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Comments from editor 

Thank you for your considerable effort in improving this manuscript. I acknowledge 

that the quality has improved and major points have been addressed. One of the 

reviewers suggests only minor revisions at this point, while the other still sees major 

points that have to be clarified. I suggest that you address their comments, including 

the effect of reordering the realizations of the error distribution. I believe that this 

additional illustration would be very useful for the reader and help to understand the 

mechanics of the presented approach. After having considered these changes, I believe 

that this manuscript will eventually be a valuable contribution to stimulate new 

techniques of efficient parameter estimation under uncertainty. 

 

We thank the editor and reviewers for the overall positive assessment of the manuscript. 

According to the comments of the 1st reviewer, we have revised all the descriptions 

related to BATEA and IBUNE and highlighted the contribution of this study on the 

introduction of rank estimation and the secant method in the input error identification. 

Based on the comments of the 2nd reviewer, we have moved the Appendix B into the 

main text as Section “2.3 Bayesian inference of input uncertainty and the BEAR method” 

to explain the theoretical basis of the BEAR method in the Bayesian framework and 

added Section“4.2 The effect of reordering on the error realization” to clarify the 

mechanics of reordering step in the input error identification. 

We appreciate these useful comments, which we believe have helped improve the 

quality of the manuscript and inspired more understandings of the BEAR method from 

different angles. We have responded to each point in turn in the following sections. The 

comments from the reviewer are provided in blue text and our responses are organized 

point-by-point in black text. The manuscript text after the proposed changes is shown 

in “black italics”. The number of the line, equation and section refers to the revised 

version of the manuscript without track changes, shown in yellow highlight. 
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Anonymous Referee #1 

I think the manuscript clearly improved over the last iterations. Yet, I still struggle with 

the discrepancy between expectations that are raised in the title, abstract and 

introduction, and what is presented in the article, i.e. that BEAR is as comprehensive 

as BATEA and IBUNE and therefore an alternative to these two. This impression is 

fostered by phrases like L.53-54: “From the above, a new strategy should be developed 

to avoid high dimensional computation and ensure the accuracy of error identification.” 

or in chapter “2.4 Comparison with other methods”, where, first, BATEA is discarded 

with the plain statement that it might run into dimensionality problems and then BEAR 

is presented as a modification to IBUNE (Lines 172-173 “The “BEAR” method adds a 

reordering process into the “IBUNE” method to improve the accuracy of input error 

quantification”) . 

To overcome this problem, the authors should make last modifications: 

1) From the beginning on present the BEAR method as add-on to SMC or potential 

extension to existing methods like IBUNE, but not as a stand-alone, equal alternative 

to BATEA or IBUNE 

2) Only keep BATEA in the introduction as benchmark reference and for discussion, 

but not in the comparison – if BEAR shall be presented as an alternative, the authors 

should have run BATEA as reference. This includes deleting repetitions like lines 311ff 

in the Discussion chapter 4: “There are two ways to impose restrictions. One is to regard 

errors and model parameters as a whole in calibration, like the BATEA framework 

(Kavetski et al., 2006), resulting in a high dimensional computation.” Otherwise, there 

is the impression as if there was an actual comparison made. 

Thanks for your additional review and comments. We agree with this summary that the 

BEAR method is a modification of the input uncertainty quantification of the IBUNE 

framework, but not as comprehensive as the full implementation of BATEA and 

IBUNE. To avoid overselling the approach, we have revised all descriptions related to 

BATEA and IBUNE, as follows: 

1) The descriptions in line 53-56 have been modified as follows:  

“Therefore, a modification should be made in the IBUNE approach to improve the 

accuracy of input error identification. 
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To complete this goal, this study attempts to add a reordering strategy into the IBUNE 

framework and names this developed algorithm as Bayesian Error Analysis with 

Reordering (BEAR).” (line 54-57) 

2) The descriptions in Section 2.2 “Considering the limitations of BATEA and 

IBUNE framework discussed in the introduction, an improved strategy should 

be explored to avoid the high dimension challenge and meanwhile promote the 

error estimation accuracy.” have been modified as follows:  

“Unlike directly estimating the input error value via existing methods, this study 

attempts to transform the input error quantification into the rank domain.” (line 108-

109) 

3) The descriptions about BATEA have been deleted in “2.5 Comparison with 

other methods” to focus on the comparison between IBUNE and BEAR.  

