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Abstract. Mountainous regions act as the water towers of the world by producing streamflow and groundwater recharge, a 

function that is particularly important in semiarid regions. Quantifying rates of mountain system recharge is difficult, and 

hydrologic models offer a method to estimate recharge over large scales. These recharge estimates are prone to uncertainty 

from various sources including model structure and parameters. The quality of meteorological forcing datasets, particularly in 10 

mountainous regions, is a large source of uncertainty that is often neglected in groundwater investigations. In this contribution, 

we quantify the impact of uncertainty in both precipitation and air temperature forcing datasets on the simulated groundwater 

recharge in the mountainous watershed of the Kaweah River in California, USA. We make use of the integrated surface water 

– groundwater model, ParFlow.CLM and several gridded datasets commonly used in hydrologic studies, downscaled NLDAS-

2, PRISM, Daymet, Gridmet, and TopoWx. Simulations indicate that across all forcing datasets, mountain front recharge is an 15 

important component of the water budget in the mountainous watershed accounting for 25 – 46% of the annual precipitation, 

and ~90% of the total mountain system recharge to the adjacent Central Valley aquifer. The uncertainty in gridded air 

temperature or precipitation datasets, when assessed individually, results in similar ranges of uncertainty in the simulated water 

budget. Variations in simulated recharge to changes in precipitation (elasticities) and air temperature (sensitivities) are larger 

than 1% change in recharge per 1% change in precipitation or 1-degree C change in temperature. The total volume of snowmelt 20 

is the primary factor creating the high water budget sensitivity; and snowmelt volume is influenced by both precipitation and 

air temperature forcings. The combined effect of uncertainty in air temperature and precipitation on recharge is additive, and 

results in uncertainty levels roughly equal to the sum of the individual uncertainties. Mountain system recharge pathways 

including mountain block recharge, mountain aquifer recharge, and mountain front recharge are less sensitive to changes in 

air temperature than changes in precipitation. Mountain front and mountain block recharge are more sensitive to changes in 25 

precipitation than other recharge pathways. The magnitude of uncertainty in the simulated water budget reflects the importance 

of developing high qualify meteorological forcing datasets in mountainous regions.  
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1 Introduction 

Mountainous catchments are known to be important sources of water in semiarid and seasonally dry ecosystems 

(Viviroli et al., 2007). While it is well understood that mountain systems provide the majority of freshwater resources via 30 

streamflow (Viviroli and Weingartner, 2004), the contribution of mountain systems to groundwater resources remains highly 

uncertain (Ajami et al., 2011). As meteorological conditions are the primary drivers of the hydrologic cycle, understanding 

how groundwater recharge in mountain systems reacts to different meteorological forcings is important. Since mountain 

recharge processes have been defined in various ways, we define three distinct recharge pathways in mountain catchments. 

Mountain bedrock aquifer recharge (MAR) consists of snowmelt or rainfall derived infiltration into the bedrock system of the 35 

mountain block, which either discharges to streams or may eventually reach an alluvial aquifer in an adjacent valley as 

mountain block recharge (MBR). MBR consists of lateral subsurface flow from the mountains to an adjacent valley aquifer. 

Finally, mountain front recharge (MFR) consists of direct infiltration of streamflow, that originated in the mountains, along 

the piedmont zone. Various efforts have been conducted to estimate the relative importance of each recharge pathway (Ajami 

et al., 2011; Mailloux et al., 1999; Manning and Solomon, 2003; Newman et al., 2006; Schreiner-McGraw and Vivoni, 2017), 40 

but an analysis of how they respond to uncertainty in atmospheric drivers, such as precipitation or air temperature, is lacking. 

Hydrologic models are important tools to quantify recharge rate as a function of precipitation because recharge rates 

are difficult to measure, especially over large spatial extents (Scanlon et al., 2002). Physically based, integrated hydrologic 

models that simulate land surface – subsurface hydrologic processes have high computational requirements, but are the best 

modeling tools to study connections between meteorological variability and hydrologic function. Furthermore, they are not 45 

limited to empirical relationships or calibrated parameters to a set of historical conditions (Fatichi et al., 2016). Hydrologic 

models, however, are prone to uncertainty that can arise from many sources including the model structure, the selection of 

equations to represent processes, parameterization, and uncertainty in the model forcing data (Beven, 2006; Woldemeskel et 

al., 2012). The impact of the uncertainty in forcing data upon model performance is particularly important when models are 

used to assess the impact of climate change or drought on groundwater processes.  50 

The hydrologic system response to changes in precipitation and air temperature has been studied in depth, the impact 

of meteorological changes on groundwater, however, has received comparably less attention. It has been shown that the 

physiographic features of a watershed, particularly those that control the depth to the water table (DTWT), impact the 

groundwater system response to climate variability, but the depth at which these sensitivities are highest is highly uncertain. 

Some authors suggest higher groundwater sensitivity to meteorological variability at regions with high DTWT, while others 55 

find higher sensitivity for shallow water table regions (Erler et al., 2019; Maxwell and Kollet, 2008). In a recent review, the 

direct impacts of climate on groundwater is explained by describing processes that control the water surplus (precipitation – 

evaporation). While precipitation and air temperature impact the magnitude of water surplus, subsurface geology controls the 

translation of water surplus (potential recharge) to groundwater head variability (Taylor et al., 2013). The precise impacts of 

meteorological variability on groundwater recharge, particularly in mountainous catchments that supply the majority of water 60 
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in semiarid regions, remain important unknowns (Meixner et al., 2016). Several studies have used hydrologic models to 

examine how meteorological focings impact mountain recharge processes, but none has considered the importance of 

meteorological forcing uncertainty on recharge estimates (Ajami et al., 2012; Crosbie et al., 2011; Hartmann et al., 2017; 

Schreiner-Mcgraw et al., 2019). This is particularly important in mountainous regions where observational datasets (e.g., 

forcings, subsurface structure, and parameters) are scarce. 65 

The water budgets in mountainous watersheds are typically dominated by snow processes. As a result, the two most 

important meteorological variables for controlling the hydrologic response are precipitation amount and air temperature. 

