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Response to Referee Comments:Reviewer#1

First of all, we sincerely appreciate the comments on our manuscript. We both thank
the positive remarks and the specific concerns, which provided great encouragement
and specific guidance to the authors to improve the manuscript. Please see the
bellowing point-to-point responses to the main concerns and minor comments.

C1

General comments:
This paper presents a hydrological evaluation of two open-access precipitation
products (CHIRPS and CPC) compared with rain gauge dataset, at multiple temporal
and spatial scales. The content of this research is of great interest to readers of
watershed hydrology, remote sensing, and satellite meteorology, since it provided
valuable suggestions for researchers in these fields, especially for hydrologic model-
ers. It is demonstrated by the authors that, even with obvious statistical differences,
performances of the three selected precipitation datasets in simulating water yield are
parallel. Comparably, inconsistency were found when OPPs and rain gauge data were
used to simulate hydrological components, e.g. Surface runoff, lateral flow, and base
flow. Inner mechanism was highlighted from both spatial and temporal scales. Overall,
this manuscript is quite well written and presented. Minor revision comments below
aim to improve the quality of the manuscript.

Main concerns:
1. The paper fails to articulate the implications of its finding (that hydrological models
can give very similar model performance, with differing process behaviour, with
precipitation datasets with quite different characteristics) in either the Conclusions or
the Abstract. For example, Remesan and Holman (2015) study cited by the authors
showed that such ‘similar’ calibrated/validated models, when subsequently run using
perturbed inputs (e.g. climate change scenario), can lead to different magnitudes and
directions of hydrological change due to their differing parameterization. The authors
should consider how their findings can guide modelers in the use of these different
precipitation datasets for the hydrological modelling of the current and future climate.

Authors’ response: Greatly appreciate the comment and suggestion. As stated
in Remesan and Holman’s (2015) study, “with similar historical model performance,
model construction with different baseline meteorological data choices significantly
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condition the magnitude and direction of simulated hydrological impacts of climate
change”, the current study has reached “similar” conclusions: “with similar perfor-
mances in simulating river runoff, different types of precipitation data digested in
hydrologic modeling tends to counterbalance their identified differences by differing
parameterization and leads to different directions of hydrologic processes”. Consider-
ing that this research focuses on precipitation condition under current climate, it could
generally provide implications to hydrological modelers of current and future climate
from following two aspects:

1) From perspective of precipitation estimation: CHIRPS has a higher spatial resolution
(with 0.05◦ being equivalent to a resolution of one gauge station for every 30.25 km2

area) and a stronger ability to recognize heavy rain and extreme rainfall (Fig.4 – Fig.6
in the manuscript). These features would facilitate the widespread use of CHIRPS
in future climate analyses. Take extreme climate analyses for example, it is reported
that the frequency of extreme rainfall events in China has been significantly increased
in past decades and this tendency will continue increasing in future climate change
(Mou et al., 2020; Xi et al., 2018). With this background in future climate change,
CHIRPS would provide high potential in future extreme rainfall event analyses with
high spatial resolution. Actually, CHIRPS has been applied to identify extreme rainfall
events by indicators of nP (Number of days with P ≥1mm), PRCPTOT (Annual total
precipitation), and R95pad (Total precipitation when P >95 percentile of all days), etc.
(Cavalcante et al., 2020). In contrast, the CPC’s strong ability to identify light rain
represents a unique advantage in extreme drought-related research.

2) From perspective of hydrologic modeling: overall, the three precipitation types de-
rive almost equivalent and acceptable hydrological performance according to Moriasi
et al’s criteria (2007), while CHIRPS presented better performance in uncertainty
analyses. Although the river runoff values simulated by the three models are basically
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consistent, there are significant differences among other hydrological components,
such as surface runoff, lateral flow, and base flow. CHIRPS tends to derive more
surface flow due to the higher precipitation detection, while CPC tends to yield more
lateral flow due to the lower precipitation detection. As such, CHIRPS would suit
broader applications in flood prediction of the future climate due to its ability in extreme
precipitation identification and surface flow simulation. More importantly, multiple-
objective calibration based on multiple hydrological components are recommended to
improve SWAT modeling in large and spatial resolved watershed.

Cavalcante, R. B. L., Ferreira, D. B. da S., Pontes, P. R. M., Tedeschi, R. G., da Costa, C. P. W., & de Souza,

E. B. (2020). Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian

Amazonia. Atmos. Res., 238, 104879. doi:10.1016/j.atmosres.2020.104879.

Mou, S., Shi, P., Qu, S., Feng, Y., Chen, C., & Dong, F. (2020). Projected regional responses of precipitation extremes

and their joint probabilistic behaviors to climate change in the upper and middle reaches of Huaihe River

Basin, China. Atmos. Res., 104942. doi:10.1016/j.atmosres.2020.104942.

Xi, Y., Miao, C., Wu, J., Duan, Q., Lei, X., & Li, H. (2018). Spatiotemporal Changes in Extreme Temperature

and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res-Atmos., 123,

5827–5844. doi:10.1029/2017jd028226.

