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Response to Reviewer #1: 

The study proposes and demonstrates an algorithm for quantifying input uncertainty called BEAR 

(Bayesian error analysis with reshuffling). It is claimed that the method is suitable to overcome 

restrictions of current state-of-the-art approaches like high dimensional computational problems 

or underestimation and misidentification of error sources. For this purpose, the algorithm employs 

the secant method to estimate a certain rank of error associated to input data from an underlying 

rank distribution of errors. After introducing the method, it is demonstrated on the task of total 

suspended solids modelling in, first, a synthetic case study and, second, a real test case. Thereby, 

both, the effectiveness and the limitations are shown and discussed. Finally, transferability of the 

method within the field of water quality modelling and potential routes of improvement are 

presented. 

General comments:  

The issue of uncertainty quantification in modelling is for sure one of high importance. By focusing 

on input uncertainty this study addresses a branch that is particularly challenging in this field. 

Contributions in this direction deserve attention and the topic of this manuscript is suitable for the 

journal. However, certain issues regarding content and presentation of the material require to be 

addressed: 

We thank the reviewer for the overall positive assessment of the manuscript and helpful comments. 

We have responded to each point in turn in the following sections. The comments from the 

reviewer are provided in blue text and our responses are organized point-by-point in black text. 

The manuscript text after the proposed changes is shown in “black italics” and the equation and 

section number are shown in yellow highlight. 

It should be noted that we are proposing that the method name will change from the “Bayesian 

error analysis with reshuffling” into “Bayesian error analysis with reordering”. This is based on 

suggestions by one of the reviewers, as the word “shuffling” implies randomness in the reordering, 

while the reordering in our method is determined by the model residual error. The term “reordering” 

better reflects the deterministic nature of error quantified via this new method. 
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1) Maybe it is just the presentation, but it was not straightforward to see how the method exactly 

works. Aside of a more detailed explanation, providing more illustrations to support 

explanations about how the method exactly works might help, e.g. displaying the secant method 

itself, error distribution in rank space, etc. 

Thanks for your suggestion. We propose to address this by modifying the methodology in the 

following points to make the algorithm clearer: 

(1) Summarize the main steps in the BEAR method upfront: 

“The BEAR method consists of the following key steps: 1) Sample the errors from the assumed 

error distribution to maintain the overall statistical characteristics of input errors; 2) Update the 

input error ranks via the secant method; 3) Reorder these sampled errors according to the 

updated error ranks, leaving the error magnitudes unchanged; 4) Repeat (2) and (3) for a few 

iterations until a defined target is achieved.” 

(2) Integrate an example and its illustration in Appendix to explain the specific steps 

involved. More explanation for the rank estimation via the secant method and the reordering 

steps will be added (see an illustration of this in the following Appendix A). 

(3) Separate the description of the BEAR method from the ABC-SMC calibration scheme. 

following suggestions from other reviewers, we propose this because the ABC-SMC calibration 

algorithm is not necessary in the BEAR method, and the core idea of the BEAR method (the 

reordering strategy in the rank estimation) can be easily applied in any other calibration 

algorithm, for example, MCMC and SMC algorithms. 

 

2) By design, the BEAR method seems to shuffle and pick errors (by their ranks) such that 

maximum fit to the data is achieved. Is this a proper addressment of the input errors in terms of 

quantification of input uncertainty? For instance, in L.232 it is discussed that “method R always 

has much higher correlations with the true error series” and in L.243 it outperforms the other 

methods with highest NSE values. Both seem to be effects from the BEAR method searching 

for optimally fitting errors until exactly the error is found that minimizes the gap between model 

predictions and observations. 
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The reviewer raised an important question. The BEAR method works well under the circumstance 

where the input error is dominant in the total uncertainty, where minimizing the residual error has 

a similar effect as minimizing the input error. From this point of view, the sampling and reordering 

strategy in the BEAR method provides an effective way to identify the input error according to the 

residual error. This is what the Reviewer refers to as "searching for optimally fitting errors until 

exactly the error is found that minimizes the gap between model predictions and observations”. 

