conditions. Then the model can be more effectively used for scenario analysis 

(where we may know the hydrologic regime of a catchment in a hypothetical future), for forecasting under the assumption of 

perfect inputs (where the driving hydrologic forecast is independently obtained via a numerical weather prediction and a 

hydrologic model) or for regionalization of the WQM (where the model is transferred to a catchment without data). In all of 

these cases, an ideal model should have unbiased parameter estimates. This is our goal in identifying the optimal input errors, 105 

not to use the model for predictions with input data suffering the same errors. 

2.2 The innovation introduction of the secant method 

Considering the limitations of BATEA and IBUNE framework discussed in the introduction, an improved strategy should be 

explored to avoid the high dimension challenge and meanwhile promote the error estimation accuracy. The secant method can 

be applied to address this problem. This is an iterative process to produce better approximations to the roots of a real-valued 110 

equation (Ralston and Jennrich, 1978). Here, the root is the optimal value of each input error and the equation is the 

corresponding model residual equal to zero. A traditional approach to updating this is impractical because the estimated input 

error will fully complement the model error and always lead to a zero residual error regardless of the model parameters. More 

discussion on this is stated in Sect. 4.1. 

This study attempts to transform the input error quantification into the rank domain to realize it. Here, the rank is defined as 115 

the order of any individual value relative to the other sampled values, and determines the relative magnitude of each error in 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
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all data errors. For example, in the 1st iteration in Table A 1, the error at 15th time step, -0.29, is the smallest value among all 

the sampled errors, therefore, its rank is 1. In current methods, an assumption of input error model is necessary to set, which 

provides an overall distribution for the estimated input errors. If there is knowledge of the error distribution (i.e. cumulative 

distribution function (CDF) of input errors), the error value only depends on its rank in this distribution. Therefore, under the 120 

condition of a certain input error model, the rank estimation will bring similar results as the direct value estimation. Besides, 

the rank estimation has a few advantages over the direct value estimation. The discussion on this is stated in Sect. 4.1. 

In the rank domain, the challenge turns to find a way to effectively adjust the input error rank to minimize the residual error.  

The secant method can be applied to address this problem. This is an iterative process to produce better approximations to the 

roots of a real-valued equation (Ralston and Jennrich, 1978). Here, the root is the optimal value of each input error and the 125 

equation is the corresponding model residual equal to zero.and this error distribution can then constrain the value range of 

sampled errors. Therefore, the secant method is very useful in the rank domain, where the root turns to the optimal rank of 

each input error (rather than its value) and the equation is still the corresponding model residual equal to zero. This new 

approach, referred to as the Bayesian error analysis with reshuffling (BEAR) method, should be implemented in two steps: 

sampling the errors from the estimated error distribution and reshuffling these sampled errors corresponding to the inferred 130 

error ranks via the secant method. 

The secant method (Ralston and Jennrich, 1978) can be repeated as 

 
, 1 , 2

, , 1 , 1

, 1 , 2

i q i qp

i q i q i q p p

i q i q

k k
k k 

 

− −

− −

− −

−
= −

−
 (5)(4) 

until a sufficiently accurate target value is reached. In this study, the target value is a residual of zero ( , 0p

i q =
) indicating a 

perfect model fit with input errors estimated exactly. Here, ,i qk
 represents the estimated rank for ith input error at the qth 135 

iteration, , 1

p

i q −  is the residuals corresponding to the input error rank , 1i qk − . The error rank of each data point is updated 

respectively via Eq. , where i =1,…n. n is the data length and also the number of the estimated errors as these errors are data-

based. 

After calculating Eq. , it is possible that the rank ,i qk
 is out of the rank range (for example, less than 1 or more than n), or not 

an integer. Sorting ,i qk
 in all the ranks , ( 1,..., )i qk i n=

 can address this problem by effectively assigning to each of them a new 140 

integer rank based on its position in the sorted list.scaling the calculated ranks ,i qk
 to an integer from 1 to n. Thus, in Eq. (5), 

(4), ,i qk
 should be changed to ,i qK

, representing the pre-rank. After sorting ,i qK
 for all the errors, the post-rank ,i qk

 will then 

belong to reasonable values. The specific calculation of the error rank is demonstrated in the 7th and 8th row in Table A 1. 

 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
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From the above, estimating the rank of input errors via the secant method can be described as the following two equationstwo 145 

steps: 

Update the rank of each input error ,i qK
 
( 1,..., )i n=

 via the secant method respectively for 1,...,i n= : 

 
, 1 , 2

, , 1 , 1

, 1 , 2

i q i qp

i q i q i q p p

i q i q

k k
K k 

 

− −

− −

− −

−
= −

−
  (6)(5) 

Sorting ,i qK ( 1,..., )i n=
 in all the error pre-ranks qK

 to obtain a reasonable rank:  

 
, ,( )i q i qk k K=   (7)(6) 150 

where k( ) means calculating its rank. 

Thus, the procedure of input error quantification has been developed via the following key steps: 1) Sample the errors from 

the assumed error distribution to maintain the overall statistical characteristics of the input errors; 2) Update the input error 

ranks to minimize the model residual via the secant method (Eq. Error! Reference source not found. and ); 3) Reorder these 

sampled errors according to the updated error ranks; 4) Repeat 2) and 3) for a few iterations until a defined target is achieved. 155 

This new algorithm is referred to as Bayesian error analysis with reordering (BEAR). An example to illustrate how the BEAR 

method works is presented in Appendix A. 

2.3 Approximate Bayesian Computation - Sequential Monte Carlo (ABC – SMC) 

This study chooses Approximate Bayesian Computation via Sequential Monte Carlo (ABC–SMC) as the calibration scheme. 

ABC-SMC was first proposed by Sisson et al. (2007) and developed in the research of Toni et al. (2008). The ABC method is 160 

especially useful for problems in which the likelihood function is analytically intractable or costly to compute in traditional 

Bayesian approaches. For formal Bayesian approaches,, the likelihood function must be set carefully to meet the assumption 

about the residual error distribution, and this setting impacts the parameter estimation (Smith et al., 2015, McInerney et al., 

2017, Wu et al., 2019). In the ABC method, setting an objective function is more general allowing for potentially complex 

input error distributions where the likelihood is difficult to write. 165 

In the ABC–SMC approach, the parameter 
p

 is first sampled from a prior distribution 
( )pP 

 (referred to as population 1). 

Then it is propagated through a sequence of intermediate distributions 
( )( , )p o p

sP OF θ Y Y
, s=1,…, F-1 (referred to as 

intermediate population 2, …, F-1), until it represents a sample from the target distribution 
( )( , )p o p

FP OF Y Y
 (referred 

to as the posterior distribution). The tolerance s  of the objective function is chosen that 1 >…> F  0, thus the distributions 

sequentially evolve towards the target posterior. 170 
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2.4 Algorithm and an example of the BEAR method 

According to the previous derivations, the algorithm quantifying input errors via the BEAR method is demonstrated in Fig. 1 

and an illustrative example is presented in Table 1 and Fig. 2. Based on an ABC-SMC calibration scheme, the BEAR method 

works by replacing the observed input with a modified input that is obtained through the estimated input error rank via the 

secant method. In Fig. 1, s refers to the number of the sequential updating populations in the ABC-SMC scheme, which 175 

increases until the objective function (measuring the fit between the calibration data and model outputs) of the sth population 

is less than the final tolerance  . The final tolerance   (i.e. the stopping criterion) is difficult to set before calibration due to 

the unknown range of objective function values, but in practice, it can be estimated after several population calibrations, 

according to the actual calculation range of the objective function and the target accuracy. In this study, the calibration stops 

when 1000 proposed parameter sets are rejected in a row. The first tolerance 1  should be set sufficiently large to start the 180 

update. Any intermediate tolerance s  is set as the 30% quantile of the objective function results of the previous population s-

1, such that it reduces automatically with a new population calculation. 