The above considerations will be articulated in sections of Abstract, Discussion and
Conclusions of the revised manuscript.

Original version of abstract:
L23-27 – “The results of this study demonstrate that evaluating precipitation products

using only streamflow simulation accuracy will conceal the dissimilarities between
these products. Hydrological models alter hydrologic mechanisms by adjusting
calibrated parameters. Specifically, different precipitation detection methods lead
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to temporal and spatial variation of water balance components, demonstrating the
complexity in describing natural hydrologic processes.”

Revised version of abstract:
The results of this study demonstrate that with similar performances in simulating

watershed runoff, the three precipitation datasets tend to conceal the identified
dissimilarities through hydrological model parameter calibration, which leads to
different directions of hydrologic processes. As such, multiple-objective calibration
is recommended for large and spatial resolved watershed in future work. The main
findings of this research suggest that the features of OPPs facilitate the widespread
use of CHIRPS in extreme flood events and CPC in extreme drought analyses in future
climate.

Original version of discussion section:
L435-437 – “. . . Moreover, precipitation in the watershed’s upstream area tended to
infiltrate into the land surface due to the lower precipitation detection (see Fig. 7); yet
when the river flow converged in the watershed’s downstream area, the surface flow
increased due to the larger detected precipitation values.”

Revised version of discussion section:
In Sect. 4.2, the features of the two OPPs in detecting precipitation and hydrologic

components modelling will be discussed, and the multi-objective calibration and pa-
rameterization will be added.
Moreover, precipitation in the watershed’s upstream area tended to infiltrate into the
land surface due to the lower precipitation detection (see Fig. 7); yet when the river
flow converged in the watershed’s downstream area, the surface flow increased due
to the larger detected precipitation values. The results of these findings demonstrated
that although the river runoff simulated by the three models are basically consistent,
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hydrologic components exhibited distinct behaviours due to the different features in
precipitation detection. CHIRPS has a stronger ability to recognize heavy rain and
tends to produce more surface runoff, while CPC’s strong ability to identify light rain
produces more lateral flow. As such, multi-objective calibration approach would be
recommended for flood prediction in future climate. Tuo et al. (2018) use water yield
(WYLD), snow water equivalent (SWE), combining WYLD and SWE as objectives to
for parameter calibration and optimization in the SWAT model, and verified the effec-
tiveness of the multi-object procedure.

Figure 1. Spatial variation of annual precipitation at sub-basin scale for (a) Gauge (b)
CHIRPS and (c) CPC. (Fig.7 in the manuscript)

Original version of conclusion section:
L461-465 – “In particular, according to parameter adjustment, the three products’

precipitation detection features resulted in significantly different water balance compo-
nent portions, i.e., the overestimation of MR by CHIRPS resulted in a larger portion of
surface flow, while the underestimation of all rainfall by CPC reduced a larger portion
of lateral flow. Lastly, the spatial precipitation pattern also significant impacted the
spatial distribution of the water balance components from upstream to downstream.”

Revised version of conclusion section:
In particular, according to parameter adjustment, the three products’ precipitation de-

tection features resulted in significantly different water balance component portions,
i.e., the overestimation of MR by CHIRPS resulted in a larger portion of surface flow,
while the underestimation of all rainfall by CPC resulted in a larger portion of lateral
flow. Multi-objective calibration would be recommended for hydrological modellers in
parameter calibration and optimization, especially for large and spatial resolved water-
sheds. Lastly, the spatial precipitation pattern also significantly impacted the spatial
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distribution of the water balance components from upstream to downstream.
Although the OPPs have advantages and limitations with respect to the accuracy of

precipitation estimates at different spatial and temporal scales, as well as in hydrolog-
ical modelling and describing hydrologic mechanics, they demonstrate good potential
in our case study within the JRW. As such, the OPPs should merge the advantages
of satellite, ground observations, as well as the reanalysed data. Fully consideration
on performing the hydrological evaluation from both spatial and temporal scales is also
key for the future development of OPPs. Furthermore, CHIRPS is advantaged in ex-
treme rainfall detection and thus good as flood prediction, while CPC would be more
potentially used in extreme drought analysis in future climate analyses and hydrologic
modelling.
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2. Given that the authors are simulating a 159,000km2 catchment using a single flow
gauge for calibration / validation, there is huge equifinality in their results. Given that
they used the SUFI-2 / SWATCUP, I would have expected some assessment and
discussion of the uncertainty in their model results.

Authors’ response: Greatly appreciate the comment. Assessment and discussions
on the uncertainty of model results are quite important issues in hydrologic modelling
(Abbaspour, 2015). In our study, the model calibration / validation use a single
hydrologic station, with a monitored area of more than 159000 km2, which would
induced inevitable system or random deviation by parameter calibration. Therefore, as
the comment suggested, uncertainty analyses on model results should be processed
and discussed.

Abbaspour, K. C. (2015) SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs - A User Manual. Tech. rep.,

Swiss Federal In-stitute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.