Datasets of both variables are highly uncertain, particularly in regions with high relief, and it is difficult to determine which 

variable is more uncertain as they have different units (Daly et al., 2008; Henn et al., 2018; Lundquist et al., 2015). From a 

hydrologic standpoint, the more important question is whether the level of uncertainty contained in precipitation or air 70 

temperature has larger impacts on the simulated hydrologic budget. Recent work in the Colorado River basin has demonstrated 

the importance of air temperature to simulated hydrologic processes, particularly in regions with snow (Udall and Overpeck, 

2017). Climate change is expected to alter both precipitation and air temperature, but their relative changes are unknown, 

especially for precipitation. It is therefore important to understand how air temperature and precipitation uncertainty might 

combine, over a range of conditions, to impact simulated subsurface hydrologic response. 75 

Gridded precipitation and air temperature datasets are especially uncertain in mountainous regions due to a lack of 

gauges and sharp topographic gradients that alter meteorological conditions over relatively small scales. Previous efforts to 

test the accuracy of gridded precipitation datasets in mountainous regions have found that datasets are particularly uncertain 

at the highest elevations (Henn et al., 2018; Lundquist et al., 2015). These uncertainties have been attributed to poor 

representation of snow (Rasmussen et al., 2012) and the lack of gauges due to poor infrastructure (Lundquist et al., 2003). The 80 

lack of gauges requires extrapolation of meteorological values from gauges in different locations. Gridded datasets vary in 

their extrapolation techniques of gauge based observations, their use of different input gauges, and their consideration of snow 

measurements (Daly et al., 1994; Thornton et al., 1997). As a result, there is considerable uncertainty in both precipitation and 

air temperature gridded datasets that has the potential to alter hydrologic simulations.  

In this study, we utilize an integrated surface water-groundwater hydrologic model to study the propagation of 85 

uncertainty in precipitation and air temperature into the groundwater system of a mountainous watershed. The model domain 

encompasses the Kaweah River watershed in California, USA. This domain covers a wide range of climate and topographic 

conditions and is prone to high inter-annual variability in climate conditions and strong prevalence of drought. We focus on 

understanding the physical properties that affect the propagation of uncertainty from the atmosphere to the groundwater, and 

our discussion aims to answer the three following questions. (1) Which mountain recharge pathway is most impacted by 90 

meteorological uncertainty? (2) Is uncertainty in precipitation or air temperature forcing more impactful on the simulated water 

budget of a mountain system, especially with regards to groundwater processes? (3) How does uncertainty in precipitation 

combine with uncertainty in air temperature to impact simulated groundwater recharge?  
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2 Methods 

2.1 Study Site 95 

Model simulations are carried out in the Kaweah River watershed, located in the southern Sierra Nevada Mountains 

in California, USA (Fig. 1). This location was selected for the study because of the presence of large topographic gradients 

(elevation ranges from 57 to 4,354 m), steep slopes, and locations with both high and low uncertainty in air temperature and 

precipitation datasets (Schreiner-McGraw and Ajami, 2020). We identify the Kaweah Terminus sub-watershed, which 

encompasses the mountainous portion of the Kaweah River watershed upstream of the Terminus dam to investigate the 100 

mountain system recharge processes. Furthermore, this undisturbed portion of the domain makes streamflow validation 

possible. In the Kaweah River watershed, the regional topography is dominated by the Sierra Nevada mountain block, which 

is largely composed of granitic rocks (Jennings, 1977). The eastern Sierra Nevada mountains contain the tallest peaks in the 

continental United States and are located in the eastern portion of the study domain. A complex assemblage of landforms 

composes the piedmont slope of sediments eroding off of the western portion of the mountain range, where our study is focused 105 

(Olmsted and Davis, 1961). The elevation decreases to the west of the study domain until reaching the flat Central Valley 

province. The Central Valley province (Fig. 1) is composed of interbedded sand and silt layers and is a highly productive 

groundwater aquifer (Faunt, 2009). The climate in the region is a Mediterranean climate with cool, wet winter seasons and hot 

dry summers. The precipitation in the study domain ranges from ~140 mm – 1,400 mm per year roughly following the elevation 

gradient. As a result, the vegetation also ranges from desert grasslands (and irrigated agriculture) in the lowlands to oak 110 

savannahs and pine forest in the mountain regions.  

 

 

Figure 1: The location of the model domain within the state of California, USA. A 30-m digital elevation model is used to delineate 

the Kaweah Terminus watershed and Kaweah River watershed boundaries. The model extent is larger than the watershed boundary 115 
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to reduce the impact of boundary conditions on simulated groundwater flow. The dashed line indicates the boundary between 
mountain block and Central Valley aquifer system defined by using a geologic map of the region.  

2.2 Model Description 

 In this study, we use the ParFlow.CLM integrated hydrologic model code (Kollet and Maxwell, 2006; Maxwell, 2013; 

Maxwell and Miller, 2005) for hydrologic simulations. The ParFlow.CLM model simulates variably saturated subsurface flow 120 

that is fully integrated with overland flow and is coupled to the land surface model CLM 3.0 (Dai et al., 2003). The ParFlow 

model solves the Richards’ equation in three dimensions to simulate variably saturated subsurface flow and simultaneously 

solves the kinematic wave approximation to simulate overland flow. Channel networks are not predefined in the model, rather 

they develop naturally in response to the hydrologic conditions and the uniform application of the kinematic wave 

approximation to every cell in the model domain. ParFlow has been coupled with the Common Land Model 3.0 (Dai et al., 125 

2003) to simulate the land surface water and energy budgets. The CLM portion of the code interacts with ParFlow over the 

top soil layers where ParFlow simulates water movement and feeds the soil water state into CLM. We apply the terrain 

following grid formulation of ParFlow that is best suited to simulate domains with high topographic relief (Maxwell, 2013). 

 Prior efforts parameterized the model using estimates of topography, land cover type, drill core data, and geologic 

maps of the study region (Schreiner-McGraw and Ajami, 2020). A detailed description of the model construction and validation 130 

can be found in Schreiner-McGraw and Ajami (2020). Here, we present the conceptual framework relevant to this study. We 

conceptualize the study domain in two primary physiographic regions, the Sierra Nevada mountain block and the Central 

Valley, which contains a highly productive aquifer. We apply a 1 km horizontal grid resolution to the 12,276 km2 study domain 

resulting in a horizontal model grid of 99 x 124. We focus on the groundwater system that is likely to interact with the surface 

water and therefore simulate the domain to a depth of 622 m. This depth is consistent with a conceptual model that includes 2 135 

m thick surface soils consisting of 6 layers (0.05, 0.1, 0.15, 0.3, 0.4, and 1.0 m thick) that overlay a 620 m thick aquifer system 

consistent with observations from drill cores (Faunt, 2009). Surface soil parameters including the saturated hydraulic 

conductivity, porosity, and van Genuchten parameters are derived from the POLARIS dataset (Chaney et al., 2016). The 

alluvial aquifer of the Central Valley is conceptualized as 9 rock layers of variable thickness and parameterized following drill 

core data compiled by Faunt (2009). The mountain block subsurface is conceptualized as a fractured bedrock aquifer system 140 

with three geological layers, saprolite (15 m thick), fractured bedrock (145 m thick), and less fractured bedrock (460 m thick). 