In each calibration population, the input error ranks are updated over q iterations, where q increases until the objective function 

is less than tolerance s . When q=1 and q=2, the input errors are randomly sampled from the estimated error distribution 

because two sets of samples are prerequisites for the updating via the secant method (Table 1). Regarding these, a series of 185 

error ranks 
p

qk
, modified inputs 

p

qX
, model outputs 

p

qY
, and model residuals 

p

q  are calculated, demonstrated as the 1st and 

2nd iteration in Table 1. In later iterations (q>=3), the error rank 
p

qk
 is updated via the secant method (Eq. (6) and (7)), 

demonstrated in the first two columns in the 3rd and 4th iteration in Table 1. According to the new rank ,

p

i qk
, the value with 

the same rank in the 2nd iteration is the estimated error in the new iteration. For example, the new rank at the 1st time step in 

the 3rd iteration is 6, and its corresponding value in the 2nd iteration is -0.02, therefore, -0.02 is set as the updated input error 190 

at the 1st time step in the 3rd iteration. After the same reshuffling strategy, the re-ranked input errors will then lead to a new 

series of the modified inputs 
p

qX
, model outputs 

p

qY
 and model residuals 

p

q .  

Note however if the model parameters are far away from the true values, especially in the initial population, iterative updating 

of the error ranks will have little effect in reducing the model residual. Therefore, the maximum timesnumber of iterations 

should be set, referred to as Q. Q is set as 20 in this study. If q exceeds Q, the algorithm returns to the mutation step resampling 195 

the model parameters (seen in in Fig. 1). An example of four iterations is demonstrated in Table 1 and Fig. 2. 

In the example given in Table 1, before reshuffling errors (i.e. the 1st iteration and 2nd iteration), the input errors do not 

approach the true values shown in Fig. 2, having much larger objective function results than the 3rd and 4th iteration. After 

the error reshuffling, the objective function calculated in the 4th iteration is smaller than the result in the 3rd iteration, 

illustrating that the estimated errors in the 4th iteration are closer to the true values than the 3rd iteration. This is also supported 200 
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by Fig. 2 where the red line (4th iteration) has a stronger correlation with the black line (true input error) than the yellow line 

(3rd iteration). From the above, the true input errors can be approximated through updating the error ranks to minimize the 

objective function of the residuals.  

2.3 Integrating the BEAR method into the Sequential Monte Carlo approach 

The core strategy of the BEAR method is to identify the input errors by estimating their ranks, which can be easily integrated 205 

into formal Bayesian inference schemes (for example, Markov chain Monte Carlo (MCMC, (Marshall et al., 2004)) and 

Sequential Monte Carlo (SMC, (Jeremiah et al., 2011, Del Moral et al., 2006))) and other calibration schemes (for example, 

the generalized likelihood uncertainty estimation (GLUE, (Beven and Binley, 1992))). Based on the traditional calibration 

approach, the BEAR method works by replacing the observed input with a modified input that is obtained through the estimated 

input error rank via the secant method. This study applies the SMC sampler and derives the BEAR method from a Bayesian 210 

theoretical foundation in Appendix B. In the SMC approach, the model parameter is first sampled from a prior distribution and 

then propagated through a sequence of intermediate populations by repeatedly implementing the reweighting, mutation and 

resampling processes, until the desired posterior distribution is achieved (Del Moral et al., 2006). The details of the SMC 

algorithm can be found in the study of Jeremiah et al. (2011). 

Error! Reference source not found. demonstrates the integration of the BEAR method into the SMC sampler. In the SMC 215 

scheme, s refers to the number of sequential populations. A population means a group of parameter vectors (particles) that is 

updated in each iteration. The maximum number of the population S is set as 200 in this study. In each sequential population, 

N particles of model parameters are calibrated. N is set as 100 in this study. For each particle of the model parameters, the 

corresponding input error ranks are updated over q iterations, where q increases until the acceptance probability is larger than 

a number randomly sampled from 0 to 1. It should be noted that if the model parameters are far away from the true values, 220 

especially in the initial population, iterative updating of the error ranks will have little effect in reducing the model residual. 

Therefore, the maximum number of iterations should be set, referred to as Q. Q is set as 20 in this study. If q exceeds Q, the 

algorithm returns to the mutation step in Fig. 1. 

2.52.4 Comparison with other methods 

The application of the BATEA framework is limited by high dimension computation (Renard et al., 2009). It probably becomes 225 

impractical in quantifying the data-varying errors (rather than the event-varying errors in the study of BATEA (Kavetski et al., 

2006)), where the dimension easily exceeds 1000 (Haario et al., 2005). Therefore, the BATEA method is not considered in the 

comparison. In this study, three methods, including the “Traditional” method, “IBUNE” method and “BEAR” method, are 

compared to evaluate the ability of the BEAR method in estimating the model parameters and quantifying input errors.To 

evaluate the ability of the BEAR method in quantifying input errors, three methods are compared, denoted as method T, D, R. 230 

“Traditional” method regards Method “T” is the “traditional” method, regarding the observed input as error-free without 
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identifying input errors (i.e. Eq. (2)), while the other two methods employ a latent variable to counteract the impacts of input 

error and build the modified input (i.e. Eq. (4)). (3)). In the “IBUNE” methodIn method D, “D” refers to the probability 

“Distribution” of input error, which is additional information considered in the calibration. This error distribution can be 

estimated before calibration according to the studies in the introduction. Especially in the context of proxy errors, the 235 

probability distribution can be easily calculated via the residuals between the measurements and the corresponding proxy 

values. From this error distribution, potential input errors are randomly sampled and filtered by the minimization of the 

objective function, which is similar to the basic framework of the IBUNE method (Ajami et al., 2007). Although the 

comprehensive IBUNE framework additionally deals with the model structural uncertainty via the Bayesian Model Averaging 

(BMA) method, this study only compares the capacity of its input error identification approach. The “BEAR” methodMethod 240 

R adds a reordering process into the “IBUNE” method to improve the accuracy of input error quantification. 

represents the BEAR method developed in this study. “R” refers to the “Reshuffling” strategy via the secant method, which is 

an additional process to that used in method D to improve the input error quantification. 

3 Case studies 

3.1 Water quality model: the build-up/wash-off model (BwMod) 245 

This study tests the BEAR algorithm in the context of the build-up/wash-off model (BwMod), which is a group of models to 

simulate two processes in sediment dynamics, including the build-up of sediments during dry periods and the wash-off process 

during wet periods. The two formulations were developed in a small-scale experiment (Sartor and Boyd, 1972), while in 

applications at the catchment scale, the conceptualized parameters largely abandon their physical meanings and the 

formulations can be considered a “black-box” (Bonhomme and Petrucci, 2017). This study chooses Eq. (4) to describe the 250 

build-up process and Eq. (5) to express the wash-off of sediments, representing the non-linear relationship between the wash-

off load (output) and the runoff-rate (input). These two equations were applied in the research of Sikorska et al. (2015) and in 

this study, are written in the MATLAB programming language with the integration of the BEAR method. The time scale is 

typically set as daily, and the spatial scale is set as the catchment in this study. This version of BwMod has four parameters 

(Table 2).Sikorska et al. (2015) and in this study are integrated with the BEAR method. This study will test the BEAR algorithm 255 

in a case of simulating the daily sediment dynamics of one catchment, thus, the time scale is typically set as daily and the 

spatial scale is set as the catchment. This version of BwMod has four parameters (Error! Reference source not found.). The 

model input is streamflow, which typically comes from the observation of a rating curve. As discussed in the introduction, the 

error distribution can be estimated prior to the model calibration via a rating curve analysis. The output of the BwMod is the 

concentration of total suspended solids (TSS), whose transport can be efficiently simulated by the conceptualization of the 260 

build-up/wash-off process (Bonhomme and Petrucci, 2017, Sikorska et al., 2015). Although BwMod is relatively simple 

compared with process-based WQMs, its nonlinearity and the use of surrogates for the input data can make it a typical WQM 

scenario to test the BEAR algorithm. 
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The overall BwMod equations are: 

 ( ) ( ),

, , 牋a t

max a t a t

dS
S S s S

dt
=  − −  ( ) ( ),

, ,  =  − −
a t

max a t a t

dS
S S s S

dt
 (4) 265 

where the descriptions of κ and Smax are shown in Error! Reference source not found., 
,a tS  (kg) is the sediment amount 

available on the catchment surface to be washed-off at time t; ( ),  a ts S  ( kg/s ) is the amount of sediment in the stream at 

time t, described by the function  

 
, ,( ) ( )=  b

a t t a ts S a Q S  (5) 

where the descriptions of a and b are shown in Error! Reference source not found., and tQ  is the streamflow at the catchment 270 

outlet at time t. 