With the considerations above, assessment and discussion on the uncertainty of
model results will be added in the revised manuscript, and the modification will be
specified as follows:

Original version of abstract:
L17-18 – “All three products satisfactorily reproduce the stream discharges at the

JRW outlet with better performance than the Gauge model.”

Revised version of abstract:
Both OPPs satisfactorily reproduce the stream discharges at the JRW outlet with

slightly worse performance than the Gauge model. Model with CHIRPS as inputs
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performed slightly better in both model simulation and uncertainty analysis than that of
CPC.

Revised version of methodology section:
At the end of Sect.2.4.2, we added a description of the SWAT-CUP-based uncertainty

analysis method:
The quality of model input data and the parameterization process increase the
uncertainty risk associated with the model results, which has been identified in the
application of SWAT (Thavhana et al., 2018; Tuo et al., 2018; Zhang et al., 2020).
There are two factors, p-factor and r-factor, which are used for uncertainty analysis in
SUFI-2 algorithm of SWAT CUP. p-factor refers to the percentage of the measured data
distributed within the 95% prediction uncertainty (95PPU) band of the model results
(%), and the r-factor graphically means the average thickness of the 95PPU band
divided by Standard Deviation (STD) of the measured records (Abbaspour, 2017).
Theoretically, p-factor ranges from 0 to 100% and takes 100% as the optimal value,
and r-factor ranges from 0 to ∞ and takes 0 as the optimal value. It should be noted
that the increase in the p-factor comes at the expense of the increase in the r-factor.
It was stated in the study of Roth & Lemann (2016) that combined values of p-factor
> 70% and r-factor < 1.5 are preferably uncertainty range, which is also referred to in
this paper.

Abbaspour, K. C., Vaghefi, S., and Srinivasan, R. (2017) A Guideline for Successful Calibration and Uncertainty

Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference,

Water, 10, 6, https://doi.org/10.3390/w10010006.

Roth, V. and Lemann, T. (2016) Comparing CFSR and conventional weather data for discharge and soil loss mod-

elling with SWAT in small catchments in the Ethiopian Highlands, Hydrol. Earth. Syst. Sc., 20, 921-934,

https://doi.org/ 10.5194/hess-20-921-2016.
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Thavhana, M. P., Savage, M. J., and Moeletsi, M. E. (2018) SWAT model uncertainty analysis, calibration and validation

for runoff simulation in the Luvuvhu River catchment, South Africa. Physics and Chemistry of the Earth, 105,

115–124, https://doi.org/10.1016/j.pce.2018.03.012.

Tuo, Y., Marcolini, G., Disse, M., and Chiogna, G. (2018) A multi-objective approach to improve SWAT model calibration

in alpine catchments, J. Hydrol., 559, 347-360, https://doi.org/10.1016/j.jhydrol.2018.02.055.

Zhang, H. L., Meng, C. C., Wang, Y. Q., Wang, Y. J., and Li, M. (2020) Comprehensive evaluation of the effects of

climate change and land use and land cover change variables on runoff and sediment discharge. Science of

the total environment, 702, 134401, https://doi.org/10.1016/j.scitotenv.2019.134401.

Original version of result section 3.3.1:
L325-330 – “Based on the model performance classification scheme designed by

Moriasi et al. (2007), all three models, each using a different precipitation product,
achieved “very good” performance for both the calibration and verification periods,
although the Gauge model attained the highest CC (0.93 for calibration and 0.87 for
validation) and NSE (0.92 and 0.87). Compared with the model using Gauge input,
the models using the two OPPs tended to underestimate the peak flows that occur
mainly during flood seasons (June to August), which is the main reason behind the
lower NSE values. . .”

Revised version of result section 3.3.1:
Based on the model performance classification scheme designed by Moriasi et al.

(2007), Gauge and CHIRPS achieved “very good” performance for both the calibration
and verification periods, although the Gauge model attained the highest NSE (0.92
for calibration and 0.87 for validation) values and lowest RSR (0.28 and 0.36) value,
while CPC only reached the level of "Good" due to higher PBIAS (10.8) (Fig.9). The
underestimation of the peak flows during flood seasons, would be the main reason of
the lower NSE values of the two OPPs inputs. Further, among all the three models,
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the model with Gauge inputs performed best in uncertainty analyses (p-factor = 98%,
r-factor = 0.86 for calibration and p-factor = 92%, r-factor = 0.78 for validation), which
is followed by the model using CHIRPS as input (p-factor = 84%, r-factor = 0.88 and
p-factor = 83%, r-factor = 0.80). Using CPC datasets as precipitation inputs resulted in
the highest degree of uncertainty level (p-factor = 57%, r-factor = 0.57 and p-factor =
57%, r-factor = 0.53), which fails to reach a preferable level.

