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Response to Reviewer #2: 

This paper developed a new algorithm called BEAR for accurate quantification of input errors in 

water quality modeling. The precondition of the BEAR algorithm is that the input uncertainty 

should be dominant and that the prior information of the input error model can be estimated. 

Results of both synthetic data and observed data indicated the efficiency of the algorithm. Overall, 

the paper is well rewritten and the topic is suitable for the journal. However, the following issues 

should be further explained and clarified before its submission:  

We thank the reviewer for the overall positive assessment of the manuscript and helpful comments, 

which have helped to improve our study. We have responded to each point in turn in the following 

sections. The comments from the reviewer are provided in blue text and our responses are 

organized point-by-point in black text. The manuscript text after changes is shown in “black italics” 

and the equation and section number are shown in yellow highlight. 

It should be noted that the method name will change from the “Bayesian error analysis with 

reshuffling” into “Bayesian error analysis with reordering”. This is based on suggestions by one 

of the reviewers, as the word “shuffling” implies randomness in the reordering, while the 

reordering in our method is determined by the model residual error. The term “reordering” better 

reflects the deterministic nature of error quantified via this new method. Besides, the abbreviations 

of methods (T, D, R) will be changed to the full names (Traditional, IBUNE, BEAR). 

 

1) There have been many studies focusing on the uncertainty of input data errors for hydrologic 

modelling, and many methods including Bayesian algorithm can be used for handling the issue. 

However, the gap between previous studies and this study was not explained clearly in the 

Introduction. The motivation of this study should be clearly clarified.  

Thanks for your suggestion. The research gap and motivation will be modified in the Introduction 

as follows: 

“Input uncertainty can lead to bias in parameter estimation in water quality modeling (Chaudhary 

and Hantush, 2017, Kleidorfer et al., 2009, Willems, 2008). Improved model calibration requires 

isolating the input uncertainty from the total uncertainty. However, the precise quantification of 

time-varying input errors is still challenging when other types of uncertainties are propagated 
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through to the model results. In hydrological modeling, several approaches have been developed 

to characterize time-varying input errors, and these may hold promise for application in WQMs. 

The Bayesian total error analysis (BATEA) method provides a framework that has been widely 

used (Kavetski et al., 2006). Time-varying input errors are defined as multipliers on the input time 

series and inferred along with the model parameters in the Bayesian calibration scheme. It leads 

to a high-dimensionality formulation, which cannot be avoided (Renard et al., 2009) and restricts 

application to cases where event-based multipliers (the same multiplier applied to one storm event) 

need to be used. In the Integrated Bayesian Uncertainty Estimator (IBUNE) (Ajami et al., 2007) 

approach, multipliers are not jointly inferred with the model parameters, but sampled from the 

assumed distribution and then filtered by the constraints of simulation fitting. This approach 

reduces the dimensionality significantly and can be applied in the assumption of the data-based 

multiplier (one multiplier for one input data) (Ajami et al., 2007). However, this approach is less 

effective because the probability of co-occurrence of all optimal error values is very low, resulting 

in an underestimation of the multiplier variance and misidentification of the uncertainty sources 

(Renard et al., 2009). From the above, a new strategy should be developed to avoid high 

dimensional computation and meanwhile ensure the accuracy of error identification.”  

 

2) More detailed steps about how to use the BEAR algorithm should be explained. Besides, the 

advantages of the BEAR algorithm compared with conventional methods should be more 

clearly clarified for making clear understanding from readers.  

Thanks for your suggestion. The detailed steps of the BEAR method will be added in Appendix A 

(see the following Appendix A), and an illustration example will be moved from the methodology 

part to Appendix A to make the explanation more clear. In addition, the comparison with 

conventional methods will be clarified as follows: 

“The application of the BATEA framework is limited by high dimension computation (Renard et al., 

2009). In quantifying the data-varying errors (rather than the event-varying errors in the study of 

BATEA (Kavetski et al., 2006)), the computational dimension is easily excessive and the BATEA 

probably becomes impractical (Haario et al., 2005). Therefore, the BATEA method is not 

considered in the comparison. In this study, three methods are compared to evaluate the ability of 

the BEAR method in quantifying input errors. The first one is the “Traditional” method, regarding 
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the observed input as error-free without identifying input errors (i.e. Eq. (2)), while the other two 

methods employ a latent variable to counteract the impact of input error and build the modified 

input (i.e. Eq.(4)). One of them is the “IBUNE” method, where potential input errors are randomly 

sampled from the assumed error distribution and filtered by the minimization of the objective 

function (Ajami et al., 2007). Although the comprehensive IBUNE framework additionally deals 

with the model structural uncertainty via the Bayesian Model Averaging (BMA) method, this study 

only compares the capacity of its input error identification part. The last one is the “BEAR” method 

developed in this study. This new method adds a reordering process into the “IBUNE” method to 

improve the accuracy of input error quantification.” 