The output TSS concentration ,TSS tC  ( 3kg/m ) is derived via:   

 
( ),

,  =
a t

TSS t

t

s S
C

Q
 (6) 

3.2 Case study 1: Synthetic data suffering from input errors and parameter errors 

First, the BEAR method is testedTo test the capability of the secant method in identifying the input error ranks in the process 275 

of the model parameter estimation, the BEAR method is first implemented in a controlled situation with synthetic data, where 

the model is affected only by input errors and parameter errors. The true input 
*

X  is set as the daily streamflow data of the 

catchment in the real case (USGS ID: 04087030), covering 1095 days from 2009/10/01 to 2012/09/29. The true output 
*

Y  is 

the simulated TSS concentration via BwMod corresponding to the true input 
*

X  and model parameters set as the reference 

values in Error! Reference source not found.. In case study 1, the observed output 
o

Y  is assumed to be the same as the true 280 

simulation 
*

Y , i.e. without error. The observed input 
o

X  is generated based on two types of input error models: an additive 

formulation and a multiplicative formulation, and the errors are assumed to follow a normal distribution with mean   as 0.2 

and standard deviation (SD)   as 0.5. If the input errors are estimated based on a rating curve, like the procedure in the 

following real case, the mean of input error should be 0. But in order to test the ability of the BEAR method in wider 

applications, a systematic bias 0.2 has been considered in the synthetic case even though this is unlikely to manifest in real 285 

situations. An additive formulation (denoted as ‘add’ in Table 3Error! Reference source not found.) is suitable to illustrate 

the error generation in measurements, while the multiplicative formulation (denoted as ‘mul’ in Table 3Error! Reference 
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source not found.) is specifically applied for errors induced from a log-log regression procedure, which is common for water 

quality proxy processes (Rode and Suhr, 2007). In the additive formulation, the generated input may be negative. If so, the 

negative input should be truncated to a positive value. In the multiplicative formulation, the generated input will stay positive. 290 

Given the description in the introduction, the input error model can be pre-estimated independent of calibration by analysing 

the input data in some studies. While in other cases, the input error model cannot be estimated or its accuracy is in question. 

Therefore, two scenarios about the prior information of  have been considered: one is fixed as the reference values (denoted 

as ‘fixed’ in Error! Reference source not found.), the other one is estimated as the hyperparameters with the model 

parameters (denoted as ‘inferred’ in Error! Reference source not found.). Therefore, Synthetic case 1 considers four 295 

scenarios, including two sets of input data generating from two input error models and two types of prior information about 

the error parameter   (the details are shown in Error! Reference source not found.).  

Each scenario is calibrated via the traditional method, the IBUNE method and the BEAR method respectively. In the 

calibration, the objective function is set as the Mean Squared Error (MSE).2.4. Considering the unknown initial sediment loads 

in real applications, the calibration sets 90 days as a warm-up period to remove the influence of antecedent conditions.  300 

Following the algorithm described in Sect. 2.4, the model parameters and the time-varying input errors are estimated. In each 

population of the ABC-SMC calibration scheme, 50 sets of model parameters are updated. In the first population, the model 

parameters are sampled from a uniform distribution with the prior range described in Table 2. 

The prior information about error parameters (i.e.   and 


) contains two conditions: one is fixed as the reference values 

(denoted as ‘fixed’ in Table 3), the other one is given the prior range, which needs to infer the error parameters in the calibration 305 

(denoted as ‘inferred’ in Table 3).  

To sum up, this study considers four scenarios in the synthetic case, including two sets of synthetic data generating from two 

input error models and two types of prior information about the error parameter (the details are shown in Table 3). Each 

scenario is calibrated via method T, method D and method R respectively. Their algorithms are described in Sect. 2.5 and their 

results are compared in Fig. 3 and Fig. 4. Figure 3 shows the statistical characteristics of the overall estimations. Figure 4. To 310 

compare the ability of different methods in estimating the input error and model parameter, this study selects the following 

statistical characteristics. The SD of the estimated input errors represents the accuracy of the input error distribution (0.5 is the 

reference value). The correlation between the estimated input error and the true input error evaluates the capability of the 

method in catching the temporal dynamics of input error. The Nash-Sutcliffe efficiency (NSE) of the modified input vs true 

input measures the precision of the input data after removing the estimated input errors. In the calibration part, the simulated 315 

output corresponds to the modified input and estimated model parameters, and its NSE compared to the true output measures 

the goodness-of-fit. In the validation part, the simulated output corresponds to the true input and estimated model parameters, 

and its NSE compared to the true output can assess the accuracy of the model parameter estimation. These statistical 

characteristics are calculated as the weighted-average values considering the weights of each estimation in the posterior 
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distribution and compared in Fig. 2. Figure C 1 in Appendix C demonstrates the temporal dynamics of input estimations and 320 

model simulations.  

Evaluating the input error quantification, method R always has much higher correlations with the true error series than method 

D in all calibration scenarios (shown in Fig. 3(3)). When the error parameters are inferred, the estimations of   via method 

D are smaller than the reference value (shown in Fig. 3(1)). This conclusion has also been reported in the study of Renard et 

al. (2009). The reason for this is that the randomness of the likelihood function leads to an underestimation of the SD of input 325 

errors. Compared with method D, the   estimation via method R is less biased from its true value (shown in Fig. 3 (1)), while 

the estimation  of synthetic case 1. In Fig. C1, “Reliability” is the ratio of observations caught by the confidence interval of 

2.5%-97.5


 is worse via method R (shown in Fig. 3(2)). 

Evaluating the model simulation, the BEAR method always produces the best output fit in all scenarios, supported by the 

highest green bars in Fig. 2(4). Although its correlations with the true error series are much higher than the IBUNE method 330 

(red bars) in all scenarios (in Fig. 2(2)), the BEAR method cannot ensure a better input estimation (in Fig. 2(3)) and its ability 

depends on the prior information of the input error parameter. When the error parameters are fixed at the reference values (in 

the scenarios add-fixed and mul-fixed), the BEAR method always outperforms the other two methods in the input modification 

and model parameter estimation, as its NSE is the highest (green bars in Fig. 2(3) and (5)). Without the reordering strategy, 

the IBUNE method even gives worse input modification, model simulation and parameter estimation than the traditional 335 

method, demonstrated by the lower red bars than blue bars in Fig. 2(3), (4) and (5). Evaluating the model simulation, method 

R always produces the best output fit in all scenarios, supported by the highest red boxplots in Fig. 3(4). Also in Fig. 4, 

regardless of the calibration scenarios, the output uncertainty bands of method R (red parts) almost overlaps the true output 

(green line), being much better than method T (pink parts) and method D (blue parts). However, the input uncertainty bands 

vary depending on the calibration scenarios. When the error parameters are fixed at the reference values (in the scenarios add-340 

fixed and mul-fixed), method R always outperforms the other two methods regardless of input error models, as its Nash–

Sutcliffe efficiency coefficient (NSE) are the highest (shown in Fig. 3(5)). In Fig. 4(1) and Fig. 4(3), the input uncertainty 

bands of method R (red parts) generally converge to the true value (green line), being better than method D (blue parts). 