“In this study, three methods, including the “Traditional” method, “IBUNE” method 

and “BEAR” method, are compared to evaluate the ability of the BEAR method in 

estimating the model parameters and quantifying input errors. The “Traditional” 

method regards the observed input as error-free without identifying input errors (i.e. 

Eq. (2)), while the other two methods employ a latent variable to counteract the impact 

of input error and derive a modified input (i.e. Eq.(3)). In the “IBUNE” method, 

potential input errors are randomly sampled from the assumed error distribution and 

filtered by the maximization of the likelihood function (Ajami et al., 2007). Although 

the comprehensive IBUNE framework additionally deals with model structural 

uncertainty via Bayesian Model Averaging (BMA), this study only compares the 

capacity of its input error identification. The “BEAR” method adds a reordering 

process into the “IBUNE” method to improve the accuracy of input error 

quantification.” (line 195-203) 

4) The discussion in Chapter 4 (repetition in lines 311ff) has been modified as 

follows:  

“In addition, rank estimation can make better use of the knowledge of the input error 

distribution. In a direct value estimation, it is difficult to keep the overall error 

distribution the same when the errors are updated in the calibration. The estimated 

errors are more likely to compensate for other sources of errors to maximize the 
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likelihood function and subsequently be overfitted. By contrast, in rank estimation, the 

errors at all the time steps are sampled from the pre-estimated error distribution first 

and then reordered. Whatever the error rank estimates are, they always follow the pre-

estimated error distribution, and the compensation effect will be limited. In the IBUNE 

framework (Ajami et al., 2007), the errors are also sampled from the error distribution, 

but not reordered. Thus, the error precision at each time step cannot be guaranteed. In 

the BEAR method, adjusting the sampled errors according to the inferred error rank 

reduces the randomness of the error allocation in the IBUNE framework (Ajami et al., 

2007), which significantly improves the accuracy of the error estimation (as 

demonstrated by much higher correlations than the IBUNE method in Fig. 2(2)).  

Unlike formal Bayesian inference, the rank estimation does not update the posterior 

distribution of the input errors, but optimises their time-varying values through the 

relationship between the input error rank and corresponding model residual error. The 

rank estimation is implemented after the model parameters have been updated and the 

model residual error depends on the input error estimation. Thus, the reordering 

strategy identifies the optimal input error rank conditional to the model parameters, 

effectively considering the interaction between the input error and the parameter error. 

This is akin to calibrating the input errors along with the model parameters in the 

BATEA framework (Kavetski et al., 2006).” (line 340-355) 

5) The conclusion in Chapter 5 has been modified as follows:  

“The novelties of this algorithm are: (1) The estimation focuses on the error rank rather 

than the error value, using the constraints of the known overall input error distribution 

and then improving the precision of the input error estimation by optimising the error 

allocation in a time series. (2) The introduction of the secant method addresses the 

nonlinearity in the WQM transformation and updates the error rank of each input data 

according to its corresponding model residual.” (line 410-414) 

 

Personally, I find the treatment of the errors still rather arbitrary – by design, the method 

will minimize residuals between model and observations. I doubt that this is the 

intention of Bayesian methods. Therefore, it is also no surprise that NSE values from 

BEAR are often higher (see e.g. Fig. 1 and 2) or the variance of residuals is lower (see 

Fig. 4). 