Figure 2. Observed and simulated discharges at the outlet of JRW at monthly scale
using precipitation inputs of Gauge, CHIRPS and CPC, respectively. (Fig.9 in the
manuscript)

Original version of result section 3.3.2:
L346-350 – “As shown in Fig. 11, the three precipitation inputs also successfully

forced the model to replicate the discharge records at the Beibei station at a daily
scale, with performance evaluations of “good,” “satisfactory,” and “satisfactory” for
Gauge, CHIRPS, and CPC models, respectively. The performances in describing the
peak flows are not very good for all of the three products, among which, the Gauge
model performs best. The peak flows are usually caused by extreme precipitation
events, like rainfall events with an intensity > 80 mm/day.”

Revised version of result section 3.3.2:
As shown in Fig. 11, the three precipitation inputs successfully forced the model to

replicate the discharge records at the Beibei station at daily scale, with performance
evaluations of “good,” “satisfactory,” and “satisfactory” for Gauge, CHIRPS, and CPC
models, respectively. The performances in describing the peak flows were not good
for all three products, among which, the Gauge model performs best. Different from
the monthly scale, the CHIRPS-driven daily scale model showed lowest uncertainty
level among the three precipitation datasets. The p-factor of Gauge, CHIRPS and
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CPC were 93%, 95%, and 77% for calibration and 84%, 91%, and 73% for validation,
respectively, and r-factor were 1.16, 1.25, and 0.98 for calibration and 1.08, 1.27, and
0,93 for validation, respectively. Overall, the uncertainties of daily scale models with
all three precipitation datasets as inputs were significantly lower than those of monthly
scale, and the CPC-driven monthly model success to reach a preferable level.

Figure 3. Observed and simulated discharges at the outlet of JRW at daily scale
using precipitation inputs of Gauge, CHIRPS and CPC, respectively. (Fig.11 in the
manuscript)

Original version of conclusions section:
L450-455 – “2. All three precipitation inputs successfully forced the model to replicate
the discharge records at the Beibei station at a monthly and daily scale, although
they performed slightly better at the daily scale. The differences in the statistics at
the monthly and daily scale correspondingly affected the streamflow photographs, e.g.
flood peak, base flow, and the rising and falling processes. The three models’ spatial
WYLD distributions are highly correlated to that of the precipitation records. While
there were equivalent performances in simulating streamflow hydrographs, it should
be noted that the calibrated parameters in all three models (Gauge, CHIRPS, and
CPC models at monthly and daily scales, see Table 2) were quite different. . .”

Revised version of conclusions section:
2. All three precipitation inputs successfully forced the model to replicate the discharge
records at the Beibei station, and results at daily scale presented slightly better per-
formance than that of monthly scale. However, the differences of precipitation inputs
in the statistics at the monthly and daily scale correspondingly affected the streamflow
photographs, e.g. flood peak, base flow, and the rising and falling processes. Overall,
the CHIRPS dataset performs better in hydrological evaluation because of its lower
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uncertainty level and higher spatial accuracy than that of CPC, thus it can be a good
choice for researchers who are interested in this study area. The three models’ spa-
tial WYLD distributions are highly correlated to that of the precipitation records. While
there were equivalent performances in simulating streamflow hydrographs, it should be
noted that the calibrated parameters in all three models (Gauge, CHIRPS, and CPC
models at monthly and daily scales, see Table 2) were quite different. . .

C13

3. The paper provides three sets of SWAT output analyses – monthly, daily and daily
aggregated to monthly. However, SWAT is a daily model so the monthly SWAT outputs
are themselves an internal aggregation of its daily outputs; so the presentation and
description of the daily aggregated to monthly outputs (L439-448 and Figures 12 and
13) are meaningless and should be removed.

Authors’ Response: Thanks a lot for this comment and advice. The presentation and
description of the daily aggregated to monthly outputs (L439-448 and Figures 12 and
13) will be removed in the revised manuscript.
As one of the major objectives of this manuscript was to evaluate the performances
of different precipitation datasets in simulating the watershed streamflow using SWAT
on different temporal scales, the authors ran the SWAT models at monthly and daily
scales, respectively. Essentially, SWAT is a daily model that monthly outputs can be de-
rived by aggregating its daily outputs. For researchers, who are not able to collect daily
streamflow records, may be more interested in the performance at monthly scale. With
this consideration, the authors presented two sets of SWAT output analyses, i.e. daily
and monthly, and further look into the corresponding water balance components (Fig.4
& Table 5) adjusting by calibrated parameters (Table 2). In the previous manuscript,
proportions of water balance components at monthly scale were compared and ana-
lyzed. In the revised manuscript, water balance components calculated at daily scale
should also be presented and compared with results of monthly-scaled models.