Without the reshuffling strategy, Method D even gives worse input estimation and model simulations than method T, 

demonstrated by the lower blue boxplots than pink boxplots in Fig. 3(5)) and Fig. 3(4). This illustrates that the ill-posed error 345 

sources in method D exert a negative impact on the model simulations. When the error parameters are inferred (in the scenarios 

of add-inferred and mul-inferred), the IBUNE method can improve the input data and the model parameter estimation 

compared with the traditional method (in Fig. 2(3) and (5)) although the estimations of   via the IBUNE method are always 

smaller than the reference value (in Fig. 2(1)). This result has also been reported in the study of Renard et al. (2009), which 

indicates that the randomness of the likelihood function leads to an underestimation of   of input errors. Unlike the IBUNE 350 

method, the performance of the BEAR method depends on the setting of the input error model. In the add-inferred scenario, 
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the BEAR method is still better than other methods, having a bigger NSE (in Fig. 2(3), (4) and (5)) and the closer   estimation 

to reference value (in Fig. 2(1)). While in the mul-inferred scenario, the modified inputs and estimated parameters via the 

BEAR method are worse than the IBUNE method (in Fig. 2(3) and (5)). 

performance of method R depends on the input error models. For the scenario of add-inferred, method R is still better than 355 

other methods, having the biggest NSE (shown in Fig. 3(5)) and the closest error parameter estimation to the reference value 

(shown in Fig. 3(1) and Fig. 3(2)), although the input uncertainty band is more negatively biased from the true value (green 

line) than method D in Fig. 4(2). For the scenario of mul-inferred, the modified inputs via method R are further from the 

reference value than method D (shown in Fig. 3(5)), which might result from worse 


 estimations for the input error (shown 

in Fig. 3(2)). 360 

3.3 Case study 2: Synthetic data suffering from input errors, parameter errors and output observation errors 

Case study 1 is an ideal situation that is used to test the effectiveness of the BEAR method in isolating the input error and the 

model parameter error. However, in real-life cases, other sources of errors (i.e. model structural error and output data error) 

will impact this effectiveness. To explore the ability of the BEAR method with the interference of other sources of errors, the 

output observational errors with the increasing standard deviations are considered to build the synthetic data based on the 365 

scenario 3 and 4 in the case study 1 (the details has been shown in Error! Reference source not found.). 

Error! Reference source not found. demonstrates in the mul-fixed scenario where the prior information of standard 

deviation of input errors is accurate, the BEAR method always brings a better input modification than other methods, although 

its ability is impaired by the impact of the output observational errors as the NSEs reduces with the increasing SD of the output 

observational error. The IBUNE method leads to an even worse modified input than the input data without modification in the 370 

Traditional method. In the mul-inferred scenario where the standard deviation of input errors cannot pre-estimated accurately 

and given in a wide range, the BEAR method brings worse input data while the IBUNE method can modify the input data.  

3.33.4  Case study 23: Real data 

To explore the ability of the BEAR method in real-life applications, a real case of one catchment located in southeast 

Wisconsin, USA is demonstrated. Table 4Error! Reference source not found. is a description of the test catchment and data 375 

(Baldwin et al., 2013). The daily TSS concentration and streamflow data are collected from the USGS database on National 

Real-Time Water Quality (https://nrtwq.usgs.gov/). The daily streamflow data in the USGS database comes from a stage-

streamflow rating curve, where the stage and streamflow form a log-log linear relationship and the streamflow proxy errors 

follow a normal distribution with   as 0 and   as 0.103. This prior information is used in the real calibration, denoted as O-

fixed scenario in Table 3. BecauseError! Reference source not found., where “O” represents the input data that comes from 380 

the observations of the rating curve. According to the results of Error! Reference source not found. and the assumption of 

the methodology derivation, the BEAR method is implemented under the assumption that works better when the input 

https://nrtwq.usgs.gov/
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uncertainty is somore significant that other sources of uncertainties can be ignored,, so another input data source with more 

significant data uncertainty, a streamflow simulation from a hydrological model, has been considered. This study selects GR4J 

(Perrin et al., 2003) as the hydrological model and calibrates its parameters with the USGS streamflow data as calibration data. 385 

If the USGS streamflow data is regarded as the true input data, the residual error after the model calibration can approximate 

the data error of GR4J simulation, which follows a normal distribution in log space with   as 0 and   as 0.764. The BwMod 

calibration using this input data source and the prior information on data error is denoted as S-fixed scenario in Table 3.Error! 

Reference source not found., where “S” represents the input data that comes from the simulations of GR4J model. To explore 

the ability of the BEAR method in other situations where the prior information about the input error is not sufficient, two 390 

scenarios with a wider range of the error parameters has also been considered, denoted as O-inferred and S-inferred in Table 

3.Error! Reference source not found.. The real case is also calibrated via three methods (i.e. the traditional method T,, the 

IBUNE method D and the BEAR method R) and adopts the same setting of the calibration algorithm as the synthetic case. 

Figure 5 uses several statistics to evaluate the calibration scenarios. For all scenarios in Fig. 5(b1), method R always produces 

a better fit to the output data than method D, consistent with the synthetic case shown in Fig. 3(4). In Fig. 5(b2), “Reliability” 395 

here is the ratio of observations caught by the confidence interval of 5%-95%, and the average width of this interval band is 

referred to as “Sharpness” (Yadav et al., 2007, Smith et al., 2010). In the S-fixed and S-inferred scenarios with significant input 

errors, the results of method R show much higher reliability with a larger sharpness. However, in the O-fixed scenario with 

insignificant input errors (i.e.  =0.103), the reliability and sharpness of method R are smaller than method D. Fig. 5(a) 

demonstrates that the   estimations vary depending on the calibration methods, but stay almost identical between two data 400 

sources. This illustrates that the impacts of other sources of errors significantly impair the error quantification, and their impacts 

are varied for different methods. 

In the real case shown in Fig. 6, method R still produces the best fit to the output and the uncertainty band of the modified 

input via method D is centered on the observed data. In Fig. 6(c), the uncertainty bands of the modified input are consistent in 

all scenarios except the O-fixed scenario with insignificant input errors (i.e.  =0.103). The uncertainty bands are closer to 405 

the observed streamflow (green line), even in (c3) and (c4) where the input data comes from the simulated streamflow (black 

line). According to the results of method T in Fig. 6(a), the simulations corresponding to the observed streamflow (in (a1) and 

(a2)) catch the dynamics of observed TSS concentration better than the simulations corresponding to the simulated streamflow 

(in (a3) and (a4)). Here, the observed streamflow from the rating curve should be closer to the true input data, and could be 

regarded as the reference value. Given that, the modified inputs via method R are more reasonable. 410 

Error! Reference source not found.(2) demonstrates the BEAR method always produces a better fit to the output data than 

the IBUNE method, consistent with the synthetic case shown in Fig. 2(4). In Fig.4(3), except for the O-fixed scenario, the 

results of the BEAR method (in green) show much smaller sharpness than the traditional method (in blue) and the IBUNE 

method (in red) with almost the same reliability. According to the results of the traditional method in Fig. C2, the simulations 

from the “O” streamflow (in (a1)) catch the dynamics of observed TSS concentration better than the simulations from the “S” 415 
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streamflow (in (a3)). Thus, compared with the simulated streamflow via GR4J (“S” streamflow), the observed streamflow 

from the rating curve (“O” streamflow) should be closer to the true input data. In Fig. C2, the modified inputs via the BEAR 

method are closer to the “O” streamflow (blue dots) than the “S” streamflow (pink dots), even in (c3) and (c4) where the 

original input data comes from the “S” streamflow. However, the modified input via the IBUNE method is always centred on 

the original input data it uses. Given being always closer to the “O” streamflow, the modified inputs via the BEAR method are 420 

more reasonable than the IBUNE method.  

4 Discussion 

4.1 The effectiveness of rank estimation 

The novelty of the BEAR method lies in transforming a direct error value estimation to an error rank estimation. In a continuous 

sequence of data, the potential error values have an infinite number of combinations, while the error rank has limited 425 

combinations, dependent on the data length. It is far more efficient to estimate the error rank than estimate the error value. 

Compared with the IBUNE framework (Ajami et al., 2007), the BEAR method additionally infers the error ranks to adjust the 

order of the sampled errors and reduce their randomness, which significantly improves the accuracy of the error estimation (as 

demonstrated by much higher NSEs than method D in Fig. 3). The application of the secant method plays an essential role in 

this by inferring each error rank according to the residual error.For example, in Table A1, the estimated error at the 1st time 430 

step could be any value. Even under a constrain of the range from the minimized to the maximized sampled errors (i.e. [-

0.29,0.16] in the 1st iteration), its value estimation still has infinite possibilities due to the continuous nature of the error. In 

contrast, the rank is discrete, having only 20 possibilities (i.e. the integrity in [1,20]). From this point of view, it is more 

efficient to estimate the error rank than estimate the error value,  

One thing to note in the rank estimation However, the rank estimation will suffer from the sampling bias problem. The sampling 435 

bias problem is that even corresponding to the same rank, the error sampled at different times could be largely different, 

especially for a small sample size (depending on the data length) or a large   of the assumed error distribution. This problem 

can be addressed by selecting the optimal solution from multiple sampling according to the maximum of likelihood function. 