Like current methods that BEAR seeks to demonstrate an improvement over, the input error 

compensates for other errors, a step that is constrained by accurate prior information of the input 

error distribution being available. However, the compensating effect in the BEAR method is more 

apparent because it is much more effective than other current methods in minimizing the gap. Thus, 

the accuracy of the input error model is particularly important in the BEAR method. The analysis 

and discussion in Section 4.2 will be modified to convey this as follows: 

“The IBUNE method takes advantage of stochastic error samples to modify the input observations 

(Ajami et al., 2007). In Fig. 4 and Fig. 6, the uncertainty bands of modified inputs (blue parts) 

encompass the original input data, illustrating that the intrinsic quality of the input data plays an 

important role in the algorithm performance. Fig. 6 demonstrates that if the input error is 

insignificant in the residual, like in the O-fixed and O-inferred scenarios for the real case, the 

resultant simulations will fit the observed output (green line) well. Otherwise, the simulations are 

far away from the observed outputs (black line) due to inaccurate input observations (in the S-

fixed and S-inferred scenarios in the real case). As per the finding in the previous study of Renard 

et al. (2010), if the  of input errors is inferred with the model parameters, the IBUNE method 

will underestimate  (in Fig. 3(1) and Fig. 5(a2)). If  is fixed as per the prior information, the 

input modification and model simulation cannot be improved in the scenarios with large intrinsic 

 of the input errors, demonstrated by a wider band in Fig. 6(b3) than in Fig. 6(b4). From the 

above, the data quality is more important than the availability of prior information for the IBUNE 

method, especially when the intrinsic  of the input error is large. 

However, the findings in the BEAR method are quite different. Although the BEAR method infers 

the input error also by minimizing the model residual error, it is much more effective than the 

IBUNE method. For the synthetic case (Fig. 3(c)) and real case (Fig. 5(c)), the model simulations 

via the BEAR method (red parts) are very close to the output observations (green line). In other 

s
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words, the estimated input error mainly depends on the output observation. Therefore, in the real 

case with the same output observation (Fig. 6(c)), the modified inputs are consistent among the 

different scenarios. If the input uncertainty is dominant over the output observational uncertainty, 

the BEAR method effectively employs more accurate information (output observations) to modify 

the less precise information (input observations).  

To constrain the impacts of the other sources of error, accurate prior information about the input 

error model is important in the BEAR method. The fixed scenarios are assumed to have more 

accurate prior information than inferred scenarios. In the synthetic case, fixed scenarios always 

produce a higher NSE of the modified input (Fig. 3(5)) and a larger correlation in the estimation 

error (Fig. 3(3)) than inferred scenarios. In the real case in Fig. 6, the modified inputs in fixed 

scenarios are closer to the streamflow observation from the rating curve than the modified inputs 

in inferred scenarios. 

To sum up, the role of prior information regarding the input error model is more important in the 

BEAR method than in the IBUNE method. A more accurate input error model can bring a more 

precise estimation of input errors by constraining the adverse impacts that other sources of errors 

may have.” 

 

3) Expectations are raised that the method overcomes issues of state-of-the-art frameworks like 

BATEA and IBUNE. Yet, no direct comparison is shown which makes it hard to see the benefit 

of the method. Both these methods are frequently mentioned and a comparison is claimed. So 

far, there is a comparison of cases abbreviated by “T” (traditional), “D” (distribution) and “R” 

(BEAR method itself). “D” is referred to be “similar to the basic framework of the IBUNE 

method”. However, this does not provide an actual comparison. 