Figure 4. Water balance components for all sub-basins derived from SWAT models
using precipitation inputs of (a) Gauge (b) CHIRPS and (c) CPC at monthly scale and
(d) Gauge (e) CHIRPS and (f) CPC at daily scale (where SURQ represents surface
runoff Qsurf ; LATQ represents lateral flow Qlat; GW_Q is the baseflow from the shallow
aquifer; GW_Q_D is the baseflow from the deep aquifer, and the sum of GW_Q and
GW_Q_D equals to Qgw; ET represents actual evapotranspiration ET. (Fig.16 in the
manuscript)
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Table 2: Optimal parameters calibrated for all three models. (excerpts)
Gauge CHIRPS CPC

Parameters Initial range Monthly Daily Monthly Daily Monthly Daily
a__SOL_K().sol −10/10 1.988/10 -0.706/10 -0.471/7.681 -0.396/10 5.264/10 -2.106/10
v__ESCO.hru 0/1 0.879/1 0.405/1 0.775/1 0.355/1 0.914/1 0.462/1
v__ALPHA_BF.gw 0/1 0.401/0.963 0.299/0.896 0.055/0.677 0.183/0.728 0.216/0.901 0.415/1

Table 5: Summarization of annual average water balance components of the three models for the whole JRW.
Time scale Datasets Statistics SURQ LATQ GW_Q GW_Q_D ET Summation
Monthly Gauge Average amount/mm 4500.00 2977.22 299.07 60.61 9076.60 16913.50

Percentage/% 26.61% 17.60% 1.77% 0.36% 53.66%
CHIRPS Average amount/mm 6068.35 773.24 949.56 140.79 9046.83 16978.78

Percentage/% 35.74% 4.55% 5.59% 0.83% 53.28%
CPC Average amount/mm 1087.19 5577.20 583.45 30.15 8694.40 15972.40

Percentage/% 6.81% 34.92% 3.65% 0.19% 54.43%
Daily Gauge Average amount/mm 5544.88 1856.00 244.94 48.29 9309.37 17003.48

Percentage/% 32.61% 10.92% 1.44% 0.28% 54.75%
CHIRPS Average amount/mm 6202.63 834.78 1167.37 59.75 10434.58 18699.11

Percentage/% 33.17% 4.46% 6.24% 0.32% 55.80%
CPC Average amount/mm 2493.11 2302.28 1709.95 88.66 9384.90 15978.90

Percentage/% 15.60% 14.41% 10.70% 0.55% 58.73%
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Results showed that:
(1) Either at daily scale or monthly scale, all three models achieved acceptable

and similar simulation performance for comparisons of both time series and spatial
distributions. However, the parameter systems are completely different at two temporal
scales (Table 2). The non-uniqueness of parameters has been proved a persistent
drawback of SWAT (Abbaspour et al., 2004; Abbaspour, 2015; Zhang et al., 2015).
And we had explained this drawback at line399 to line404 in manuscript:
“In general, simulated and observed streamflow hydrographs, using OPPs and Gauge
inputs, can successfully match at both monthly and daily scales. However, consistency
between simulated and observed streamflow does not guarantee identical hydrologic
processes. For example, the SWAT model calibrated parameters are not the same
for all precipitation inputs, meaning that the hydrologic mechanics during SWAT
modelling are also different. As such, it is critical that researchers and decision makers
adequately understand the benefits and limitations of different precipitation products in
modelling the hydrologic processes.”
(2) With differing parameterizations, different precipitation inputs tend to derive
completely different hydrological component amounts at different time scales (Fig. 16
& Table 5).

Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimating Uncertain Flow and Trans-

port Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone Journal, 3(4), 1340.

doi:10.2136/vzj2004.1340.

Abbaspour, K. C. (2015) SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs - A User Manual. Tech. rep.,

Swiss Federal In-stitute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.

Zhang, J., Li, Q., Guo, B., & Gong, H. (2015). The comparative study of multi-site uncertainty evaluation method

based on SWAT model. Hydrological Processes, 29(13), 2994–3009. doi:10.1002/hyp.10380.
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With the considerations above, discussion on the model parameters and water balance
components will be added in the revised manuscript, and the modification will be
specified as follows:

Original version of conclusions section:
L408-425 – “Thus, we calculated the water balance component portions, Qsurf , Qlat,

Qgw, and Ea, for all the JRW sub-basins. It is evident from Fig.16 and Table 4 that
the total portions of water balance components differ among the three precipitation
products. However, they do share some similarities in that the evapotranspiration (ET)
portions of all three products are above 50 %, resulting in a watershed runoff produc-
tion coefficient of 0̃.45. Furthermore, the main Gauge model components are SURQ
and LATQ, which account for 25.92 % and 16.72 %, respectively; the main CHIRPS
component is SURQ, which accounts for 34.80 %, and the main CPC component is
LATQ, which accounts for 33.62 %. Spatially, the surface flow portion increases from
upstream to downstream.
The above water balance component regularities are primarily the result of two causes.
First, the differences in the above hydrological component proportions are mainly con-
trolled by the model parameters. For example, ESCO is a soil evaporation compensa-
tion factor that directly affects maximum evaporation from soil; the smaller the value,
the larger the maximum evaporation. The SWAT model indirectly increases WYLD by
using higher ESCO and thus decreases the ET value. In this study, the ESCO values
for Gauge, CHIRPS, and CPC range from 0.879 - 1, 0.775 – 1, and 0.914 - 1, respec-
tively. Furthermore, the total ET values during the study period were 8153.94, 8161.22,
and 7806.84 mm, respectively. Apparently, the CPC model reduced its corresponding
ET by using a higher ESCO parameter, so that the lack of precipitation inputs would
be offset by less evaporation. This result is consistent with that reported by Bai & Liu
(2018), who conducted a study at the source regions of the Yellow River and Yangtze
River basins in the Tibetan Plateau. They further concluded that the impact of differ-
ent precipitation inputs on runoff simulation is largely offset by parameter calibration,
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resulting in significant differences in evaporation and storage estimates.”
It should be noted that the average values of water balance components for the whole
watershed were calculated by sub-basin area weighting method, i.e. the portion of the
sub-basin area was assigned as the weight coefficient of the sub-basin’s water balance
values.