In three cases of this study, the sample size is larger than 1000, where the sampling bias problem can be neglected and one 

error sampling is enough. But in some cases where the sample size is small (i.e. around 10), multiple sampling should be taken. 440 

The secant method is a successive approximation algorithm and one single iteration cannot guarantee the optimal results. 

Considering these two points, the BEAR method set q iterations in the algorithm (Fig. 1). q increasing until the objective 

function becomes smaller than the tolerance. 

Note that Besides, to avoid the high-dimension calculation, modifying each input error according to its corresponding residual 

error only works in the rank domain. In the value domain, if there is no constraint on the estimated input errors, they will fully 445 

compensate for the residual error to maximize the likelihood function and subsequently be overfitted. There are two ways to 
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impose restrictions. One is to regard errors and model parameters as a whole in calibration, like the BATEA framework 

(Kavetski et al., 2006), resulting in a high dimensional computation. The other is to sample error randomly from the assumed 

error model, like the IBUNE framework (Ajami et al., 2007), whose precision cannot be guaranteed due to the error 

randomness. However, in the BEAR method, the inference focuses on the error rank where the value range of the sampled 450 

errors can be effectively limited by the assumed error model. Additionally, adjusting the order of the sampled errors according 

to the inferred error rank can reduce the randomness in the IBUNE framework (Ajami et al., 2007), which significantly 

improves the accuracy of the error estimation (as demonstrated by much higher NSEs than the IBUNE method in Fig. 2). The 

reordering step is implemented when the model parameter has been updated and aims to find the optimal input error series 

corresponding to the minimized residual error. After the reordering step, the optimal input error is a deterministic function of 455 

the model parameter. Thus, unlike formal Bayesian inference, the BEAR method does not update the posterior distribution of 

the input errors, but identifies the input error through the deterministic relationship between the input error and model 

parameter. 

4.2 The impacts of prior information of input error model 

Method D employs the same framework as IBUNE (Ajami et al., 2007), taking advantage of stochastic error samples to modify 460 

the input observations. In Fig. 4 and Fig. 6, the uncertainty bands of modified inputs (blue parts) encompass the input 

observations (black line), illustrating that the intrinsic quality of the input observation determines the algorithm performance. 

Figure 6 demonstrates that if the input error is insignificant in the residual, like in the O-fixed and O-inferred scenarios of the 

real case, the resultant simulations will fit the observed output (green line) well. Otherwise, the simulations are far away from 

the observed outputs (black line) due to inaccurate input observations (in the S-fixed and S-inferred scenarios in the real case). 465 

As per the finding in the previous study of Renard et al. (2010), if the SD of input errors is inferred with the model parameters, 

method D will underestimate the SD (Fig. 3(1) and Fig. 5(a2)). If the intrinsic SD of input errors is large, a fixed SD cannot 

improve the input modification and model simulation, demonstrated by a wider band in Fig. 6(b3) than in Fig. 6(b4). If the SD 

of input errors is small, the prior information will constrain the impacts of other sources of errors. From the above, the data 

quality is more important than the availability of prior information for method D, especially when the intrinsic SD of the input 470 

error is large. 

However, the findings in method R are quite different. Although method R infers the input error by minimizing the model 

residual error, it is much more effective than method D to minimise the residual errors. For the synthetic case (Fig. 4(c)) and 

real case (Fig. 6(c)), the model simulations via method R (red parts) are very close to the output observations (green line). In 

other words, the estimated input error mainly depends on the output observations. Therefore, in the real case with the same 475 

output observation (Fig. 6(c)), the modified inputs are consistent among the scenarios. Given this, the model structure error 

plays an important role in estimating the input error. 

To constrain the impacts of the other sources of error, accurate prior information about the input error model is important in 

method R. In the synthetic case, fixed scenarios always produce a higher NSE of the modified input (Fig. 3(5)) and a larger 
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correlation in the estimation error (Fig. 3(5)) than inferred scenarios. This illustrates that prior information can limit the impacts 480 

of model parameter error. In Fig. 6(a1), the modified inputs in the real case are around the reference value (green line), while 

in Fig. 6(a2), the modified inputs are biased from the reference value (green line). It should be noted that this difference is 

obvious in the scenarios with insignificant input error (where the model structural error is relatively large). When the input 

error is dominant, like the S-inferred scenario, method R becomes more effective to estimate the input error, bringing a more 

precise estimation of the error SD than the O-inferred scenario and similar results to the S-fixed scenario. 485 

To sum up, for method R, an accurate input error model can constrain the adverse impacts of the other sources of errors, 

especially when the other sources of error are dominant. But for method D, the input data quality is more important than this 

prior information. 

The IBUNE method takes advantage of stochastic error samples to modify the input observations (Ajami et al., 2007). Figure 

C  demonstrates compared with O-fixed and O-inferred scenarios, S-fixed and S-inferred scenarios uses simulated streamflow 490 

whose input error is more significant, and the resultant simulations (black line) via the IBUNE method are further away from 

the observed outputs (red dots). As per the findings in the previous study of Renard et al. (2010), if the   of input errors is 

inferred with the model parameters, the IBUNE method will underestimate   (in Fig. 2(1) and Fig. 4(1)). If   is fixed via 

prior information, the input modification and model simulation cannot be improved, especially in the scenarios with large 

intrinsic   of input errors (in Fig. 2 and Fig. 3). From the above, the ability of the IBUNE method depends on the input data 495 

quality and the improvement of the input data and model simulation only happens when the   of the estimated input error is 

small. The availability of prior information is insignificant for the IBUNE method, especially when the intrinsic   of the 

input error is large. 

However, the findings in the BEAR method are quite different. Accurate prior information about the input error model is 

important in the BEAR method. Figure 3 demonstrates fixed scenarios calibrated via the BEAR method always produce a 500 

higher NSE of the modified input than inferred scenarios. This is likely because the prior information can constrain the input 

error distribution and reduce the impacts of other sources of errors. The availability of prior information of the input error 

relies on studies about benchmarking observational errors of water quality and hydrologic data, and the selection of a proper 

input error model is important. Comparing the results in Figure 2, when the input error model is an additive formulation, the 

BEAR method consistently brings the best performance regardless of the prior information of the error  . When the input 505 

error model is a multiplicative formulation, the BEAR method cannot improve the input data if the prior information of the 

error   is not accurate. This illustrates that the compensating effect between the input error and parameter error is weaker in 

the additive form of the input error. This is probably related to the specific model structure, as the exponent parameter b in 

BwMod has a stronger interaction with the multiplicative errors than the additive errors. Thus, more comprehensive 

comparisons should be undertaken to explore the capacity of different input error models in different model applications. 510 
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To sum up, the ability of the BEAR method depends on the accuracy of prior information of the input error parameter and the 

selection of the input error model. The IBUNE method can modify the input data when the standard deviation of the estimated 

input error is much smaller than the true value. It is most likely to make use of the stochastic errors to improve the original 

input data, but not effectively identify the input error. 

4.3 The extension to other modeling scenarios 515 

In this study, the BEAR method was developed in the calibration of BwMod at the daily time scale, whose input and output 

correspondcan be regarded as the correspondence at each time step. Therefore, in Eq. (6).Error! Reference source not found.

, the model residual , 1

p

i q −  and input error rank , 1i qk −  are at the same time step i. If the water quality system exhibits delayed 

response, the time lag between the forcing data and the response (described as lag) should be considered in the algorithm and 

Eq. (6)Error! Reference source not found. needs to be modified as Eq. (11).Error! Reference source not found.. 520 

, 1 , 2

, , 1 , 1

, 1 , 2

i q i qp

i q i q i lag q p p

i lag q i lag q

k k
K k 

 

− −

− + −

+ − + −

−
= −

−
 (10)(11) 

If the response caused by an input is not instantaneous but exhibits persistence (i.e. occurs over several time steps), the 

autocorrelation in the output should be addressed to ensure the independence assumption of the rank updating is satisfied. 

Current ways to deal with this problem in hydrologic modelling can provide a reference to the potential modification of the 

BEAR method. Autocorrelation in the residual errors can be represented by an autoregressive moving average (ARMA) model 525 

(Kuczera, 1983) or autoregressive (AR) (Schaefli et al., 2007, Bates and Campbell, 2001). However, the ability of these 

approaches needs further discussion in systems with correlated responses. The correlated part of the error is removed from the 

residual error and the remaining part will be only impacted by the input error. Thus, the correspondence between the input 

error and the residual error part is ensured and the latter process will be the same as the application of the BEAR method in 

this study. Following this idea, the autoregressive (AR) model has been integrated with the BEAR method in the study of Wu 530 

et al. (2021) to deal with the autocorrelation of residual errors in a hydrologic model. The results prove this integration is 

effective to improve the input error estimation.  