 

3) Actually, the availability of prior knowledge of the input data error is important for modelling, 

but is also a difficult issue. It may be not enough only mentioning this issue in Conclusion. At 

least more discussions and the potential solutions should be provided. 

The reviewer raised an important point. The discussion about this will be added in Section 4.2: 

“The availability of prior information of the input error relies on the studies about benchmarking 

the observational errors of the water quality data and hydrologic data. When the prior 

information is not available, the selection of the proper input error model is important. 

Comparing the error parameter estimations in Figure 3, the  and  estimations are less 

biased from the reference values in add-inferred scenario than in mul-inferred scenario. It 

illustrates that the compensating effect between the input error and parameter error is weaker in 

the additive form of the input error. However, this is probably related to the specific model 

structure, as exponent b in BwMod has a stronger interaction with the multiplied errors than the 

additive errors. Thus, more comprehensive comparisons should be taken to explore the capacity 

of different input error models in different model applications.” 

 

4) The quality of some Figures in the manuscript should be improved to make all information 

clear. 

Thanks for pointing this out. We will improve the quality of all the figures, including improving 

the resolutions and modifying the colors or placing of legends.  

µ s
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Appendix A: The illustration of the BEAR method 

Table A 1 An example illustrating the BEAR method 

 

The implementation of the BEAR method contains two main parts: sampling the errors from an 

assumed error distribution and reordering them with the inferred ranks via the secant method. An 

example is illustrated in Error! Reference source not found. and the explanation about the 

specific steps is presented in the following contents. 

(1) In the 1st iteration (q=1), the errors are randomly sampled from the assumed error 

distribution (row 1), and then they are sorted to get their ranks (row 2). This error series is 

employed to modify the input data, which corresponds to a new model simulation and 

model residual (row 3).  

(2) Repeat the step (1) in the 2nd iteration (q=2) as two sets of samples are prerequisites for the 

updating via the secant method. The results are shown in row 4, 5 and 6. Error! Reference 

source not found. demonstrates that the ranges of the error distribution are the same 

between the true input errors (black line) and the sampled errors (blue and green lines) as 

they come from the same error distribution under the condition that prior knowledge of the 

input error distribution is correct. However, the value at each time step is not close. 

(3) At the 1st time step (i=1) in the 3rd iteration (q=3), the pre-rank  is calculated via the 

secant method (illustrated as the following equation). The details are demonstrated in red 

boxes. 
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(4) Repeat the step (3) for all the time steps. The calculated pre-ranks are shown in row 7. 

(5) Sort all the pre-ranks to get the integrity error rank (row 8). 

(6) According to the updated error ranks (row 8), the sampled errors in the 2nd iteration (row 

4) are reordered. The example for the 1st time step is demonstrated in black boxes. The 

error rank at 1st time step is updated as 6, and the rank 6 corresponds to the error value -

0.02 in 2nd iteration. Therefore, -0.02 is the input error at the 1st time step in the 3rd iteration. 

Following this example, the sampled errors at all the time steps are reordered. The results 

are shown in row 9. Error! Reference source not found. demonstrates that after 

reordering the errors with the inferred ranks, the estimated errors are much close to the true 

input error. 

(7) The reordered input error will lead to a new input data, a new model simulation and a new 

model residual. The residual error is shown in row 10. 

(8) If a defined target about the residual error is achieved, the input error estimation is accepted; 

Otherwise, q=q+1, repeat step (3)~(7) until q is larger than the maximum numbers of 

iteration Q. 

 

Figure A 1 Demonstration of the input error estimation in Error! Reference source not found. at 

the 1st and 2nd iteration where the input errors are randomly sampled  
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Figure A 2 Demonstration of the input error estimation in Error! Reference source not found. at 

the 3rd iteration where the input errors are reordered according to the updated error ranks 

 