 

5 

Thanks for raising this concern. Based on your comments, we included a section that 

clarifies the BEAR modification compared to classical Bayesian inference, section “2.3 

Bayesian inference of input uncertainty and the BEAR method” to explain it. Regarding 

the issue of minimizing residual between model and observations, the effectiveness of 

our approach does depend on the assumption that the input error is dominant in the 

residual error. The explanation is as follows:  

“The secant method in the BEAR algorithm is applied to find the optimal ranks of input 

errors to minimise the model residual errors towards zero, as characterised by the 

minimized Residual Sum of Squares (RSS). Minimizing the RSS imposes the same effect 

as maximizing the likelihood function. The effectiveness of this step in quantifying the 

input errors is based on the assumption that the input error is dominant in the residual 

error and then minimizing RSS is the same as allocating the total error into the input 

errors. Otherwise, other dominant sources of errors will affect the estimation of the 

optimal input errors leading to poor input error identification.” (line 156-161) 

We also note that “Unlike formal Bayesian inference, the rank estimation does not 

update the posterior distribution of the input errors, but optimises their time-varying 

values through the relationship between the input error rank and corresponding model 

residual error. The rank estimation is implemented after the model parameters have 

been updated and the model residual error depends on the input error estimation. Thus, 

the reordering strategy identifies the optimal input error rank conditional to the model 

parameters, effectively considering the interaction between the input error and the 

parameter error. This is akin to calibrating the input errors along with the model 

parameters in the BATEA framework (Kavetski et al., 2006)” (line 350-355)  

 

That said, I do see two points why it still might be worth publishing: 1st) The 

manuscript addresses the problem “input error” that has not been addressed as much 

over the last years. Yet, it is a very important one, e.g. especially regarding novel data-

driven machine-learning models through which input errors might be propagated 

without regulation since unlike mechanistic models, they do not contain physical 

relations that might buffer some part of the input error. 2nd) The authors propose the 

use of the secant method to address the problem and even if I personally do not find the 

presented procedure to be the “problem-solver” modelers might look out for, readers 
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can make their mind of whether this method still bears more potential (working with 

ranks of errors, etc.) or not. 

So considering the points above, I would consider the publication of this manuscript as 

a contribution to the discussion about issues and ideas in addressing input errors, but 

not as a proven framework to tackle them that outperforms existing methods. 

Thanks for your suggestion. We agree with that the contribution of this study should 

focus on the introduction of rank estimation and the secant method in the input error 

identification. Therefore, we have revised the descriptions to highlight these points and 

deleted the statements on tackling the limitations of BATEA and IBUNE (see the above 

responses). 
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Anonymous Referee #2 

I thank the authors for their detailed revision of the manuscript. Overall, their revision 

helped clarifying a lot of uncertain aspects of the algorithm, and their responses to my 

concerns were mostly satisfactory, but work still remains to be done. Unfortunately, I 

fear that my main concerns about the theoretical foundations and consequences of the 

error re-ordering remain inadequately addressed. The derivation provided in Appendix 

B does not sufficiently clarify these points eithers: the core question (how exactly the 

re-ordering affects the base error distribution’s statistical moments or 

hyperparameters, and what the consequences are in Bayesian terms) remains 

unaddressed. Since I take it that the authors would like to stick with the error re-ordering 

approach, I would argue that this leaves you with two possible pathways:  

1) Provide a thorough theoretical derivation and in-depth investigation of what 

effect the error re-ordering really has, and what this means in Bayesian terms. 

After experimenting a bit with error re-ordering myself (see the Python code 

snippet below), I believe that a good start point might be couplings or measure 

transport (Pierre E. Jacob has a nice online lecture series on that called 

Couplings and Monte Carlo), as you seem to convert one distribution (the raw 

error distribution) into one with different statistical moments, one somehow 

moulded to the ideal error realizations. 

Thank you for this constructive comment. We appreciated the lectures shared by the 

reviewer from Pierre E. Jacob and carefully considered the method on Couplings and 

Monte Carlo. However, we believe the goal of coupling is intrinsically different from 

our method and is not feasible in the rank estimation. Coupling aims to gain a posterior 

distribution with different statistical moments, while the BEAR method does not 

change the error distribution (by sampling the errors from the same pre-estimated 

distribution), but aims to adjust the positions of sampled errors according to the inferred 

ranks via the secant method. In other words, re-ordering won’t change the overall 

statistical moments on the error population (i.e. mean and standard deviation. The 

details have been discussed in the additional section “4.2 The effect of reordering on 

the error realization”. 