However, this treatment may not guarantee the improvement of the input error estimation in this study where the sediment 

concentrate is simulated at the daily time scale (Figure D 1). At this time scale, one input (streamflow) may not impact the 

response (sediment concentration) for multiple time steps and autocorrelation may not be well represented via a simple 535 

autocorrelation function. When the temporal resolution of the data is high (i.e. minute) and one model output is affected by 

many inputs, the memory effect may be addressed effectively via the AR model. Therefore, the specific representation of the 

autocorrelation in the residual error needs further discussion through comparisons in different time scales or with different 

characteristics in the memory effect. 
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5 Conclusion 540 

Taking advantage of the prior information of an input error model, a new method, Bayesian error analysis with 

reshufflingreordering (BEAR), is developedproposed to approach the time-varying input errors in WQM inference. It contains 

two main processes: sampling the errors from an assumed error distribution and reordering them with the inferred ranks via 

the secant method. Through the investigation of synthetic data and real data, this method is shown to be robust and 

effective.effective but its ability is limited by the accuracy and selection of the input error model. The novelties of this 545 

algorithm are: (1) EstimatingThe estimation focuses on the error rank rather than directly estimating the error value, which 

significantly improves the effectiveness of input error quantification by reducing the potential search space for input 

errors.enhances the constraints of the input error model on the estimated errors and avoids the high dimensionality problem 

resulting from calibrating all the errors along with the model parameter as a whole. (2) The modificationintroduction of the 

secant method linksrealizes updating the error rank of each input data according to its corresponding residual, which addresses 550 

the high dimensionality problem in current calibration methods and tackles the nonlinearity challenge in the WQM 

transformation. 

However, the work in this study still identifies a few areas needing to be explored. Firstly, the availability of prior knowledge 

of the input error model is important. When this information is not reliable or even cannot be estimated, a significant issue is 

the selection of a suitable error assumption. Thus, a general measure should be found to judge whether an error model is 555 

appropriate, especially in real cases where the “true” information is limited. Secondly, extensions of the BEAR method to 

other water quality modeling scenarios are subject to problems such as delayed and autocorrelated responses. Related studies 

in hydrologic modeling to deal with the delay and persistency of responses could be references in the modification of the 

BEAR method. Thirdly, if the sampling and reshufflingreordering strategy is developed within a more comprehensive 

framework to quantify multiple sources of error, the interactions amongst these error sources might be well -identified and the 560 

quantification of individual errors might be improved. This study provides a starting point for developing the rank estimation 

via the secant method to identify input error. Further study is necessary to modify the algorithm and improve confidence in 

extended case studies or model scenarios. 
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Appendix A: The illustration of the BEAR method 565 

Table A 1 An example illustrating the BEAR method 

 

 

 

Figure A 1 Demonstration of the input error estimated in Table A.1 570 
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The BEAR method for identifying the input errors is implemented after generating the model parameters and contains two 

main parts: sampling the errors from an assumed error distribution and reordering them with the inferred ranks via the secant 

method. An example is illustrated in Table A 1 and the explanation about the specific steps is presented in the following 

contents. 575 

(1) In the 1st iteration (q=1), the errors are randomly sampled from the assumed error distribution (row 1), and then are 

sorted to get their ranks (row 2). This error series is employed to modify the input data, which leads to a new model 

simulation and model residual (row 3).  

(2) Repeat step (1) in the 2nd iteration (q=2) as two sets of samples are prerequisites for the updating via the secant 

method. The results are shown in row 4, 5 and 6. Figure A 1(a) demonstrates that the ranges of the error distribution 580 

are the same between the true input errors (black line) and the sampled errors (blue and green lines) as they come 

from the same error distribution under the condition that prior knowledge of the input error distribution is correct. 

However, the values at each time step cannot match due to the randomness of the sampling. 

(3) At the 1st time step in the 3rd iteration (i=1, q=3 in Eq. Error! Reference source not found.), the pre-rank 1,3K  is 

calculated via the secant method (illustrated as the following Eq. Error! Reference source not found.). The details 585 

are demonstrated in solid boxes in Table A.1. 

 1,2 1,1

1,3 1,2 1,2

1,2 1,1

9 13
=9-(-0.13) 5.8

0.13 ( 0.29)


 

− −
= − =

− − − −

p

p p

k k
K k  

(4) Repeat step (3) for all the time steps. The calculated pre-ranks are shown in row 7. 

(5) Sort all the pre-ranks to get the integral error rank (row 8). 

(6) According to the updated error ranks (row 8), the sampled errors in the 2nd iteration (row 4) are reordered. The 590 

example for the 1st time step is demonstrated in dotted boxes in Table A.1. The error rank at the 1st time step is 

updated as 6, and the rank 6 corresponds to the error value -0.02 in the 2nd iteration. Therefore, -0.02 is the input 

error at the 1st time step in the 3rd iteration. Following this example, the sampled errors at all the time steps are 

reordered. The results are shown in row 9. Figure A 1 (b) demonstrates that after reordering the errors with the inferred 

ranks, the estimated errors are much closer to the true input error, and the mean square error (MSE) of the model 595 

residual reduces in Table A 1. 

(7) The reordered input error will lead to a new input data, a new model simulation and a new model residual. The residual 

result and its MSE statistic are shown in row 10 and 11 respectively. 
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(8) Check the convergence: If the objective function or likelihood function meets the convergence criterion, stop and the 

input error estimation is accepted. Otherwise, q=q+1, repeat step (3)~(8) until q is larger than the maximum numbers 600 

of iteration Q.  
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Appendix B: Theoretical foundation of the BEAR methodEquation Chapter (Next) Section 1 

(1) Basic notation 

In general, a model M() simulates the output 
s

Y  given the observed input 
o

X and model parameters  ，as follows: 605 

 
s ( , )Y X = oM   (1) 

Here and in the following, s represents the simulated value, o represents the observed value, and * represents the true value. 

(2) Input errors 

The input errors  X  are assumed to be represented by input multipliers, which are sampled from an uncorrelated lognormal 

distribution, and the observed input X
o  can then be related to the true input *

X  by the following equation: 610 

 
* 2exp( , ~ ( , )X X  = )o

X X X XN    (2) 

where  X  are assumed to follow a Gaussian distribution with mean X  and variance 
2

X . 

(3) Output observational errors and model structural errors 

In the derivation, these two parts are assumed to be error-free, therefore, 

 
*

Y Y=o

 (3) 615 

 
*() ()=M M  (4) 

(4) Remnant errors 

Based on the previous assumptions, the observed output equals the true output, and the difference between the simulated output 

and the observed output,  , will be equal to the difference between the simulated output and the true output, as follows: 

 
s o * 2, ~ (0, )Y Y Y  = + = +   (5) 620 

where the remnant errors   are assumed to follow a Gaussian distribution with mean 0 and variance 
2 . 

(5) Bayesian inference 

According to the study of Renard et al. (2010), the posterior distribution of all inferred quantities is given by Bayes’ theorem, 

as follows: 
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( , , , , | , )

( | , , ) ( | , ) ( , , , )

o o

X X X

o o

X X X X X X

Y X

Y X

 

   

p

p p p

  

    
 (6) 625 

The full posterior distribution comprises the following three parts: the likelihood of the observed output ( | , , )o o

X
Y X p , 

the hierarchical parts of the input multiplier ( | , )X X Xp    and the prior distribution of deterministic parameters and 

hyperparameters ( , , , )p   X X . 