The mountain bedrock is characterized by low porosity and hydraulic conductivity values that are derived from a geologic 

map and reference tables (Jennings, 1977; Welch and Allen, 2014). The land surface requires Manning’s n values and slope 

values. Manning’s n parameters are based on reference table values (Chow, 2009) and slopes are derived from a 30 m digital 

elevation model obtained from the National Elevation Dataset (Gesch et al., 2018). Vegetation types are based on the USDA 145 

CropScape data and are aggregated to the IGBP classification system.  

 The hydrologic model is run at an hourly time step over the water year (WY) 2016 simulation period. We chose 

WY2016 because remote sensing products were available for model validation, and the meteorological conditions were 
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approximately representative of the average conditions in the study watershed. The hourly meteorological datasets required as 

model forcing include precipitation, air temperature, air pressure, specific humidity, downward short and long wave radiation, 150 

and wind speed in the x and y directions. We obtain all meteorological forcings, except precipitation (P) and air temperature 

(TA), from the Princeton CONUS Forcing dataset, which provides hourly forcings at 3-km spatial resolution based on the 

NLDAS-2 dataset. This dataset downscales the NLDAS-2 precipitation dataset using Stage IV and Stage II radar products 

(Beck et al., 2019; Pan et al., 2016). Additional precipitation and air temperature forcings are derived from several publically 

available gridded datasets; Daymet (Thornton et al., 1997), Gridmet (Abatzoglou, 2013), PRISM (Daly et al., 1994), and 155 

TopoWx which only includes daily minimum and maximum air temperature (Oyler et al., 2015) (Fig. 2). The Daymet, Gridmet, 

and PRISM datasets provide daily total precipitation as well as the daily minimum and maximum temperature. These daily 

precipitation datasets are downscaled to hourly resolution by applying the temporal downscaling method of NLDAS-2 

precipitation.  

 Model initialization consists of a two-step spin up process to bring the subsurface water storage into dynamic 160 

equilibrium with the meteorological conditions. In the first step of the initialization, we start from a initially dry system and 

run the ParFlow code without CLM by applying a constant in time net precipitation flux (P-ET) (Livneh et al., 2013) to fill up 

the groundwater storage and create a rough approximation of the flow network. From this point, each model scenario is run 

recursively using the ParFlow.CLM code and the WY2016 forcing data applied in that scenario (see scenario descriptions in 

section 2.3). Recursive simulations are continued until the total subsurface storage reaches dynamic equilibrium (Ajami et al., 165 

2014). We define dynamic equilibrium as the point in which the absolute change in total subsurface storage becomes less than 

0.01% in recursive simulations (Ajami et al., 2015). 

 Model performance is extensively validated in Schreiner-McGraw and Ajami (2020). As we are focused on 

quantifying the impact of air temperature, we present a limited validation primarily related to the energy budget. An important 

component of the land surface energy balance in mountainous terrain is the role of snow. We validate model performance 170 

using a reanalysis gridded product that contains estimates of snow water equivalent (SWE) and snow covered area (SCA) for 

the majority of the Sierra Nevada (Margulis et al., 2016). This 90 m resolution dataset is generated using a Bayesian data 

assimilation technique with remotely sensed estimates of snow covered area (Margulis et al., 2016). The dataset is clipped to 

1,500 m elevation to remove uncertainty related to the infrequent snow below this elevation. When making comparisons 

between this reanalysis dataset and our simulated datasets, we also set SWE and SCA below 1,500 m elevation to 0. 175 

Additionally, we use remote sensing estimates of evapotranspiration (MOD16A2 product) at 1 km resolution from the MODIS 

Terra satellite to compare with simulated evapotranspiration (ET) and test performance of the simulated energy budget.  
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Figure 2:(a) Mean daily air temperature from 5 air temperature datasets used within this study. Spatial maps represent 180 

differences in mean annual daily temperature from the mean dataset (calculated as: dataset – mean) in (b) downscaled 

NLDAS-2, (c) PRISM, (d) Gridmet, (e) Daymet and (f) TopoWx forcing datasets.   

2.3 Model Experiments  

 In this study, we are interested in quantifying how the uncertainty in air temperature and precipitation focings impact 

the simulated water budget. To simplify the system and reduce the impact of uncertainty in anthropogenic management 185 

practices, we treat the system as a quasi-pre-development state that is not impacted by groundwater pumping, irrigation, or 

stream diversions. As a result, all of our model scenarios use consistent parameterizations for the subsurface and the land 

surface, and the only difference is in the air temperature and precipitation forcings from different gridded meteorological 

products. We perform a ‘base case’ simulation where we use the mean precipitation from the 4 available datasets (Daymet, 

Gridmet, downscaled NLDAS-2, and PRISM), and the mean air temperature from the same four datasets plus the TopoWx 190 

dataset. Prior efforts have demonstrated that using the mean of the precipitation datasets results in the best model performance 

compared to simulations with each product individually (Schreiner-McGraw and Ajami, 2020). This base case scenario is used 

for comparison purposes. In addition to the base case scenario, we run three different numerical experiments: (1) variable 

precipitation and constant air temperature (VarPConstTA), (2) constant precipitation and variable air temperature 
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(ConstPVarTA), and (3) variable precipitation and variable air temperature (VarPVarTA). In experiment 1, VarPConstTA, we 195 

run four scenarios each using the mean air temperature and one of the four precipitation datasets. Experiment 2 is the opposite 

with 5 scenarios, where each scenario is forced with the mean precipitation and one of the five air temperature datasets. Finally, 

experiment 3 consists of four scenarios and each scenario is forced with the precipitation and air temperature from one of the 

four available gridded products.  

2.4 Analysis Techniques  200 

2.4.1 Relative Importance of Uncertainty in Precipitation and Air Temperature on the Simulated Water Budget 

 We first assess the uncertainty in the precipitation and air temperature datasets by calculating the mean absolute 

difference (MAD) between each pair of datasets at a daily scale for each grid cell in the domain (Henn et al., 2018). We 

calculate the MAD between a pair of datasets at a single grid cell as 

𝑀𝐴𝐷𝑖,𝑗 =
1

𝑑
∑ abs(𝑃𝑖,𝑘 − 𝑃𝑗,𝑘)𝑑

𝑘=1           (1) 205 

where i,j represents the difference between dataset i and dataset j, k represents the day, and d is the number of days in the year. 

We calculate the MAD for each pair of datasets and take the mean value of all MADs to represent the mean uncertainty in 

total precipitation. The same approach is applied to air temperature. We acknowledge that this is not a true measure of 

uncertainty in precipitation or air temperature as ground truth data from weather stations are not available.  