The reviewer is correct that we propose denoting the BATEA and IBUNE methods instead of 

explicitly naming them in our comparison. We will change the abbreviation to the full name of the 

methods as per the reviewer's suggestion, and add more explanations about this comparison, as 

follows: 

“The application of the BATEA framework is limited by high dimension computation (Renard et 

al., 2009). In quantifying the data-varying errors (rather than the event-varying errors in the study 
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of BATEA (Kavetski et al., 2006)), the computational dimension is easily excessive and the BATEA 

probably becomes impractical (Haario et al., 2005). Therefore, the BATEA method is not 

considered in the comparison. In this study, three methods are compared to evaluate the ability of 

the BEAR method in quantifying input errors. The first one is the “Traditional” method, regarding 

the observed input as error-free without identifying input errors (i.e. Eq. (2)), while the other two 

methods employ a latent variable to counteract the impact of input error and build the modified 

input (i.e. Eq.(4)). One of them is the “IBUNE” method, where potential input errors are randomly 

sampled from the assumed error distribution and filtered by the minimization of the objective 

function (Ajami et al., 2007). Although the comprehensive IBUNE framework additionally deals 

with the model structural uncertainty via the Bayesian Model Averaging (BMA) method, this study 

only compares the capacity of its input error identification part. The last one is the “BEAR” method 

developed in this study. This new method adds a reordering process into the “IBUNE” method to 

improve the accuracy of input error quantification.”  

 

4) The method is supposed to reduce “the potential search space for input errors” (L.360). I wonder 

whether this is the objective quantification of input uncertainty? Isn‘t it rather a comprehensive 

assessment of the errors and noise associated to input error and not searching in a sub-space of 

already collected errors and then selecting the one that fits best during predictions? 

We apologize for the lack of clarification. We will add more explanations in the revision. Here 

“reduce the potential search space for input errors” (L.360) is because “In a continuous sequence 

of data, the potential error values have an infinite number of combinations, while the error rank 

has limited combinations, dependent on the data length. For example, in Table A.1, the estimated 

error at the 1st time step could be any value. Even under the constraint of an input error ranging 

from the minimized to the maximized sampled errors (i.e. [-0.29,0.16] in the 1st iteration), error 

magnitude estimation still has infinite possibilities due to the continuous probability distribution 

the error represents. In contrast, the rank is discrete, having only 20 possibilities (i.e. an integer 

from [1,20]). From this point of view, it is far more efficient to estimate the error rank than estimate 

the error value.”  

To avoid the misunderstanding the current manuscript created, we will delete “reduce the potential 

search space for input errors” (L.360), and change this sentence as follows:  



6 

“The estimation focuses on the error rank rather than the error magnitude, which significantly 

improves the effectiveness of input error quantification.” 

 

5) Generally, a thorough discussion on the used error distributions is missing, e.g. why is a bias of 

0.2 in the error function assigned without further discussion (l.211) 

Thanks for your comments. We will add a clarification as follows: 

“If the input errors are estimated based on a rating curve, like the procedure in the following real 

case, the error distribution should be assumed as a Gaussian distribution and the mean should be 

0. However, in order to test the ability of the BEAR method in wider applications, the systematic 

error bias equal to 0.2 has been considered in the synthetic case. An additive formulation (denoted 

as ‘add’ in Table 3) is adopted to illustrate the error generation in measurements, while the 

multiplicative formulation (denoted as ‘mul’ in Table 3) is specifically applied for errors induced 

from a log-log regression procedure, which is common in the water quality proxy processes (Rode 

and Suhr, 2007).” 

 

6) There is at least one article cited in the manuscript, that does not appear in the list of references 

(please see specific comments, l.190). Please assure correct referencing. 

Thanks for your comments. We will correct all the missing references. 

 

Specific comments  

1) L. 37-38: “…estimate the residuals between the measurements and proxy values…” -> yet, 

measurement error is not addressed 

Thanks for your comments. we will clarify this as follows: 

“In this process, the measurement errors can be ignored given the errors introduced from the 

surrogate process are commonly much greater than the measurement errors (McMillan et al., 

2012).” 
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2) L. 68: “variable” -> “scalar“– both, vectors and scalars represent variables 

“variable” will be changed into “scalar”. 

 

3) Eq. 3: unnecessary, since given by equation (1) 

Equation (3) will be deleted. 