Renard et al. (2009) argue that in the IBUNE method, X  are randomly sampled in each evaluation of the likelihood function 

and their different values at different evaluations will lead to the nondeterministic nature of the likelihood function (Equation 630 

(6)). In Bayesian inference, the likelihood function should return a fixed value for a given set of arguments. However, the 

randomness of the likelihood function in the IBUNE method breaks this theoretical foundation. Conversely, in the BEAR 

method, the secant method is applied to find a deterministic relationship between the rank of each input error and its 

corresponding model residual error. The residual errors depend on the model parameters  . The magnitude of the whole input 

errors (i.e. their cumulative distribution function (CDF)) is related to the hyperparameters of the multipliers ,X X  . Given 635 

the value of each input error is determined by the CDF of the whole input errors and its relative rank among them, X depends 

on , X X  and  , as follows: 

 = ( , , )X X X f    (7) 

Considering X  are sampled from 
2( , )X XN   , ( | , )X X Xp   is fixed when ,X X  are determined and do not need to 

be considered in Equation (6). Therefore, the posterior distribution of all inferred parameters (Equation (6)) in the BEAR 640 

method will turn into: 

 
( , , , , | , )

( | , , , ) ( , , , )

o o

X X X

o o

X X X X

Y X

Y X

 

 

p

p p

  

    
 (8) 

The above derivation states if the relationship between the input errors and model parameters (Equation (7)) can be determined, 

the problem of parameter estimation and input error identification (Equation (6)) can then be interpreted as the updating 

, ,X X    (Equation (8)) in the Bayesian inference. There are two ways to realize this determined relationship: one is to 645 

estimate the parameters and input errors together, as the BATEA approach, which will suffer from the high-dimensionality 

problem (Renard et al., 2010); the other one is to explore the relationship between each input error rank and model parameters 
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via the secant method first, and then transform the error rank into the error value according to the estimated error parameters 

,X X  , as the BEAR approach in this study. 

 650 
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Appendix C: The time series of results in the case study 

 

Figure C 1(1) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of add-655 

fixed scenarios in the synthetic case 1(notations are given in Error! Reference source not found.) 
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Figure C 1(2) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of add-

inferred scenarios in the synthetic case 1(notations are given in Error! Reference source not found.) 660 
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Figure C 1(3) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of mul-665 

fixed scenarios in the synthetic case 1(notations are given in Error! Reference source not found.) 
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Figure C 1(4) Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 670 

the traditional method, the IBUNE method and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of mul-

inferred scenarios in the synthetic case 1(notations are given in Error! Reference source not found.) 
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 675 

 

Figure C 2(1) Comparison of time series of real data and uncertainty bands estimated via three calibration methods (including the 

traditional method, the IBUNE method and the BEAR method, algorithms are explained in Sect. 2.4) for a select period of O-fixed, 

O-inferred scenarios in the real case (notations are given inTable 2) 
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 680 

Figure C 2(2) Comparison of time series of real data and uncertainty bands estimated via three calibration methods (including the 

traditional method, the IBUNE method and the BEAR method, algorithms are explained in Sect. 2.4) for a select period of S-fixed 

and S-inferred scenarios in the real case (notations are given inError! Reference source not found.) 
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Appendix D: The results after applying the autoregressive (AR) model 685 

 

Figure D 1 Comparison of Nash-Sutcliffe efficiency (NSE) of the modified input v.s true input under the interference of the output 

observational errors with the increasing standard deviations in two calibration scenarios in synthetic case 2 (including mul-fixed and 

mul-inferred; notations are given in Error! Reference source not found.) via three calibration methods (including the IBUNE method 

and the BEAR method and the BEAR-AR method, the BEAR-AR method is the BEAR method after applying the autoregressive 690 

(AR) model to deal with the residual error) 

Table 
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Figure 1: Flowchart of the algorithm to quantify the input errors via Bayesian error analysis with reshuffling (BEAR) method 770 
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Figure 1 Flowchart of the algorithm to quantify the input errors via Bayesian error analysis with reordering (BEAR) method in the 

SMC calibration scheme (The grey charts demonstrate the BEAR method while the white charts demonstrate the SMC algorithm. 775 

The details of the BEAR method can refer to Appendix A. The details of the SMC algorithm can refer to the study of Jeremiah et 

al. (2011), including the Mutation step, the Reweight step and calculating the acceptance probability. rand(0,1) means a number 

randomly sampled from 0 to 1.) 
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 780 

Figure 2: Demonstration of the results in Table 1 before and after reshuffling the errors via the secant method 
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Figure 3: Comparison of statistical characteristics of four calibration scenarios in the synthetic case (including add-fixed, add-

inferred, mul-fixed and mul-inferred; notations are given in Table 3) via three calibration methods (including method T, method D 785 

and method R, their algorithms are explained in Sect. 2.5) 
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Figure 2: Comparison of statistical characteristics of four calibration scenarios in the synthetic case 1 (including add-fixed, add-

inferred, mul-fixed and mul-inferred; notations are given in Error! Reference source not found.) via three calibration methods 790 

(including the traditional method, the IBUNE method and the BEAR method, their algorithms are explained in Sect. 2.4) 
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Figure 4:Comparison of time series of synthetic data and uncertainty bands estimated via three calibration methods (including 

method T, method D and method R; algorithms are explained in Sect. 2.5) for a select period of four calibration scenarios in the 795 

synthetic case (including add-fixed, add-inferred, mul-fixed and mul-inferred; notations are given in Table 3) 
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Figure 3 Comparison of Nash-Sutcliffe efficiency (NSE) of the modified input v.s true input under the interference of the output 

observational errors with the increasing standard deviations in two calibration scenarios in the synthetic case 2 (including mul-fixed 800 

and mul-inferred; notations are given in Error! Reference source not found.) via three calibration methods (including the traditional 

method, the IBUNE method and the BEAR method, their algorithms are explained in Sect. 2.4) 
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Figure 5:Comparison of statistical characteristics of four calibration scenarios in the real case (including O-fixed, O-inferred, S-805 

fixed and S-inferred, their notations are given in Table 3) via three calibration methods (including method T, method D and 

method R, their algorithms are explained in Sect. 2.5) 
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Figure 4: Comparison of statistical characteristics of four calibration scenarios in the real case (including O-fixed, O-inferred, S-810 

fixed and S-inferred, their notations are given in Error! Reference source not found.) via three calibration methods (including the 

traditional method, the IBUNE method and the BEAR method, their algorithms are explained in Sect. 2.4) 
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Figure 6:Comparison of time series of real data and uncertainty bands estimated via three calibration methods (including method 815 

T, method D and method R, algorithms are explained in Sect. 2.5) for a select period of four calibration scenarios in the real case 

(including O-fixed, O-inferred, S-fixed and S-inferred, notations are given in Table 3) 
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Table 1-1 An example illustrating the rank updating approach via the secant method  

Time 

Step i 

Observed data  1st iteration (random sample)  2nd iteration (random sample) 

o

ix  
*

iy   , ,1

p

X i  
,1ik  ,1

p

ix  ,1

p

iy  ,1

p

i   , ,2

p

X i  
,2ik  ,2

p

ix  ,2

p

iy  ,2

p

i  

1 2.24 24.1  0.07 13 2.18 23.8 0.29  -0.01 9 2.25 24.0 0.13 

2 1.87 23.6  -0.12 3 1.99 24.0 -0.49  -0.02 6 1.90 23.8 -0.23 

3 1.37 23.1  0.07 14 1.30 22.5 0.58  0.03 14 1.34 22.6 0.43 

4 1.02 22.2  0.16 20 0.86 21.2 0.98  0.03 13 0.99 21.7 0.41 

5 0.90 22.2  0.05 12 0.85 21.4 0.78  -0.09 3 0.98 22.0 0.21 

6 0.99 21.5  0.10 17 0.89 21.8 -0.29  0.00 10 0.99 22.2 -0.70 

7 0.76 21.5  0.07 15 0.69 20.8 0.66  -0.02 8 0.78 21.2 0.23 

8 0.87 21.4  -0.03 9 0.90 22.0 -0.59  0.06 16 0.81 21.5 -0.09 

9 0.60 21.4  0.03 10 0.57 20.1 1.31  0.11 17 0.49 19.5 1.88 

10 0.62 21.3  -0.08 7 0.70 21.0 0.31  0.11 18 0.51 19.8 1.52 

11 0.70 21.3  0.09 16 0.61 20.4 0.87  -0.09 4 0.78 21.5 -0.20 

12 0.85 21.6  -0.11 4 0.97 22.4 -0.76  0.01 12 0.85 21.8 -0.17 

13 1.55 24.2  -0.11 5 1.66 24.7 -0.46  -0.12 1 1.67 24.7 -0.53 

14 3.20 27.2  -0.08 6 3.28 27.7 -0.54  -0.11 2 3.31 27.8 -0.60 

15 1.91 24.6  -0.29 1 2.21 24.9 -0.25  0.00 11 1.91 24.2 0.43 

16 1.51 23.6  0.14 19 1.37 22.8 0.80  0.15 20 1.36 22.9 0.72 

17 1.26 22.7  0.03 11 1.23 22.7 0.07  -0.08 5 1.34 23.1 -0.36 

18 1.09 22.1  -0.08 8 1.16 22.6 -0.56  0.04 15 1.05 22.2 -0.12 

19 1.06 22.0  0.14 18 0.92 21.8 0.23  -0.02 7 1.08 22.5 -0.47 

20 0.98 22.4  -0.17 2 1.15 22.8 -0.40  0.11 19 0.87 21.6 0.82 

Objective function 2
,

1

1
( )

n

i q
in


=
  

0.40      0.47 

820 
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1-2 An example illustrating the rank updating approach via the secant method 