Revised version of conclusions section:
Thus, we calculated the water balance component portions, Qsurf , Qlat, Qgw, and

ET, for all the JRW sub-basins. With differing parameterizations, different precipitation
inputs tend to derive completely different hydrological component amounts at differ-
ent time scales (Fig. 16 & Table 5). At monthly scale, all three models, with Gauge,
CHIRPS and CPC as inputs, have similar ET portions, which account for above 54%.
The major components of Gauge model are SURQ and LATQ, accounting for 25.92 %
and 16.72 %, respectively, the major component of CHIRPS model is SURQ, which
accounts for 34.80 %, and the primary component of CPC model is LATQ, which
accounts for 33.62 %. However, at daily scale, SURQ of Gauge model increased
largely, reaching a proportion 32.61%, while LATQ decreased to 10.92%; LATQ of
CPC model decreased and SURQ and ET increased, accounting for 14.41%, 15.60%
and 58.73%, respectively; water balance components proportions of CHIRPS model
slightly changed.
The above water balance component regularities are primarily the result of two causes.
First, the differences in the above hydrological component proportions are highly pos-
sibly related in parameter adjustment. As shown in table 2, the SURQ of Gauge
and CPC models were significantly increased due to the decrease of the parameter
SOL_K, which stands for saturated hydraulic conductivity. The decrease of the pa-
rameter ESCO in CPC model led to the increase of ET ratio, which influenced soil
evaporation compensation. The variation of parameter ALPHA_BF, which is baseflow
recession constant, caused the GW_Q components of the three models to vary in the
same direction. This result is consistent with that reported by Bai & Liu (2018), who
conducted a study at the source regions of the Yellow River and Yangtze River basins
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in the Tibetan Plateau. They further concluded that the impact of different precipita-
tion inputs on runoff simulation is largely offset by parameter calibration, resulting in
significant differences in evaporation and storage estimates.

C19

Minor revision comments:
1. L19 – change “All three products” to “Both OPPs” as the text is comparing to the
gauge model.

Authors’ Response: Thanks a lot for pointing out this issue.

The sentence will be corrected as “Both OPPs satisfactorily reproduce the
stream discharges at the JRW outlet with slightly worse performance than the
Gauge model, . . .”

2. L153 – is the evapotranspiration “actual”, “potential” or “reference”?

Authors’ Response: It’s the actual evapotranspiration, and the sentence will be
revised as “the annual average actual evapotranspiration (ET ) ranges from 800
to 1000 mm.”
The descriptions related to evapotranspiration all through the manuscript have
been corrected in the revised manuscript:

L214 – “Water balance, including precipitation, surface runoff, evapotranspi-
ration, infiltration, lateral and base flow, and percolation to shallow and deep
aquifers, is mathematically expressed as follows:”
The sentence will be corrected as “Water balance, including precipitation,
surface runoff, actual evapotranspiration, infiltration, lateral and base flow,
and percolation to shallow and deep aquifers, is mathematically expressed as
follows:”
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L217 – “Ea = evapotranspiration” will be corrected as “ET = actual evapotran-
spiration”.

L410-411 – “However, they do share some similarities in that the evapotran-
spiration (ET ) portions of all three products are above 50 %, resulting in a
watershed runoff production coefficient of 0̃.45.” The sentence will be corrected
as “However, they do share some similarities in that the actual evapotran-
spiration (ET ) portions of all three products are above 50 %, resulting in a
watershed runoff production coefficient of 0̃.45.”

L418-422 – “The SWAT model indirectly increases WYLD by using higher
ESCO and thus decreases the ET value. In this study, the ESCO values for
Gauge, CHIRPS, and CPC range from 0.879 - 1, 0.775 – 1, and 0.914 - 1,
respectively. Furthermore, the total ET values during the study period were
8153.94, 8161.22, and 7806.84 mm, respectively. Apparently, the CPC model
reduced its corresponding ET by using a higher ESCO parameter, so that the
lack of precipitation inputs would be offset by less evaporation.”
The sentence will be corrected as “The SWAT model indirectly increases WYLD
by using higher ESCO and thus decreases the ET value. In this study, the
ESCO values for Gauge, CHIRPS, and CPC range from 0.879 - 1, 0.775 – 1,
and 0.914 - 1, respectively. Furthermore, the total ET values during the study
period were 8153.94, 8161.22, and 7806.84 mm, respectively. Apparently, the
CPC model reduced its corresponding ET by using a higher ESCO parameter,
so that the lack of precipitation inputs would be offset by less ET .”