Next, we assess the relative importance of uncertainty in the precipitation and air temperature forcing datasets on the 210 

annual water budget partitioning from each simulation scenario. We perform this calculation for the Kaweah Terminus 

watershed, upstream of the Terminus dam, (Fig. 1) to focus on the mountain groundwater system. The Terminus dam is not 

represented in the model, and streamflow evaluation downstream of this point is difficult. We calculate the groundwater flux 

(GW) out of the Kaweah Terminus watershed as a residual of the annual water balance, GW = P – ET – Q – dS, where P is the 

precipitation, ET is the evapotranspiration, Q is the streamflow, and dS is the change in subsurface storage. This groundwater 215 

flux is equivalent to the mountain block recharge (MBR) that is generated within the Kaweah Terminus watershed. We 

additionally calculate the precipitation partitioning into rain and snow components. The version of CLM in the model uses a 

threshold air temperature of 2.5 °C to partition precipitation, so we apply the same threshold to the precipitation data to 

determine snowfall and rainfall.  

Given the seasonality of the water balance in the study watershed, we also calculate the monthly relative range of 220 

hydrologic fluxes from the Kaweah Terminus watershed to determine months with the highest uncertainty in simulated fluxes. 

The relative range (Rr) is defined as the range in monthly simulated hydrologic fluxes for each experiment divided by the 

monthly value from the base case scenario. 

 

2.4.2 Relative Elasticity and Sensitivity Metrics to Changes in Precipitation and Air Temperature 225 

https://doi.org/10.5194/hess-2020-558
Preprint. Discussion started: 21 January 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

 To determine the relative sensitivity of the simulated annual hydrologic budget to precipitation and air temperature 

forcings, we calculate the sensitivity and elasticity of multiple hydrologic variables relative to the baseline simulation for the 

Kaweah river watershed (Fig. 1). We perform these calculations using the catchment averaged values from experiment 1 (P 

elasticity) and experiment 2 (TA sensitivity) simulations where P and TA are modified individually. The precipitation elasticity 

(ε) is the fractional change in a hydrologic variable v from dataset i divided by the fractional change in P from dataset i, both 230 

relative to our base case scenario.  

𝜀 =

𝑣𝑖−𝑣𝑏𝑎𝑠𝑒
𝑣𝑏𝑎𝑠𝑒

𝑃𝑖−𝑃𝑏𝑎𝑠𝑒
𝑃𝑏𝑎𝑠𝑒

,            (2) 

Following the reasoning from Vano et al. (2012), we also calculate the temperature sensitivity (S) in a similar manner. We 

define S as the percent change of a hydrologic variable v, caused by a change in TA. 

𝑆 =

𝑣𝑖−𝑣𝑏𝑎𝑠𝑒
𝑣𝑏𝑎𝑠𝑒

𝑇𝐴𝑖−𝑇𝐴𝑏𝑎𝑠𝑒
,             (3) 235 

While we cannot directly compare whether TA or P uncertainty adds more variability to hydrologic simulations, by comparing 

the ε and S we can determine whether the range of uncertainty in TA or P contained in common gridded datasets adds more 

uncertainty to the simulated hydrologic budget. We recognize that the ε and S are overestimated in this analysis because the 

datasets have different spatial patterns in TA and P, and the basin average differences in simulated hydrology are not solely 

caused by the basin average differences in TA and P. We contend, however, that this is a reliable approach to estimate the 240 

relative importance of model forcing dataset selection. We also assess spatial variability of precipitation elasticities and 

temperature sensitives by applying Equations 2 and 3 at pixel scale.  

2.4.3 Impact of Combined Uncertainty in Precipitation and Air Temperature on the Simulated Water Budget 

  As a result of climate change, both P and TA are expected to change simultaneously. In the analysis described above, 

we only alter P or TA individually in experiments 1 and 2, respectively. We make use of the scenarios from experiments 1, 2, 245 

and 3 to examine the combination effects of uncertainty in both P and TA on simulated hydrologic response in the Kaweah 

River watershed. We calculate the relative change in a hydrologic variable, v, relative to our ‘base case’ scenario forced with 

the mean of both the air temperature and precipitation datasets. For each forcing dataset (Daymet, Gridmet, etc.), we calculate 

the individual relative difference in simulated hydrologic fluxes or states caused by changing the precipitation dataset (vΔP) 

and the temperature dataset (vΔTA) from the base case using catchment averaged values. We then estimate the total relative 250 

differences in simulated hydrology caused by the combined changes in P and TA by summing the relative differences of P and 

TA as if there were no interaction effects (vΔPΔTAest) (Vano et al., 2012) 

𝑉∆𝑃∆𝑇𝐴𝑒𝑠𝑡 =
(𝑉∆𝑃−𝑉𝑏𝑎𝑠𝑒)

𝑉𝑏𝑎𝑠𝑒
+

(𝑉∆𝑇𝐴−𝑉𝑏𝑎𝑠𝑒)

𝑉𝑏𝑎𝑠𝑒
         (4) 
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The estimated combined impact of P and TA changes on the variable, v, are then compared to the simulated values of a given 

variable when both P and TA are simultaneously altered in model simulations (vΔPΔTA) to determine the degree of interaction 255 

effects for both variables in the Kaweah River watershed.  

2.4.4 Sensitivity of Recharge Pathways to Meteorological Forcings 

 We make use of the integrated hydrologic model to examine the sensitivity of different recharge pathways to changes 

in P and TA forcing. We calculate recharge via three primary pathways, MAR (derived from rain or snow), MBR, and MFR. 

We calculate each of these fluxes using the simulated pressure head and saturation values and the Richards’ Equation (Maxwell 260 

and Miller, 2005) for specific regions of the model domain. MAR is defined as the vertical flux of water leaving the 2 m deep 

soil zone (potential recharge) within the Kaweah Terminus watershed, located upstream of the Terminus dam in the Sierra 

Nevada Mountains (Fig. 1). We separate MAR derived from snowmelt as MAR that occurs in the same model time step that 

snowmelt occurs (i.e. changes in daily SWE is negative), otherwise we assume that MAR is sourced from rainfall. We estimate 

the MBR sourced from the mountainous region of the Kaweah Terminus watershed as a residual of the water balance that is 265 

equivalent to the GW flux out of the watershed. We recognize that this is not explicitly MBR because the Kaweah Terminus 

boundary does not exactly trace the boundary between the mountain block and the valley aquifer. However, the regional flow 

pathways ensure that groundwater leaving the Terminus watershed will reach the Central Valley aquifer. Finally, MFR is 

calculated as the volume of streamflow that infiltrates into the channel bottom as the Kaweah River flows across the piedmont 

slope, defined as the area adjacent to the mountain block where topographic slope is greater than 2% (11 km of the Kaweah 270 

River reach). 