 

4) L. 84-91: repetitive, add details to the corresponding paragraph in the introduction 

Thanks for your suggestion. We will move these details into the introduction, as follows: 

“The Bayesian total error analysis (BATEA) method provides a framework that has been widely 

used (Kavetski et al., 2006). Time-varying input errors are defined as multipliers on the input time 

series and inferred along with the model parameters in the Bayesian calibration scheme. It leads 

to a high-dimensionality formulation, which cannot be avoided (Renard et al., 2009) and restricts 

application to cases where event-based multipliers (the same multiplier applied to one storm event) 

need to be used. In the Integrated Bayesian Uncertainty Estimator (IBUNE) (Ajami et al., 2007) 

approach, multipliers are not jointly inferred with the model parameters, but sampled from the 

assumed distribution and then filtered by the constraints of simulation fitting. This approach 

reduces the dimensionality significantly and can be applied in the assumption of the data-based 

multiplier (one multiplier for one input data) (Ajami et al., 2007). However, this approach is less 

effective because the probability of co-occurrence of all optimal error values is very low, results 

in an underestimation of the multiplier variance and misidentification of the uncertainty sources 

(Renard et al., 2009). From the above, a new strategy should be developed to avoid high 

dimensional computation and meanwhile ensure the accuracy of error identification.”  

 

5) L. 92: “innovation” -> rather “introduction” or simple “The secant method” as chapter header 

– the innovation was made before 

We agree with the suggestion. The section titled “innovation” will be changed to “introduction”. 
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6) L. 98-99: Rank definition and concept -> requires further explanation 

We will add further explanations, as follows: 

“Here, the rank is defined as the order of any individual value relative to the other sampled values 

and determines the relative magnitude of each error in all data errors. For example, in the 1st 

iteration in Figure A 1, the error at 15th time step, -0.29, is the smallest value among all the 

sampled errors, therefore, its rank is 1.” 

 

7) L. 128ff: it sound like in ABC the requirements on the likelihood function are looser and 

therefore the method is easier to apply. However, requirements are also strict but ABC allows 

for Bayesian inference if the likelihood function is intractable. -> Please reformulate and 

clarify. 

Thanks for your comments. Given the BEAR algorithm could be implemented via SMC, GLUE 

or SCE-UA, or any common model calibration approach, and this description about ABC confuses 

the main contribution of the paper (i.e. the core idea of BEAR method, which is to optimize input 

error ranks rather than input error magnitudes) we propose recasting the implementation of our 

optimization algorithm via SMC. 

 

8) L. 132ff: Notation “OF” not explained. Overall, the introduction of ABC and SMC is not clear. 

Further, the motivation why SMC is used here is not given. 

Thanks for your comments. “OF” here means “objective function”. But according to the above 

reply, we propose recasting the implementation via SMC, which target is the likelihood function 

rather than the objective function. “The SMC sampler is more computationally efficient than 

previous algorithms that have applied rejection sampling and MCMC samplers (Sisson et al., 2007, 

Jeremiah et al., 2011).” 

 

9) L. 146: “…when 1000 proposed parameter sets…” -> is this suggested as a general approach 

or an arbitrary choice for this study. Please explain. 
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According to the reply for 7), we propose recasting the implementation via SMC. If the BEAR 

method is implemented using a likelihood-based calibration procedure, the proposed parameter is 

compared to the previous entry in the chain and there is no need to set this stop criterion, just 

follow traditional convergence rules.  

 

10) L.171ff: Please replace abbreviations T, D and R by their names. With all abbreviations that 

follow it is hard to keep track. 

Thanks for your suggestion. We will change the abbreviations into the full names in the below 

descriptions and related figures. 

“In this study, three methods are compared to evaluate the ability of the BEAR method in 

quantifying input errors. The first one is the “Traditional” method, regarding the observed input 

as error-free without identifying input errors (i.e. Eq. (2)), while the other two methods employ a 

latent variable to counteract the impact of input error and build the modified input (i.e. Eq.(4)). 

One of them is the “IBUNE” method, where potential input errors are randomly sampled from the 

assumed error distribution and filtered by the minimization of the objective function (Ajami et al., 

2007). Although the comprehensive IBUNE framework additionally deals with the model 

structural uncertainty via the Bayesian Model Averaging (BMA) method, this study only compares 

the capacity of its input error identification part. The last one is the “BEAR” method developed in 

this study. This new method adds a reordering process to the “IBUNE” method to improve the 

accuracy of input error quantification..” 