3. L169-170 – how has the classification accuracy been determined, given that it was
based on “manual visual interpretation”?
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Authors’ Response: Thank you very much for this question.

The procedure of deriving LUCC types based on 2010 Landsat TM/ETM
remote sensing images are as follows: The geometric shape, colour feature,
texture feature and spatial distribution of ground objects were analysed and
extracted according to the image spectral features. The remote sensing image
interpretation marks were established based on the field measurement data
and the reference map. Six primary classifications were recognized- cultivated
land, woodland, grassland, water area, construction land, and unused land. The
quality of the LUCC product was checked by combining field survey and random
sampling dynamic map spot for repeated interpretation analysis. Generally, the
quality inspection result is that the classification accuracy of cultivated land data
is 8̃5%, and that of other data can reach more than 75%.
The manuscript will be revised as “The data included six primary classification-
sâĂŤcultivated land, woodland, grassland, water area, construction land, and
unused land, as well as 25 secondary classifications. After checking the quality
of data products by combining field survey and random sampling dynamic map
spot for repeated interpretation analysis, it is proved that the cultivated land’s
classification accuracy was 85 %, and other data classification accuracies
reached 75 %.”.

4. L194 – how does a dataset (CHIRPS v2.0) released in 2015 provide data to the
“present”?

Authors’ Response: Thank you very much for this question.
Actually, the CHIRPS v2.0 dataset has been continuously updated since it was
released in 2015, and we are sorry for the misinterpretation.
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The manuscript will be revised as “The first gridded format CHIRPS product
was released in 1981 to present and the most recent one (V2.0 datasets) was
released in February 2015. The dataset spans from 1981 to the present and
provides daily precipitation data with a spatial resolution of 0.05◦ in a pseudo
global coverage of 50◦ N - 50◦ S.”

5. L237 – looking at equation (3), isn’t the optimal value of STDn = 1 e.g. identical
STDs? And why should STDn values range from 0-1 which implies STD gauge can
never be < STD opp? General –RMSE, STD and PBIAS have units – please use them
throughout

Authors’ Response: we are sorry to make this mistake for our neglect, which
should be corrected as: “The STDn values range from 0 to ∞, and the optimal
value is 1.”
The units of RMSE, STD and PBIAS will be revised throughout the manuscript as
follows:

L189-190 – “Where n is the number of the time series; Qi and Si are measured
values and estimated values (or simulated values), respectively; and Q and
s are the mean values of the measured and estimated values (or simulated
values), respectively.”
The sentence will be revised as “Where n is the number of the time series; Qi

and Si are measured values and estimated values, respectively; and Q and
s are the mean values of the measured and estimated values, respectively.
The value may refer to either precipitation (mm) or streamflow discharge
(m3/s).”
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L191 – “Standard deviation (STD) represents the discretization degree of
the datasets.” The sentence will be revised as “Standard deviation (STD)
represents the discretization degree of the precipitation datasets (mm).”

L195-196 – “RMSD value: Root mean square deviation (RMSD) is used to
demonstrate the error between the OPPs and Gauge datasets. RMSD has a
range from 0 to +∞, and an optimal value of 0.” The sentence will be revised as
“RMSD value: Root mean square deviation (RMSD) is used to demonstrate the
error between the OPPs and Gauge datasets (mm). RMSD has a range from 0
to +∞ mm, with an optimal value of 0 mm.”

L248 – “PBIAS describes the OPPs’ systematic bias. PBIAS ranges from 0
to +∞, and the optimal value is 0.” The sentence will be revised as “PBIAS
describes the OPPs’ systematic bias (%). PBIAS ranges from 0 to +∞ %, and
the optimal value is 0 %.”

L266-267 – “The RMSD values for Gauge-CHIRPS and Gauge-CPC are 15.80
and 12.95, respectively.” The sentence will be revised as “The RMSD values for
Gauge-CHIRPS and Gauge-CPC are 15.80 mm and 12.95 mm, respectively.”

L281-283 – “Statistically, the CC, STD, and RMSD values between CHIRPS
and the Gauge records are 0.53, 1.14, and 5.16, respectively, and 0.64, 0.87,
and 3.95, respectively, between the CPC and Gauge products.”
The sentence will be revised as “Statistically, the CC, STDn, and RMSD values
between CHIRPS and the Gauge records are 0.53 mm , 1.14 mm , and 5.16
mm , respectively, and 0.64 mm , 0.87 mm , and 3.95 mm , respectively,
between the CPC and Gauge products.”
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L361-362 – “The CC, STDn, and RMSD values between CHIRPS and Gauge
are 0.92, 1.06, and 0.23, respectively, and 0.81, 0.94, 0.33 between CPC and
Gauge, respectively.” The sentence will be revised as “The CC, STDn, and
RMSD values between CHIRPS and Gauge are 0.92 mm, 1.06 mm, and 0.23
mm, respectively, and 0.81 mm, 0.94 mm, 0.33 mm between CPC and Gauge,
respectively.”