Previous efforts have shown the role of topography in the propagation of uncertainty in precipitation to groundwater 

(Schreiner-McGraw and Ajami, 2020). To examine how this propagation impacts MAR under the combined P and TA 

uncertainty versus individual uncertainty in P or TA, we make use of the relationship between topographic wetness index (TWI) 

and uncertainty in simulated MAR where the TWI is calculated as: 275 

𝑇𝑊𝐼 =  ln (
𝐴𝑐

tan 𝛼
),           (5) 

where AC is the contributing drainage area and α is the slope (Beven and Kirkby, 1979). As the TWI is meant to be applied in 

climatically similar regions, we apply the analysis only to the Kaweah Terminus watershed where land cover and subsurface 

geology are constant, and climate is relatively similar (mean annual precipitation ranges from 435 to 960 mm/yr and mean 

annual TA ranges from 0 to 15 °C). We estimate the uncertainty in the simulated MAR as the standard deviation of MAR values 280 

from the multiple scenarios in each TWI bin.  
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3 Results and Discussion 

3.1 Air Temperature and Precipitation Uncertainty  

 Differences in mean annual daily temperature from the mean temperature dataset range between -8 to 8 ⁰C (Fig. 2b-

f). We analyze the uncertainty in the forcing datasets by presenting the average MAD between the datasets available for TA 285 

(Fig. 3a) and P (Fig. 3b). Figure 3c presents the annual mean daily MAD averaged across the 5 temperature datasets. Overall, 

the uncertainty in air temperature is high with large portions of the model domain expressing an average MAD greater than 5 

°C/day. MAD in the topographically flat portion of the domain in the Central Valley is relatively consistent with values of 

approximately 5 °C/day. The mountainous region of the study domain has more variability in temperature-based MAD 

estimates. Coincidentally, the majority of the mountainous portion of the Kaweah River watershed has relatively low MAD in 290 

TA and mountainous regions outside the watershed boundary have much higher uncertainty in TA that in places exceeds 7 

°C/day. Uncertainty in P follows a more consistent pattern than uncertainty in TA where the MAD in P increases consistently 

with elevation (Fig. 3d). This pattern is partially attributable to the annual total precipitation increases in the high elevation 

regions, but the lack of meteorological gauges at high elevations also increases the uncertainty in these regions. These findings 

are consistent with previous efforts to quantify uncertainty in gridded precipitation datasets that found uncertainty between 295 

150-200 mm/year in this region (Henn et al., 2018; Lundquist et al., 2015).  

 

 

Figure 3: (a) daily domain averaged values of air temperature for 5 temperature datasets, and (b) The cumulative sum 

of domain averaged precipitation for each of the four gridded datasets in WY2016. Uncertainty in the daily air 300 
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temperature (c) and precipitation (d) datasets represented by the mean absolute difference (MAD) for the Water year 

2016.  

3.2 Model Validation  

 A comprehensive validation of model performance is presented in Schreiner-McGraw and Ajami (2020). In this study 

we present a validation of model performance in simulating two components of the energy balance, ET and SWE. Figure 4 305 

presents a comparison between the simulated ET from each of the experiments 1, 2, and 3 and remote sensing values from the 

8-day MODIS product. The values presented are watershed average values for the Kaweah River watershed with irrigated 

croplands removed due to the lack of irrigation in the simulations. Generally, the range of simulated monthly ET encompasses 

the remote sensing values. The peak value of monthly ET of 40 mm/mon is replicated by the model simulations. The timing 

of the peak value, however, is inconsistent between the simulations and the remote sensing product. At the monthly scale, both 310 

the peak ET and the minimum ET throughout the year are delayed by 1 month. This result is partially attributable to the coarse 

temporal resolution of the remote sensing data composited at 8-day intervals, as well as the monthly aggregation of this data. 

In addition, we believe that some of the discrepancy arises from restricting the plant rooting depth in the simulations to the top 

2 m of soil in ParFlow.CLM simulations, limiting their ability to draw on water stored in the saprolite layer. As saprolite 

storage is recharged by spring snowmelt (Thayer et al., 2018), this model specification creates temporal discrepancy in ET. 315 

Because the simulated energy budget captures ET quantities, however, we are satisfied with the model performance considering 

the study objectives.  
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Figure 4: Monthly ET in WY2016 from the MODIS remote sensing product (solid lines) as well as the range of simulated 320 

ET from each of the three experiments (a) VarPConstTA, (b) ConstPVarTA, and (c) VarPVarTA (dashed lines) in the 

Kaweah River watershed. Croplands are removed from this comparison as irrigation is not included in simulations.  

 We also assess the performance of the energy budget simulations by comparing the simulated SWE to a reanalysis 

product developed for the Sierra Nevada region (Margulis et al., 2016). Figure 5 presents the annual cycle of snowpack 

accumulation and melting as simulated SWE from each of the three experiments. We present the total volume of SWE for each 325 

day in the Kaweah River watershed. For all the experiments, the simulated annual pattern of daily SWE encompasses the 

observed values. The only exception is the period from DOY 65-150 from the ConstPVarTA scenarios, where the simulated 

SWE is larger than the reanalysis product values (Fig. 5b). In the ConstPVarTA scenarios, significant variability within the 

simulated SWE exists, especially for the peak SWE values. The peak SWE of the Daymet scenario is 27% higher than the 

observed and SWE from the Gridmet scenario is 42% higher than the observed. The Daymet and Gridmet datasets have lower 330 

air temperatures in the mid-elevation zone where temperatures fluctuate between below and above freezing (Fig. 2). In terms 

of timing, the peak SWE occurs on DOY 74 for all ConstPVarTA scenarios except in the Daymet forcing scenario, where the 

peak SWE occurs on DOY 34. The timing of full snowmelt is more variable and is delayed for the scenarios with higher peak 

SWE. Full snowmelt occurs on DOY 216 for Daymet, DOY 221 for Gridmet, DOY 211 for NLDAS-2, and DOY 194 for the 

PRISM scenario. The simulated SWE from each of the VarPConstTA scenarios (Fig. 5a) has similar temporal patterns, but 335 

there is considerable spread in the SWE values that reflect the spread in precipitation volumes from the different forcing 
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datasets. The VarPVarTA scenarios have the largest variability in SWE across the forcing datasets, with NLDAS forcing 

underestimating the peak SWE and other forcings overestimating it relative to the observations (Fig. 5c).  

 

Figure 5: Daily SWE from the reanalysis product (black lines) as well as the range of simulated SWE from each of the 340 

three experiments (a) VarPConstTA, (b) ConstPVarTA, and (c) VarPVarTA (color lines) in WY2016. 