 

11) LL. 190+196: “Sikorska et al, 2015” ! missing in references 

We will add all the missing references. 

 

12) Eq. 9: define parameter “b” 

The definition is shown in Table 2. A clarification will be added: 

“where the descriptions of a and b are shown in Table 2”  
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13) L. 215ff: incomplete sentence 

We will complete this as follows: 

“The true output  is the simulated TSS concentration via BwMod corresponding to the true input 

 and model parameters set as the reference values in Table 2.” 

 

14) L. 229ff: “calibrated via method T,…” -> misleading explanation. Please provide a more 

specific explanation of the calibration process under error scenarios T, D and R 

Please see the reply for 10)L. 171ff 

 

15) L. 257: “:…the impacts of model structural error and output data error cannot be ignored.” vs. 

L.264: “:…other sources of uncertainty can be ignored” -> sound like a contradiction, please 

elaborate 

Thanks for your comments. We will modify the description as follows: 

“In real-life applications, the impacts of model structural error and output data error exist and 

may impair the implementation of the BEAR method.”  

“As the BEAR method works well under the assumption that input uncertainty is significant, other 

sources of uncertainties can be ignored in comparison,”  

 

16) L. 282-283: “This illustrates that the impacts of other…” -> unclear phrase, please clarify and 

re-formulate 

We will add the clarifications as follows: 

“Compared with sound estimations in the synthetic case where the modeling only suffers from the 

input error and parameter error, this undesirable result illustrates that the impacts of other 

sources of errors impair the error quantification when the prior information of input error is not 

accurate, regardless of the methods.”  

 

*Y
*X
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17) L. 291: “…could be regarded as the reference value.” -> Why? Please explain. 

Thanks for pointing this out. The observed streamflow from the rating curve cannot be considered 

as the reference value, it is just closer to the reference value than the simulated streamflow via 

GR4J. The explanations will be corrected as follow: 

“According to the results of the traditional method in Fig. 6(a), the outputs in the “O” scenarios 

(in (a1) and (a2)) capture the dynamics of observed TSS concentration better than the outputs in 

the “S” scenarios (in (a3) and (a4)). Thus, compared with the simulated streamflow via GR4J 

(“S” streamflow), the observed streamflow from the rating curve (“O” streamflow) should be 

closer to the true input data.” 

 

18) L. 295-296: “…have an infinite number of combinations, while the error rank has limited 

combinations, dependent on data length.” -> What is exactly meant here? 

We will add the explanation as follows: 

“In a continuous sequence of data, the potential error values have an infinite number of 

combinations, while the error rank has limited combinations, dependent on the data length. For 

example, in Table A.1, the estimated error at the 1st time step could be any value. Even under the 

constraint of input error ranging from the minimized to the maximized sampled errors (i.e. [-

0.29,0.16] in the 1st iteration), error magnitude estimation still has infinite possibilities due to 

the continuous probability distribution the error represents. In contrast, the rank is discrete, 

having only 20 possibilities (i.e. an integer from [1,20]). From this point of view, it is far more 

efficient to estimate the error rank than estimate the error value.” 

 

19) L. 297ff. “Compared with the IBUNE framework…” -> there is no real comparison made, 

please see major comments 

Please see the reply to the major comment 3). 

 

20) L. 340: “for method R, an accurate input error model can constrain the adverse impacts…” -> 

wasn‘t this the problem to begin with? Please clarify this sentence. 
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This point will be clarified as follows: 

“To constrain the impacts of the other sources of error, accurate prior information about the input 

error model is important in the BEAR method. The fixed scenarios are assumed to have more 

accurate prior information than inferred scenarios. In the synthetic case, fixed scenarios always 

produce a higher NSE of the modified input (Fig. 3(5)) and a larger correlation in the estimation 

error (Fig. 3(3)) than inferred scenarios. In the real case in Fig. 6, the modified inputs in fixed 

scenarios are closer to the streamflow observation from the rating curve than the modified inputs 

in inferred scenarios.” 