2) Alternatively, you could simply drop the “Bayesian” attribute from your study 

or replace it with “Pseudo-Bayesian”. This might require that you adjust the 
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acronym. Even without full theoretical justification, your algorithm can still 

provide a useful heuristic, and maybe that is enough. Even in this case, however, 

I believe the manuscript would benefit from an isolated analysis of what 

mechanically happens to the input error distribution when subject to reordering. 

I have provided a few thoughts on this below. As a consequence, I would 

recommend another round of major revisions. If you follow option (2), I 

recommend specifically to add a new section into the theory/methodology 

chapter which explores and illustrates the effects of re-ordering errors on the 

raw error distributions in detail (this is important for the reader’s understanding 

of the approach– it should be part of the main manuscript, not the Appendix). 

To make space for this section, you could absorb some of the practical 

comments in the discussion (specifically, sections 4.1 and 4.3). There are also a 

lot of tangential comments addressing reviewer concerns throughout the 

manuscript which could be removed if their key points are addressed in this new 

section. This might also support the narrative thread of the manuscript by 

helping you to avoid the need to go on explanatory tangents. As I don’t want to 

leave you hang out to dry on such a large and amorphous task, I would 

specifically suggest exploring a simple example case in this proposed section. 

Specifically: 

• Ignore the model (for the purpose of error reordering this is unnecessary); 

instead, skip straight to positing some hidden “ideal” sequence of error 

realizations which perfectly compensate the true residual error (similar to your 

figure A1); derive the corresponding ranks; 

• Use a simple, structured residual error sequence to make it easier to read the 

induced effect. The sequence doesn’t have to be realistic, merely insightful; 

• Use a residual error distribution perfectly adjusted to the structured error you 

defined. In a synthetic test case, it’s easy to derive an empirical cdf. 

• Then explore the consequences of re-ordering for time series of different 

length or input error distributions of different quality. Discuss the statistical 

moments after reordering. 

We admit the sampling and reordering strategy in the BEAR method itself is not a 

formal Bayesian approach, but rather an additional step in the existing Bayesian 
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inference methods to find the deterministic relationship between the model residual 

error and the observational error. We have updated the text to make this point explicit, 

with an additional section “2.3 Bayesian inference of input uncertainty and the BEAR 

method” that clearly articulates the relationship between our approach and the classical 

Bayesian approach (see the following reply). Additionally, according to your 

suggestion, we have deleted the section “4.3 The extension to other modeling scenarios” 

and moved the summary of this content into Section 5 “Conclusion and 

recommendation”. 

 

I have provided an example Python script for this below and appended some of its result 

figures for different time series lengths of 10, 100, and 1000 in Figures 1, 2, and 3. In 

this example, I arbitrarily assumed the true/ideal error realizations to follow a sine curve. 

Note that something more realistic (like random samples from a Gaussian distribution) 

would have also worked, but the simplicity of a sine curve makes it significantly easier 

to read the effect of the re-ordering. 

Some thoughts on the results: 

As I suspected in major comment #7 for the first round of revisions, the longer the time 

series, the more likely the method is to achieve a “perfect fit”, so the effect of error re-

ordering depends on the length of the time series. You discuss this briefly in the 

manuscript, but I think that this is among the most important mechanisms of BEAR, so 

it is worth demonstrating in isolation. For short time series (Figure 1), error re-ordering 

can already induce some degree of improvements by causing the marginal sample mean 

to follow the “ideal” error realizations; at the same time, the marginal error standard 

deviation decreases. This effect is exacerbated for longer time series (T=100, Figure 2, 

and T=1000, Figure 3). The consequence seems to be that the unordered, raw error 

distribution is “molded” to the ideal error realizations. I suspect (and you seem to share 

these suspicions in your responses) that in the limit of an infinitely long time series, 

error realizations would be compensated perfectly. This is important to discuss for 

prospective users of your manuscript, as it affects the algorithm’s behaviour in 

somewhat unexpected ways. 
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Figure 1. Effect of error re-ordering for a perfect error distribution, an ensemble size 

of N=1000 and a time series length of T=10. The upper subplot shows the “ideal” 

realizations to compensate some residual error. The left centre plot shows N unordered 

realizations of an error distribution with the correct statistical moments of the ideal 

realizations (obtained by forming a cdf for a full sine wave). The right centre plot shows 

the marginal mean and standard deviation at each time step. The left bottom plot shows 

the N error realizations in the subplot above after ordering, and the right bottom plot 

shows the corresponding marginal mean and standard deviation. 