3.3 Recharge Pathway Sensitivity to Meteorological Variability    

 Mountain system recharge to the Central Valley is a key unknown for water management in this highly productive 

agricultural system. Our simulations suggest that recharge rates from the Sierra Nevada mountain system to the Central Valley 

are significant. The total mountain system recharge from the mountainous portion of the Kaweah River watershed, the Kaweah 345 

Terminus sub-watershed, to the valley aquifer (MBR + MFR) ranges from 186–504 mm/yr, depending on which meteorological 

forcing scenario is used. In our simulations, the majority of this recharge comes from the MFR pathway, the ratio of MFR/(MBR 

+ MFR) ranges from 0.85 to 0.99 across all simulations performed. Our results are consistent with observational studies (Visser 

et al., 2018), but there is considerable uncertainty related to characterizing the source of mountain system recharge. The 

simulated MFR depends on the subsurface permeability values assigned to the Central Valley aquifer in the piedmont slope 350 

region. Our hydraulic parameter values are based on drill core data and a previously calibrated hydrologic model (Faunt, 2009), 

but these values may be too high causing overestimation of  simulated MFR (Brush et al., 2013). Historical observations under 

pre-development conditions suggest that the Kaweah River branched into several smaller distributaries, some of which did not 

flow all the way to the historic Kaweah Lake (U.S. EPA, 2007; Hall, 1886). These observations suggest that our MFR estimates 
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from the Kaweah River are reasonable, but are likely overestimated due to coarse horizontal model resolution resulting in 355 

streambeds that are unreasonably wide and potentially overestimated hydraulic conductivity of the Central Valley sediments. 

Conversely, the coarse resolution of the model may result in an underestimation of MFR via small channels and first-order 

watersheds located on the piedmont slope (Schreiner-McGraw and Vivoni, 2018).  

Across all simulations, the total MAR (MAR from rain + MAR from snow) is dramatically larger than the MBR. This 

is expected as the MAR is calculated as the potential recharge, and most of it may flow via local flow paths to topographically 360 

convergent zones where it could be subsequently transpired or discharged as baseflow; while the remainder becomes MBR. 

Figure 6 presents the range of simulated annual recharge from each of the mountain system recharge pathways. For all recharge 

pathways, the simulated value is impacted by the choice of temperature and precipitation datasets. The temperature datasets 

used in the ConstPVarTA scenarios result in a range of simulated recharge that is 16%, 24%, 3%, and 24% of the mean value 

from the 5 scenarios for the MAR from rain, MAR from snow, MBR, and MFR pathways, respectively. The corresponding 365 

precipitation datasets included in the VarPConstTA scenarios result in a larger range in simulated recharge for all recharge 

pathways. The range of simulated recharge for the VarPConstTA scenarios is 26%, 52%, 240%, and 76% of the mean of 4 

scenarios for the MAR from rain, MAR from snow, MBR, and MFR pathways, respectively. When variability in TA is added to 

P variability in the VarPVarTA scenarios, the range of simulated recharge for each pathway increases to 33%, 70%, 238%, 

and 91% of the mean of the four VarPVarTA scenarios, for the MAR from rain, MAR from snow, MBR, and MFR pathways, 370 

respectively. 

 

Figure 6: Mean and standard deviation of simulated mean MAR from rain and snow, mountain block recharge (MBR), 

and mountain front recharge (MFR) from scenarios in three simulation experiments: ConstPVarTA, VarPConstTA 

and VarPVarTA in the Kaweah Terminus watershed.  375 

 To compare the sensitivity of each mountain recharge pathway to changes in meteorological forcings, we calculate 

the ε and S for different recharge pathways in the Kaweah Terminus watershed. Figure 7 displays the average ε and S across 

the four forcing datasets, for each of the four mountain recharge pathways. For changes in P forcing, MBR and MFR are more 
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sensitive to the forcing dataset than both components of MAR, while the rainfall-MAR is the most sensitive to changes in TA 

dataset. The rainfall-MAR is least sensitive to changes in P, while the snow-MAR is least sensitive to changes in TA. This result 380 

in part is a reflection of the higher mean MAR values that makes changes relative to the mean value smaller. Additionally, 

most of the precipitation uncertainty is in the high elevation zone where temperatures are low across all forcing datasets, and 

snow is dominant. As a result, although we might expect snow-MAR to be highly sensitive to changes in TA, it is much more 

sensitive to changes in P. Following the same logic, each of the three recharge pathways that is controlled by SWE (Snow-

derived MAR, MBR, and MFR) is more sensitive to changes in P than changes in TA (Fig. 7). Rainfall-MAR has the highest 385 

sensitivity to TA uncertainty compared to snow-MAR, MFR and MBR (Fig. 7a) as temperature controls partitioning of 

precipitation to snow and rainfall. For P uncertainty, the ε of MFR and MBR are higher than the ε of the two MAR components 

(Fig. 7b), although ε of the MBR is influenced by the smaller magnitude of MBR. This result is consistent with our 

understanding of the soil water budget, MFR requires the generation of overland flow, and MBR requires deep percolation of 

soil water through fractured bedrock. Both of these processes require precipitation excess and should be influenced by 390 

precipitation variability.  

 

Figure 7: Sensitivity to TA (a) and elasticity to P (b) of different mountain system recharge pathways. Each bar 

represents the mean value for the scenarios in the ConstPVarTA (a) and VarPConstTA (b) experiments in the 

Kaweah Terminus watershed. 395 

 Prior efforts have demonstrated that topography driven subsurface flow is an important process that redistributes 

uncertainty in P forcing throughout the watershed (Schreiner-McGraw and Ajami, 2020). Figure 8 presents the relations 
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between TWI and the uncertainty in simulated MAR (σMAR - defined as the standard deviation of recharge across the scenarios 

in each experiment) for the Kaweah Terminus watershed. We limit this analysis to the Kaweah Terminus watershed because 

it has the same vegetation type (evergreen forest) and relatively consistent climate conditions to make the TWI a valid 400 

expression of the topographic effect on soil water movement. By limiting the analysis to the mountainous region, the potential 

recharge is equivalent to our definition of MAR. Across all experiments, the uncertainty in MAR increases with TWI because 

topography driven flow moves water into convergent zones via lateral soil and shallow groundwater fluxes. An ANCOVA test 

reveals that the strength of the topographic control on MAR uncertainty is higher for the ConstPVarTA scenarios than the 

VarPConstTA scenarios, as represented by the statistically significant higher slope (Fig. 8a,b). This result, along with higher 405 

soil moisture values (data not shown), suggests that the ET in convergent zones is more energy limited than water limited 

throughout the year, so TA uncertainty creates larger variability in ET than P uncertainty. Due to the link between ET and 

potential recharge via soil wetness, this variability in ET is reflected in increases in MAR variability. When uncertainty in both 

TA and P is considered, the slope of the TWI and σMAR relation increases, but according to an ANCOVA test, the slope is not 

significantly different (p<0.05) than the ConstPVarTA scenarios. Because topography driven subsurface flow concentrates 410 

soil water in convergent zones, the individual spatial patterns of P and TA uncertainty become less important and their 

uncertainties cancel each other out, creating consistently negative interaction effects in the VarPVarTA scenarios. This impact 

is more pronounced with MAR compared to other variables because MAR is the most dependent variable on topography driven 

flow.  
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 415 

Figure 8: Scatterplots between the binned values of TWI and the standard deviation of MAR from each of the scenarios 

included in the VarPConstTA experiment (a), the ConstPVarTA experiment (b), and the VarPVarTA experiment (c) 

in the Kaweah Terminus watershed. Circles represent the bin average and the bars represent the bin’s standard 

deviation. Solid lines present statistically significant (p<0.05) linear regressions. 