Please also see the reply to the major comment 2). 

 

21) L 354-355: “However, the ability of these approaches needs further discussion in systems with 

correlated responses.” -> Please clarify – what is the exact problem and why do ARMA 

models fit here? 

Thanks for your comments. We will add clarifications as follows: 

“The part of each residual error correlated with the previous residual errors can be represented 

by an autoregressive moving average (ARMA) model (Kuczera, 1983) or autoregressive (AR) 

model (Schaefli et al., 2007, Bates and Campbell, 2001). This correlated part is removed from the 

residual error and the remaining part is considered to be impacted by the input error only. Thus, 

the correspondence between the input error rank and the residual error part is ensured and the 

latter process will be the same as the application of the BEAR method in BwMod. However, the 

specific settings of such an approach need further discussion in systems with correlated responses, 

for example, in the calculation of coefficients of the ARMA or AR model since the residual error 

changes in each iteration of calibration.”  

 

22) L. 358: “developed” -> “proposed” – the methods are already known but used in a way to 

address input error here. 

We will change “developed” to “proposed”. 
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23) L 362: “… addresses the high dimensionality problem…” -> not shown 

“Address” will be changed to “avoid” and more clarification will be added as follows: 

“The introduction of the secant method links the error rank for each input data to its 

corresponding residual, which avoids the high dimensionality problem resulting from calibrating 

all the errors as a whole.” 

 

Figures 

1) General: Legends in figures should be improved, e.g. in terms of colors or placing 

2) General: Provide higher resolution and unify the legend (see especially Fig. 4 and 6) 

3) Figure 3: please use colors that are better distinguishable (see cases “T” and“R”) 

Thanks for your suggestion. We will improve the quality of all the figures, including improving 

the resolutions and modifying the colors or placing of legends. 

4) Figure 3(4): NSE = 1 is unrealistic. Please see major comments. 

Thanks for your pointing it out. NSE is close to 1, not equal to 1. We will modify the 

demonstration to avoid this misreading. This occurs as Figure 3 shows the results of the synthetic 

case where the modeling only suffers from the input error and parameter error. The BEAR method 

is effective in isolating the input error and parameter error, which has been proved by the fact that 

NSE is much closer to 1. However, when the BEAR method is applied in real applications where 

other sources of errors will interfere, as Figure 6 shows, the fit to the output TSS observations 

reduces. 

5) Figure 4 (c3,c4): model predictions are clearly shifted. Please elaborate on this offset. 

The model applied is BwMod. When the input (streamflow) is large, the output (TSS 

concentration) will be reduced due to the wash-off effect. It is opposite to the hydrological model, 

where the large input (precipitation) will lead to a large output (discharge). 

6) Figures 4 and 6: Maybe it is better to show these figures in the appendix and only present the 

most important subfigures in the main text 

OK, we will move these two figures into Appendix. 
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Tables 

1) Tables 1-1 and 1-2: The tables could be presented as additional files but are not helpful in the 

main article 

OK, we will move these two figures into Appendix, integrating the descriptions and other figures 

in Appendix A to provide a more clear explanation about the BEAR method. 

 

2) Table 3: the “fixed” scenarios in the real test case are not fixed but provide small 

hyperparameter ranges 

Thank you for pointing this out. The small ranges will be changed into the fixed value in Table 2, 

as follows: 

Table 1 Summary of the calibration scenarios in case studies 

Scenario in 
the synthetic 

case 
Notation Input error model in the 

synthetic data generation 
Prior information of input error model in 

calibration 
 

1 add-fixed 
 

  

2 add-inferred   

3 mul-fixed 
 

  

4 mul-inferred   

Scenario in 
the real case Notation Input data source  

in the real case 
Prior information of input error model in 

calibration 
 

1 O-fixed Observations from the 
rating curve (USGS 

database) 

  

2 O-inferred   

3 S-fixed 
Simulations from a 
hydrological model 

  

4 S-inferred   

 

 