Time 

Step i 

3rd iteration (the secant method)  4th iteration (the secant method) 

,3iK  
,3ik  

, ,3

p

X i  
,3

p

ix  ,3

p

iy  ,3

p

i   ,4iK  
,4ik  

, ,4

p

X i  
,4

p

ix  
,4

p

iy  
,4

p

i  

1 5.63 6 -0.02 2.21 23.9 0.23  13.17 11 0.00 2.24 24.0 0.15 

2 8.76 10 0.00 1.88 23.8 -0.20  34.76 20 0.15 1.72 23.3 -0.20 

3 14.00 12 0.01 1.36 22.7 0.34  4.65 7 -0.02 1.39 22.9 0.19 

4 8.08 9 -0.01 1.03 21.9 0.24  3.26 4 -0.09 1.11 22.2 -0.07 

5 -0.33 2 -0.11 1.01 22.1 0.12  0.72 3 -0.09 0.98 22.0 0.24 

6 21.84 17 0.11 0.88 21.7 -0.19  19.51 17 0.11 0.88 21.7 -0.18 

7 4.28 4 -0.09 0.85 21.6 -0.14  5.54 9 -0.01 0.77 21.2 0.24 

8 17.25 16 0.06 0.81 21.5 -0.08  16.00 16 0.06 0.81 21.5 -0.10 

9 -6.12 1 -0.12 0.72 21.0 0.40  -3.32 1 -0.12 0.72 21.0 0.39 

10 4.18 3 -0.09 0.70 21.0 0.31  -0.87 2 -0.11 0.73 21.1 0.17 

11 6.29 7 -0.02 0.72 21.1 0.22  5.44 8 -0.02 0.71 21.0 0.26 

12 14.38 14 0.03 0.82 21.6 -0.03  14.36 13 0.03 0.82 21.6 -0.03 

13 30.82 19 0.11 1.44 24.0 0.17  14.54 14 0.03 1.52 24.3 -0.07 

14 41.98 20 0.15 3.05 27.5 -0.26  33.77 19 0.11 3.09 27.5 -0.30 

15 4.71 5 -0.08 1.99 24.6 0.09  3.46 5 -0.08 1.99 24.5 0.12 

16 29.64 18 0.11 1.40 23.1 0.55  11.63 10 0.00 1.52 23.4 0.22 

17 10.06 11 0.00 1.26 22.8 -0.11  13.56 12 0.01 1.25 22.8 -0.03 

18 16.83 15 0.04 1.05 22.2 -0.14  15.00 15 0.04 1.05 22.2 -0.13 

19 14.37 13 0.03 1.02 22.2 -0.27  20.79 18 0.11 0.95 21.9 0.08 

20 7.60 8 -0.02 1.00 22.2 0.23  3.80 6 0.04 0.94 22.0 0.44 

Objective function 2
,

1

1
( )

n

i q
in


=
  

  0.06       0.04 

Note:
, , , ,

p o p

i q i q X i qx x = − , 
, ,( | )p p p

i q i qy M x = , M is BwMod with the model parameter p (a=0.04, b=1.6,𝜅 = 0.1, Smax=70000),

*

, ,

p p

i q i i qy y = − . 

In 1st and 2nd iteration: 
, ,1

p

X i and 
, ,2

p

X i are randomly sampled from N(0,0.01),
, , ,( )p

i q X i qk k = .  

In 3rd and latter iterations:
, 1

, 1 , 2

, 1 , 2

, , 1

p

i q p p

i q i

i q i

q

q

i q i q

k k
K k 

 

− −

− −

− −

−
= −

−
; 

, ,( )i q i qk k K= ; 
, ,

p

X i q is 
, ,2

p

X j  shuffled with 
,i qk

to meet

, , ,2 , ,( ) ( )p p

i q X j X i qk k k = =  
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Table 2 1 Descriptions of BwMod parameters 

Model Parameter Description Unit 
Reference value in 

the synthetic case 

Prior range in 

the case study 

BwMod 

a wash-off coefficient - 0.04 (0, 2) 

b wash-off exponent - 1.6 (0, 3) 

κ sediment accumulate rate - 0.1 (0, 1) 

Smax 
maximum amount of sediment possible 

to be accumulated 
kg 7000 (0, 15000) 

 

Table 3 2 Summary of the calibration scenarios in case studies 825 

Scenario in the 

synthetic case 
Notation 

Input error model in the 

synthetic data generation 
Prior information of input error model in calibration  

1 add-fixed 
* 2, ~ (0.2,0.5 )o N= +X X    

* 2, ~ (0.2,0.5 )o N= +X X     

2 add-inferred 
* 2, ~ ( , ), ( 0.5,0.5), (0,5)o N    = +  − X X     

3 mul-fixed 
* 2exp( , ~ (0.2,0.5 )o N= )X X    

* 2exp( , ~ (0.2,0.5 )o N= )X X     

4 mul-inferred 
* 2exp( , ~ ( , ), ( 0.5,0.5), (0,5)o N    = )  − X X     

1 O-fixed 
Observations from the rating 

curve (USGS database) 

* 2exp( , ~ (0, ), (0.10,0.11)o N  = ) X X     

2 O-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     

3 S-fixed 
Simulations from a 

hydrological model 

* 2exp( , ~ (0, ), (0.76,0.77)o N  = ) X X     

4 S-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     

Scenario in 

the synthetic 

case 1 

Notation 
Input error model in the 

synthetic input generation 

Prior information of input error model in 

calibration 
 

1 add-fixed 
* 2, ~ (0.2,0.5 )o N= +X X    

* 2, ~ (0.2,0.5 )o N= +X X     

2 add-inferred 
* 2, ~ ( , ), =0.2, (0,1)o N    = + X X     

3 mul-fixed 
* 2exp( , ~ (0.2,0.5 )o N= )X X    

* 2exp( , ~ (0.2,0.5 )o N= )X X     

4 mul-inferred 
* 2exp( , ~ ( , ), =0.2, (0,1)o N    = ) X X     

Scenario in 

the synthetic 

case 2 

Notation 
Observational error model in 

the synthetic output generation 

Prior information of input error model in 

calibration 
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1 mul-fixed * 2exp( , ~ (0, )o

YN = )Y Y  

2=0,0.1,0.2,0.3,0.4Y  

* 2exp( , ~ (0.2,0.5 )o N= )X X     

2 mul-inferred 
* 2exp( , ~ ( , ), =0.2, (0,1)o N    = ) X X     

Scenario in 

the real case 
Notation 

Input data source  

in the real case 

Prior information of input error model in 

calibration 
 

1 O-fixed 
Observations from the rating 

curve (USGS database) 

* 2exp( , ~ (0, ), =0.103X X  = )o N    

2 O-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     

3 S-fixed 
Simulations from a 

hydrological model 

* 2exp( , ~ (0, ), =0.764X X  = )o N    

4 S-inferred 
* 2exp( , ~ (0, ), (0,1)o N  = ) X X     
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Table 4 3 Characteristics of the study catchments and calibration data 

USGS station number location State 
Drainage area 

(km2) 

04087030 
Menomonee River at 

Menomonee Fall 
Wisconsin, USA 89.83 

land use 

Period of Data 
Number of Data 

(days) Urban 

(percent) 

Agricultural 

(percent) 

Natural 

(percent) 

35 38 27 2009/10/01 - 2012/09/29 1095 

 830 