 

Figure 2. Effect of error re-ordering for a perfect error distribution, an ensemble size 

of N=1000 and a time series length of T=100. The upper subplot shows the “ideal” 

realizations to compensate some residual error. The left centre plot shows N unordered 

realizations of an error distribution with the correct statistical moments of the ideal 

realizations (obtained by forming a cdf for a full sine wave). The right centre plot shows 

the marginal mean and standard deviation at each time step. The left bottom plot shows 

the N error realizations in the subplot above after ordering, and the right bottom plot 

shows the corresponding marginal mean and standard deviation. 
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Figure 3. Effect of error re-ordering for a perfect error distribution, an ensemble size 

of N=1000 and a time series length of T=1000. The upper subplot shows the “ideal” 

realizations to compensate some residual error. The left centre plot shows N unordered 

realizations of an error distribution with the correct statistical moments of the ideal 

realizations (obtained by forming a cdf for a full sine wave). The right centre plot shows 

the marginal mean and standard deviation at each time step. The left bottom plot shows 

the N error realizations in the subplot above after ordering, and the right bottom plot 

shows the corresponding marginal mean and standard deviation. 

Other interesting things to visualize might be what happens if the error distribution is 

not perfect (for this, just replace “vals = dist(np.random.uniform(size=(1000, 

resolution)))” in the code with some other distribution). You already show this 

indirectly in your models, but demonstrating this effect in isolation rather than through 

the lens of performance metrics might be a lot clearer. Feel free to take inspiration from 

my example code or use it directly. I have attached it at the end of this manuscript. 

Of course, this code snippet just demonstrates what happens when we are re-ordering 

error realizations, not how you arrive at the error ranks and their interaction with the 

parameter inference in the first place (which are potentially additional topics to discuss).  

hope that even if you decide to follow option (1), this snippet might give you some 

ideas on where to start with the Bayesian justification. Good luck! 

We appreciate your open, detailed analysis of the impact of the time series length, 

which helped inspire us to analyse the effect of reordering. We added one section “4.2 

The effect of reordering on the error realization” and summarized all the results in the 

following Figure 5 to demonstrate the mechanics of error reordering. 

First, we want to point out that we agree that the length of the time series will affect the 
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efficacy of the method. As Figure 5 shows, larger data lengths bring more accurate 

estimation of model parameter and input errors. The reason for this has been discussed 

in Section 4.2. Usually, we are operating on the assumption that we have a 

representative length of sampled values, certainly enough that the model parameters are 

estimated properly, and that this is not unusual for the applications we are looking at 

(where we would need at least a year of data to estimate the parameters). 

Considering the changes of the marginal mean of the standard deviation, we discuss 

this in Section 4.2 as follows: 

“Figure 5 demonstrates the mechanics of input error reordering in the BEAR method 

and input error filtering in the IBUNE method to understand their effects on the input 

error realizations and model parameter estimation. The 1st sequence represents the 

situation where the raw input errors are randomly sampled from the pre-estimated 

error distribution, therefore, their marginal means and standard deviations are the 

same as the parameters of overall error distribution (demonstrated as the cyan lines in 

column (c)). In the later sequence. these errors are optimised via different methods. In 

the IBUNE method, these sampled input error series are selected by the maximized 

likelihood function and the interval of input errors become a little converged (in (b1)) 

and their marginal standard deviations reduce slightly (in (c1)). However, in the BEAR 

method, these input errors are rcordered according to the inferred ranks via the secant 

method, and the reordered errors gradually converge to the true values (represented 

by the blue interval are near the red line in (b2)). Therefore, their marginal means are 

similar to the true values and their marginal standard deviations reduce to zero (in 

(c2)). In the BEAR method, the promotion of the input error identification in the 

sequential updating will improve the model parmaeter estimation, represented by the 

posterior distribution of model parameter b converging to the true value in (a2). While 

in the IBUNE method, the identification of input errors is not precise and the bias of 

the model parameter still exists in (a1).  