* 2, ~ (0.2,0.5 )o N= +X X e e

* 2, ~ (0.2,0.5 )o N= +X X e e

* 2, ~ ( , ), ( 0.5,0.5), (0,5)o N µ s µ s= + Î - ÎX X e e

* 2exp( , ~ (0.2,0.5 )o N= )X X e e

* 2exp( , ~ (0.2,0.5 )o N= )X X e e

* 2exp( , ~ ( , ), ( 0.5,0.5), (0,5)o N µ s µ s= ) Î - ÎX X e e

* 2exp( , ~ (0, ), =0.103X X s s= )o Ne e

* 2exp( , ~ (0, ), (0,1)o N s s= ) ÎX X e e

* 2exp( , ~ (0, ), =0.764X X s s= )o Ne e

* 2exp( , ~ (0, ), (0,1)o N s s= ) ÎX X e e
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Technical corrections 

1) L. 128: double “,” 

Thanks, the redundant “,” will be deleted. 

 

2) L. 142: “sth” -> make “s” italic 

This will be changed to be italic. 

 

3) Eq. 8: unspecified symbol 

We will remove this unspecified symbol. 

 

4) L. 314: “q increasing until the objective: : :” -> incomplete sentence 

This will be corrected as follows: 

“Considering these two points, the BEAR method set q iterations in the algorithm (Fig. 1), and q 

increases until a defined target is achieved .” 
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Appendix A: The illustration of the BEAR method 

Table A 1 An example illustrating the BEAR method 

 

The implementation of the BEAR method contains two main parts: sampling the errors from an 

assumed error distribution and reordering them with the inferred ranks via the secant method. An 

example is illustrated in Table A 1 and the explanation about the specific steps is presented in the 

following contents. 

(1) In the 1st iteration (q=1), the errors are randomly sampled from the assumed error 

distribution (row 1), and then they are sorted to get their ranks (row 2). This error series is 

employed to modify the input data, which corresponds to a new model simulation and 

model residual (row 3).  

(2) Repeat the step (1) in the 2nd iteration (q=2) as two sets of samples are prerequisites for the 

updating via the secant method. The results are shown in row 4, 5 and 6. Figure A 1 

demonstrates that the ranges of the error distribution are the same between the true input 

errors (black line) and the sampled errors (blue and green lines) as they come from the 

same error distribution under the condition that prior knowledge of the input error 

distribution is correct. However, the value at each time step is not close. 

(3) At the 1st time step (i=1) in the 3rd iteration (q=3), the pre-rank  is calculated via the 

secant method (illustrated as the following equation). The details are demonstrated in red 

boxes. 

1,3K
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(4) Repeat the step (3) for all the time steps. The calculated pre-ranks are shown in row 7. 

(5) Sort all the pre-ranks to get the integrity error rank (row 8). 

(6) According to the updated error ranks (row 8), the sampled errors in the 2nd iteration (row 

4) are reordered. The example for the 1st time step is demonstrated in black boxes. The 

error rank at 1st time step is updated as 6, and the rank 6 corresponds to the error value -

0.02 in 2nd iteration. Therefore, -0.02 is the input error at the 1st time step in the 3rd iteration. 

Following this example, the sampled errors at all the time steps are reordered. The results 

are shown in row 9. Figure A 2 demonstrates that after reordering the errors with the 

inferred ranks, the estimated errors are much close to the true input error. 

(7) The reordered input error will lead to a new input data, a new model simulation and a new 

model residual. The residual error is shown in row 10. 

(8) If a defined target about the residual error is achieved, the input error estimation is accepted; 

Otherwise, q=q+1, repeat step (3)~(7) until q is larger than the maximum numbers of 

iteration Q. 

 

Figure A 1 Demonstration of the input error estimation in Table A 1 at the 1st and 2nd iteration 

where the input errors are randomly sampled  

1,2 1,1
1,3 1,2 1,2

1,2 1,1

9 13=9-(-0.13) 5.8
0.13 ( 0.29)

e
e e

- -
= - =
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p
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Figure A 2 Demonstration of the input error estimation in Table A 1 at the 3rd iteration where the 

input errors are reordered according to the updated error ranks 

 