 420 

3.4 Uncertainty of Water Budget Partitioning to Meteorological Forcings 

The P and TA simulation scenarios in experiments 1 and 2, respectively, allow assessing the relative importance of 

uncertainty in P and TA on the simulated water budget. Figure 9a presents the simulated annual water budget partitioning for 

the mountainous Kaweah Terminus watershed for all of the scenarios in experiments 1, 2, and 3. The Kaweah Terminus 

watershed is used because it is the largest sub-watershed in the domain where accurate streamflow simulations can be ensured 425 
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through model validation. Variable precipitation forcing applied in experiment 1 (VarPConstTA) results in significant changes 

to the water budget partitioning. For all P forcing datasets (ConstTAVarP scenarios), MBR remains the smallest portion of the 

water budget, while ET composes the largest portion of the water budget. The largest changes in the water budget partitioning 

occur in the simulated Q that ranges from 28% to 46% of the precipitation. Changes to the TA forcing dataset when the 

precipitation is constant (ConstPVarTA scenarios), result in similar patterns as changes to the P forcing when the temperature 430 

is constant. For all TA datasets, ET is the largest component of the water budget and MBR is the smallest. The variable TA 

scenarios result in a smaller range of simulated Q (36-45%) than the variable P datasets (28-46%), but a larger range in 

simulated ET (46-54% for VarPConstTA and 44-53% for ConstPVarTA). The right-most column in Figure 9a presents the 

water budget partitioning when both TA and P forcing datasets are varied. There is considerable uncertainty in the major water 

budget components, and when both Daymet P and TA are used, the water budget shifts so that ET is no longer the largest 435 

component. The ET ranges from 39% (Daymet) to 56% (downscaled NLDAS-2) while the Q ranges from 25% (Gridmet) to 

44% (Daymet) of the total water budget. These ranges are much larger than the range in water budget partitioning caused by 

modifying P or TA individually, and suggests that the uncertainty from the individual forcing variables is additive, rather than 

cancelling each other out. Besides P and TA uncertainties, differences in the water budget partitioning of VarPVarTA scenarios 

are due to non-linear feedbacks between the spatial patterns of P and TA and subsurface properties, vegetation type, and 440 

topography. 
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Figure 9: (a) Water budget partitioning shown as a fraction of the incoming annual precipitation for the Kaweah 

Terminus watershed, and (b) rain/snow partitioning in the Kaweah Terminus watershed for each of the scenarios in 

the three simulation experiments. Fractions are rounded to the nearest 1%. 445 

 Figure 9b presents the proportion of the total precipitation that falls as snow or rain for each scenario from experiments 

1, 2, and 3. Changes to the TA forcing dataset create a larger range in the snowfall/P ratio than changes to the P forcing dataset 

(snowfall/P ratio of 38-43% in VarPConstTA and 38-50% in VarTAConstP). A close inspection of the charts presented in 

Figure 9 suggests that the snow/rain ratio impacts the annual water budget partitioning, and Figure 10a-c demonstrates this 

conclusion by presenting relations between the ratio of snowfall/P and the ET/P, MBR/P, and Q/P ratios. Each point in Figure 450 

10 represents the mean value for each scenario in experiments 1, 2, and 3. Statistically significant linear relations (p<0.05) 

demonstrate that an increase in the proportion of P that falls as snow, decreases the ET/P ratio and increases the Q/P ratio. As 

the ConstPVarTA scenarios create a larger range in snowfall/P ratio than the VarPConstTA scenarios (Figure 9b), this raises 

the question of why the ConstPVarTA scenarios do not create a larger range in simulated MBR or Q? Although there are 

significant relations (p < 0.05) between the Snowfall/P ratio and water budget partitioning, the relations are weak with r2 values 455 

between 0.17 and 0.35. Figure 10d-f presents the relations between the total annual snowmelt (Sm) and the ET/P, MBR/P, and 

Q/P ratios. The Sm has stronger relations with the water budget partitioning than the snowfall/P ratio with r2 values of 0.68-

0.79. In the mountainous study watershed, the total volume of snowmelt is more dependent on P than TA because the high 

elevation regions where the majority of the precipitation falls remain below freezing for most of the wet season across all air 

temperature datasets. The increased variability in total snowmelt results in the larger changes to Q and MBR caused by the 460 

VarPConstTA scenarios.  
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Figure 10: Scatterplots illustrating the relation between the annual snow/precipitation ratio and ET/P (a), MBR/P (b), 

and Q/P (c) ratios. We also present the relation between the total annual snowmelt (Sm) and the ET/P (d), MBR/P (e), 

and Q/P (f) ratios. Each point represents the value for the Kaweah Terminus watershed from each of the forcing 465 

scenarios in experiments 1-3. Black lines represent statistically significant (p<0.05) linear relationships.  

In the Mediterranean climate of California, the distinct dry season creates challenges for water management, making 

the temporal patterns in simulated water budget variability of interest. Figure 11 presents the monthly time series of ET, MAR, 

and Q from the Terminus watershed for the base case scenario (solid lines) with the range of simulated values (dashed lines), 

as well as the relative range for each (black bars). The variable P forcings, from the VarPConstTA scenarios, result in a 470 

relatively consistent monthly ET-based Rr throughout the year. On average, the ET-based Rr is 0.2 throughout the year and 

January (0.3) and February (0.1) are the months with the largest discrepancies. Changes in the P forcing dataset cause larger 

variability in the Rr for the Q and MAR, but a seasonal pattern does not emerge. Scenarios with altered TA, however, display a 

more prominent annual trend in the Rr of simulated ET and Q. The ET-based Rr is considerably higher in November, December, 

and January for the ConstPVarTA scenarios (average Rr is 0.5), compared to 0.07 for the rest of the year. This finding is 475 

striking because the divergence in the TA forcing datasets is primarily found during the summer months (DOY ~150 – 230) 

(Fig. 3c). We attribute this result to the fact that ET does not occur if the temperatures are below freezing, and TA variability 

at a given location may result in below freezing temperature for one TA dataset, but not another. The Q-based Rr increases 

during March through July consistent with the snowmelt period and increases in TA variability (Fig. 3). For VarPVarTA 

experiments the MAR-based Rr varies throughout the year with higher values in the months of July and October, although the 480 

trend is not dramatic.  