The data length can affect the efficacy of the BEAR method but impose little effect on 

the IBUNE method. The IBUNE method takes advantage of the stochastic errors and 

keeps the marginal error distribution almost constant. The input error realization at 

each time step seems independent, only filtered by the overall likelihood function. 

Therefore, the number of sampled errors does not matter in the IBUNE method. 
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However, in the BEAR method, the input errors at all the time steps are not sampled 

independently, they are from one sample set. Therefore, before or after reordering, all 

errors will keep the same statistical features of the input error distribution, and only 

their marginal distribution changes due to the convergence to the unknown true values. 

Figure 5 (b2) demonstrates that when the data length (the same as the error number) 

is small, the input error estimation might be biased from the true values. This likely 

arises from the above-mentioned sampling bias or the impacts of the model parameter 

error because the sampling bias reduces with the larger number of error samples and 

the impacts of parameter error are more likely to be offset when the data length is long.” 

(line 357-379) 

 

Figure 5 Comparision of the results for scenario 1 in the synthetic case 1, the ensemble particle size 

of N=100 at different sequences of calibration (represented in different colours), via different 

methods (row 1: IBUNE method; row 2: BEAR method) and under different data lengths in 

calibration (the upper group: data length is 50; the lower group: data length is 1000, selects 50 

data the same as the upper group to show). Column a shows the probability density of model 

parameter b at different sequences of calibration. The other model parameters have the same 

pattern of change and thus there is no need to show. Column b shows the value interval of input 

error realizations of 100 particles after reordering in the BEAR method or filtering in the IBUNE 

method and Column c shows the corresponding marginal mean and standard deviations at each 

time step. The 1st sequence (in cyan) shows the raw input errors of random sampling, before 

reordering or filtering.  
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Specific comments (any line numbers I list correspond to the non-track-changes 

manuscript): 

Line 47: the same multiplier applied to one storm event  

Maybe “the same multiplier applied to all time steps of one storm event” might be better, 

if I understand this part correctly; using “same” for a singular object (“storm event”) 

sounds a bit strange. 

Thanks for your suggestion. This has been changed as recommended. (line 48) 

 

Line 184: the time scale is typically set as daily and the spatial scale is set as the 

catchment  

This is not particularly clear. I assume you simulate in daily time steps, and aggregate 

the catchment’s (presumably) surface area into a single spatial unit? If so, it might be 

better to replace this with “thus, we use daily time steps and consider the catchment a 

single, homogeneous spatial unit” or something along these lines. 

Thanks for your suggestion. This has been clarified as recommended. (line 214) 

 

Lines 302: From this point of view, it is more efficient to estimate the error rank than 

estimate the error value, This sentence ends on a comma, not a period. 

This has been corrected. (line 332) Thanks. 

 

Line 309-311: Besides, to avoid the high-dimension calculation, modifying each input 

error according to its corresponding residual error only works in the rank domain. In 

the value domain, if there is no constraint on the estimated input errors, they will fully 

compensate for the residual error to maximize the likelihood function and subsequently 

be overfitted.  

This requires more discussion in the revised manuscript, as it seemingly contradicts 

what you write in the paragraph immediately prior: In the previous paragraph, you 

recommend sampling error realizations repeatedly and selecting the optimal realization 

to overcome “sampling bias” and improve the fit to the actual observations. However, 
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in this paragraph you praise this very same sampling bias for preventing overfit. These 

are contradictory messages: provided you get the ranks right, if you were to resample 

an infinite number of times, you would eventually get an error realization which 

compensates the true error perfectly (even if your input error distribution is a really 

poor approximation to the “true” error distribution), thus negating your protection 

against overfit. The fact that this protection against overfit depends on the length of the 

time series might not be that much of an issue if you interpret your approach merely as 

a heuristic, but even in this case you need some practical guidelines on when to re-

sample for short time series. The proposed dedicated section might help clearing some 

of this confusion up. 

Thanks for your concerns. We believe the manuscript needs more clarification on the 

difference between  “sampling bias” and “compensation effect”. 