L266 – “The STD values for Gauge-CHIRPS and Gauge-CPC are 1.06 and
0.94, respectively.” The sentence will be revised as “The STDn values for
Gauge-CHIRPS and Gauge-CPC are 1.06 and 0.94, respectively.”

L268-270 – “Nevertheless, PBIAS values of Gauge-CHIRPS and Gauge-CPC
were 9.58 and -6.70, respectively”
The sentence will be revised as “Nevertheless, PBIAS values of Gauge-
CHIRPS and Gauge-CPC were 9.58 % and -6.70 %, respectively”

L343-344 – “The PBIAS values for Gauge-CHIRPS and Gauge-CPC are 5.85
and -5.38, respectively.” The sentence will be revised as “The PBIAS values for
Gauge-CHIRPS and Gauge-CPC are 5.85 % and -5.38 %, respectively.”

6. L463 – “antecedent” is the more usual term for “early-stage”.

Authors’ Response: Thank you very much for your advice, and we have
revised this term into antecedent all through the manuscript:
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L373-375 – “Solano-Rivera et al. (2019) experimented in the San Lorencito
headwater catchment and found that the rainfall-runoff dynamics before ex-
treme events were mainly related to early-stage conditions. After extreme flood
events, early-stage conditions had no effect on rainfall-runoff processes, and
rainfall significantly affected the streamflow discharge.”
The sentence will be changed as “Solano-Rivera et al. (2019) experimented
in the San Lorencito headwater catchment and found that the rainfall-runoff
dynamics before extreme events were mainly related to antecedent conditions.
After extreme flood events, antecedent conditions had no effect on rainfall-
runoff processes, and rainfall significantly affected the streamflow discharge.”

7. L483 – there are no ALPHA-BF parameter ranges given in Table 1 and 2 to
substantiate this. The values of ALHPA_BF and GWRECH_DP should be added to
the tables.

Authors’ Response: Thanks a lot for pointing out this error, and ALHPA_BF
has been added to Table1 and Table2. Since the parameter RCHRG_DP is not a
sensitive one, so it was not included in the calibration process.

Table 1: Hydrological parameters considered for sensitivity analysis (“a_”, “v_” and r_” means
an absolute increase, a replacement, and a relative change to the initial parameter values, respec-

tively).

Parameters Description Range Default
v__ PLAPS.sub Precipitation lapse rate[mm] -1000/1000 0
v__ALPHA_BF.gw Baseflow alpha factor [days−1] 0/1 0.048
v__ALPHA_BNK.rte Baseflow alpha factor for bank storage 0/1 0
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Table 2: Optimal parameters calibrated for all three models. (excerpts)
Gauge CHIRPS CPC

Parameters Initial range Monthly Daily Monthly Daily Monthly Daily
v__PLAPS.sub −1000/1000 0.012/0.067 0.061/0.183 0.079/0.135 0.068/0.205 0.017/0.078 -0.014/0.095
v__ALPHA_BF.gw 0/1 0.401/0.963 0.299/0.896 0.055/0.677 0.183/0.728 0.216/0.901 0.415/1
v__ALPHA_BNK.rte 0/1 0.492/0.863 0.444/1 0.201/0.696 0.467/1 0.564/1 0.307/0.92

8. L486 – what is “proletarian” flow?

Authors’ Response: Thank you so much for pointing out this typo.
The authors tended to articulate that "For CPC dataset, the high proportion of LR
events will lead to severe rainfall losses in the initial- and post- loss processes,
resulting in very limited surface water yield. As such, the sentence will be corrected
as:
“A potential reason for this phenomenon may be that the rainfall during LR events
tends to be easily lost in the initial- and post-loss processes, resulting in very
limited or even no WYLD.”

9. L500 – equation 7

Authors’ Response:thank you very much for pointing out this error, and it will
be corrected in the revised manuscript.

10. L560 – “streamflow photograph”? hydrograph?

Authors’ Response:thank you very much for pointing out this typo, and it will
be corrected in the revised manuscript.
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Fig. 1. Spatial variation of annual precipitation at sub-basin scale for (a) Gauge (b) CHIRPS
and (c) CPC.
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Fig. 2. Observed and simulated discharges at the outlet of JRW at monthly scale using precip-
itation inputs of Gauge, CHIRPS and CPC, respectively.
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Fig. 3. Observed and simulated discharges at the outlet of JRW at daily scale using precipita-
tion inputs of Gauge, CHIRPS and CPC, respectively.
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Fig. 4. Water balance components for all sub-basins derived from SWAT models using pre-
cipitation inputs of (a) Gauge (b) CHIRPS and (c) CPC at monthly scale and (d) Gauge (e)
CHIRPS and (f) CPC at daily scale
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