 

Figure R1 The cumulative probability of sampled errors and true errors (sample 

number =10 ) 

In Figure R1, three groups of errors are sampled from the same normal distribution 

(N(0,0.52)), but for the same order (with the same cumulative probability distribution), 

the sampled errors from different groups (in different colours) are not the same. The 

value difference at the same order is referred to as “sampling bias”. In order words, 

even if all the error ranks are estimated right, there is still a difference between the 

reordered error series and the true values, which comes from the sampling step, not the 

reordering step. The sampling bias is more significant when the error number is smaller 
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or the variance is larger. Repeatedly sampling and selecting the optimal set can reduce 

the potential impact of this. 

It should be noted that sampling bias cannot prevent overfitting. Here, these sentences 

aim to explain that overfitting (referring to the compensation effect) is more likely to 

appear in value estimation due to the lack of constraint on the error distribution. In value 

estimation, it is difficult to keep the overall distribution of the sampled errors the same 

when the errors are updated in calibration, then the compensation for the residual error 

is more likely to appear. By contrast, in rank estimation, the errors at all time steps are 

sampled from the pre-estimated error distribution. Whatever the error rank estimates 

are, they always follow the error distribution, and the compensation effect will be 

reduced. 

From the above, this has been clarified as follows: 

“For the same error distribution and the same cumulative probability distribution 

(corresponding to the same error rank), the errors sampled at different times could be 

largely different, especially for a small sample size (depending on the data length) or a 

large   of the assumed error distribution. This problem can be addressed by selecting 

the optimal solution from multiple samples according to the maximum likelihood 

function.” (line 333-337) 

“In addition, rank estimation can make better use of the knowledge of the input error 

distribution. In a direct value estimation, it is difficult to keep the overall error 

distribution the same when the errors are updated in the calibration. The estimated 

errors are more likely to compensate for other sources of errors to maximize the 

likelihood function and subsequently be overfitted. By contrast, in rank estimation, the 

errors at all the time steps are sampled from the pre-estimated error distribution first 

and then reordered. Whatever the error rank estimates are, they always follow the pre-

estimated error distribution, and the compensation effect will be limited.” (line 340-345) 

 

Line 320-322: Thus, unlike formal Bayesian inference, the BEAR method does not 

update the posterior distribution of the input errors, but identifies the input error through 

the deterministic relationship between the input error and model parameter. 

As far as I can see, this is the first time you mention that BEAR is not a formal Bayesian 
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inference method, so I suspect you would go for option (2). In any case, mentioning 

this in the discussion for the first time is a bit late: Something this important should be 

stated earlier, as early as the introduction or abstract. If you add the section exploring 

the consequences of error reordering, this would also be a good place to elaborate on 

this. 

Aside from this manuscript structuring argument, the statement in these lines is also 

unfortunately wrong. Refer to the attached figures for demonstration. I also elaborate 

more on this two comments below. 

Thanks for this insightful comment. 

We admit this statement is a bit sudden. We have clarified this as follows to show its 

connection with the preceding discussion in Section 4.1. 

“Unlike formal Bayesian inference, the rank estimation does not update the posterior 

distribution of the input errors, but optimises their time-varying values through the 

relationship between the input error rank and corresponding model residual error. The 

rank estimation is implemented after the model parameters have been updated and the 

model residual error depends on the input error estimation. Thus, the reordering 

strategy identifies the optimal input error rank conditional to the model parameters, 

effectively considering the interaction between the input error and the parameter error. 

This is akin to calibrating the input errors along with the model parameters in the 

BATEA framework (Kavetski et al., 2006).” (line 350-355) 

In addition, we have added the section “4.2 The effect of reordering on the error 

realization” to better explain this statement. 

 

Line 383: “However, the work in this study still identifies a few areas needing to be 

explored.” 

Nit-pick: This sentence is a bit unwieldy, in my opinion. How about “However, this 

study identifies a few areas which still need to be explored:”? 

Thanks for your suggestion. This has been changed as recommended. (line 415) 
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Response file / Response to major comment #7: “A point of clarification: in each 

subsequent iteration of the BEAR algorithm, a new population of input errors are 

sampled from their a priori distribution. This means that the distribution of errors at 

each iteration is the same prior to reordering, i.e. the population of errors do not 

converge to a distribution that has different statistical features (mean, standard 

deviation, skewness).” 

You are of course correct, but I fear your comment misses the point somewhat: While 

it is undoubtedly true that the raw input error distribution never changes, BEAR does 

effectively update the input error distribution. In the figures from my code snippet, this 

can be seen in the bottom right subplots when compared to the centre right subplots. It 

becomes evident that the both the effective mean and standard deviation (and likely 

higher statistical moments as well) change dramatically after reordering. In essence, the 

fact that you are re-ordering transforms your raw error distribution and causes you to 

sample some different latent distribution instead. What this distribution really is 

remains the key question of your entire approach. If you can figure that out, you’ll be 

one large step closer to justifying this approach theoretically. =) 

Thanks for your comments. We should clarify the difference between the overall error 

distribution of all the time steps (sampled in a single iteration of the algorithm) vs the 

error distribution at each time step.  

For the overall error distribution of all the time steps, this does not changes before or 

after reordering and in subsequent iterations of the algorithm. In the BEAR method, the 

errors are firstly sampled from the pre-estimated error distribution (error number = 

number of time steps) and randomly distributed on the different time steps. Then all the 

random samples are reordered according to the inferred error ranks, but the overall 

distribution stays the same. 

For the error distribution at each time step, the aim of error identification in this kind 

of study is to make it converge to the true value. Just like the demonstration in your 

figures, the ideal result is that its mean is the same as the true value (the residual error 

in your cases), and its standard deviation is as small as possible. 

Therefore, reordering does not cause us to sample some different latent distribution 

instead. The errors are always sampled from the pre-estimated overall error distribution. 

The converged error distribution at each time step after reordering is what we're trying 
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to achieve. 

 

In a sense, what you are doing seems distantly related to ideas in measure transport, see 

for example Marzouk et al. (2016) for an overview. In measure transport, the ultimate 

goal is to indirectly sample from an (almost) arbitrary target distribution. This is 

achieved by sampling a simple reference distribution instead (for example a 

multivariate standard Gaussian), then converting these reference samples through a 

deterministic function into samples from the target distribution. Of course, finding the 

correct transformation function is the key objective of this entire endeavour, and 

consequently its main challenge. In your study, you approach this from the opposite 

direction: you have some transformation, now you should find out what distribution 

you are sampling. 

Marzouk, Y., Moselhy, T., Parno, M., & Spantini, A. (2016). An introduction to 

sampling via measure transport. arXiv preprint arXiv:1602.05023; 

https://arxiv.org/abs/1602.05023. 

In summary, I would say the parallels to your approach are as follows: even though the 

reference distribution (corresponding to your raw input error distribution) never 

changes, the pushforward distribution (corresponding to the latent distribution your re-

ordered error realizations are effectively sampled from) changes with the 

transformation function (in your case, the re-ordering according to different error ranks). 

Yes, we totally agree with your summary that “the reference distribution (corresponding 

to your raw input error distribution) never changes, the pushforward distribution 

(corresponding to the latent distribution your re-ordered error realizations are 

effectively sampled from) changes.” It should be noted that the reference distribution is 

for the overall distribution of all the errors, while the pushforward distribution is for the 

error at each time step. Therefore, in the above response, we differentiate the overall 

error distribution and the error distribution at each time step, and based on your analysis, 

we have clarified this in Section 4.2 from the changes of the marginal mean and std. 

After learning the paper describing measure transport, we have not found an effective 

way to apply the proposed method for input error estimation or combine it with the 

secant method, which we believe needs further investigation of this method. Applying 

https://arxiv.org/abs/1602.05023
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the measure transport approach in this framework is an exploration of a totally new 

method and we believe the reordering error approach we propose (according to inferred 

ranks) seems an easier way to identify the transport of the marginal error distribution. 

However, we agree that the measure transport approach suggests an interesting future 

approach to integrate or compare with the method we have proposed, potentially 

building a more solid theoretical foundation in formal Bayesian inference.  