 

Figure 11: Monthly values of ET, Q, and MAR from the Kaweah Terminus watershed are presented for each of the 

three experiments (a) VarPConstTA, (b) ConstPVarTA, and (c) VarPVarTA. The solid lines represent the values from 
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the base case scenario while the dashed lines present the range of values from the scenarios included in each experiment. 485 

Bars represent the relative range (Rr), defined as the range of simulated values for each experiment divided by the 

monthly value from the base case. 

3.5 Sensitivity and Elasticity of Simulated Water Budget to Precipitation or Air Temperature  

 In addition to a close examination of the water budget, we calculate the elasticity (ε) and sensitivity (S) of water 

budget components to changes in P or TA, respectively, over the entire Kaweah River watershed. Figure 12 presents the ε and 490 

S calculated for each meteorological forcing scenario in experiments 1 and 2, relative to the base case, for the water budget 

components. In general, results suggest that the water budget is very sensitive to changes in forcing. Elasticities are larger than 

1 for most datasets and variables such as SWE, dS, potential recharge (R), and Q at the Terminus dam indicate that the simulated 

variables exhibit a larger percent change than the percent change in precipitation. The sensitivity of the simulated water budget 

to changes in temperature is also quite high, especially when the Gridmet and downscaled NLDAS-2 datasets are used (Fig. 495 

12b). The only hydrologic variables that are not heavily impacted by changes in P or TA are the land surface temperature (Tg) 

and root zone volumetric water content (ϴ). At the annual scale, this result is not surprising because the soil moisture is 

depleted by ET and R and its variability is highest on a daily rather than annual scale.  

For the majority of variables examined, the sensitivity to changes in TA is relatively high partially because the 

watershed average changes to TA, the denominator in Eqn. (2), are typically low, while the spatial patterns of TA exhibit larger 500 

differences.  Sensitivity of the Gridmet and downscaled NLDAS-2 datasets to changes in TA have opposing signs for all 

simulated variables. This result is likely because the spatial patterns of TA have the opposite differences from the base case 

(Fig. 2); Mean annual temperature from Gridmet (NLDAS-2) is warmer (cooler) in the mountains and cooler (warmer) in the 

low elevations. Overall, the water budget exhibits high ε and S to both changes in P and TA. This behaviour does not necessarily 

mean that the magnitude of P and TA effects on the water budget are equal. It means that the range of uncertainty contained in 505 

the meteorological forcing datasets for both P and TA results in similar amounts of uncertainty in the simulated water budget. 
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Figure 12: Elasticity (a) and sensitivity (a) of simulated hydrologic variables evapotranspiration (ET), change in 

subsurface storage (dS), potential recharge (R), land surface temperature (Tg), root zone soil moisture (ϴ), snow water 

equivalent (SWE), and streamflow (Q), to variability in precipitation and air temperature. Each bar represents the 510 

average value from the Kaweah River watershed, except streamflow measured at the Kaweah Terminus dam. 

Elasticities were calculated using the scenarios from the VarPConstTA experiment and sensitivities were calculated 

using the scenarios from the ConstPVarTA experiment.  

Besides watershed average sensitivities, we also calculate the sensitivity and elasticity of variables for each pixel in 

the Kaweah River watershed. As an example, we present the ranges in S and ε for potential recharge (R) at the pixel scale in 515 

Figure 13. Despite differences in the spatial patterns of TA across the domain for different datasets (Fig. 2), the ranges in annual 

R sensitivities are very small particularly for the PRISM dataset. The PRISM TA dataset has a zero or cold bias relative to the 

mean dataset while the bias in other datasets ranges between -8 to 8 C. Ranges of R elasticities across the Kaweah River 

watershed are not uniform and Gridmet and downscaled NLDAS-2 datasets have the largest ranges in R elasticities. These 

datasets have the lowest mean annual precipitation and the ratios of ET/P are the highest compared to other datasets (Fig. 9a). 520 

While variability in R elasticities are large, any spatial patterns are difficult to discern from spatial maps and elasticities are 

not controlled by topography, forcings, subsurface properties, or vegetation type. 
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Figure 13: Box-plot of sensitivity (S) and elasticity (ε) of potential recharge (R) calculated at the pixel scale for the 

Kaweah River watershed. The sensitivity to TA is calculated using the scenarios from the ConstPVarTA simulations 525 

and the elasticity to P is calculated using the scenarios from the VarPConstTA simulations. D=Daymet; G=Gridmet; 

N=downscaled NLDAS-2; P=PRISM; T=TopoWx. 

3.6 Interaction Effects of Combined Changes to Precipitation and Air Temperature on the Water Budget 

 Understanding the individual impacts of uncertainty in TA and P forcings provides a foundation for how to manage 

uncertainty in meteorological forcings. But, as climate change is expected to alter both air temperature and precipitation, it is 530 

important to understand how uncertainty in both datasets combines to alter the simulated water budget. To test the extent to 

which the two sources of uncertainty superimpose, we compare the differences between hydrologic variables simulated with 

the base case scenario to simulations that alter both TA and P (VarPVarTA, experiment 3). We use the Kaweah River watershed 

for these calculations. This comparison is done for the average value of each hydrologic variable over Kaweah watershed, 

while Q is represented at the Kaweah Terminus dam. Figure 14a displays the estimated changes to the simulated hydrologic 535 

variables (vΔPΔTAest), relative to the base case scenario, if the impact of uncertainty from the ConstPVarTA and VarPConstTA 

scenarios were additive. Fig. 14b displays the actual changes caused by the VarPVarTA simulations, and Fig. 14c presents the 

difference between the estimated and actual changes. The difference can be interpreted as the strength of the interaction effects, 

i.e. a difference of 0.05 indicates that the interaction effects between TA and P increased the value of the variable, v, by 5%. 

Generally, the differences between estimated and simulated values are quite small, suggesting that the interaction effects 540 

between TA and P uncertainty are small. Indeed, the majority of interaction effects are between -5% and 5%. The primary 

exception to this pattern is found in the variables related to groundwater, dS and R. The dS is the simulated variable with the 

largest variability in the interaction effects. For example, the Gridmet dataset results in interaction effects of -40% while the 

PRISM dataset results in interaction effects of 3% in changes in subsurface storage. With the exception of the PRISM dataset, 
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the interaction effects for dS are all negative. Additionally, across all four datasets the interaction effects decrease R, with an 545 

average value of -5.1%. This is because an increase in P will generally increase R while an increase in TA will generally 

decrease R by increasing ET. This effect can be exacerbated by topography driven flow that concentrates soil moisture in 

convergent zones.  

 

Figure 14: Impacts of combined TA and P on simulated hydrologic variables in the Kaweah River watershed. (a) The 550 

estimated relative difference in the hydrologic variables evapotranspiration (ET), change in subsurface storage (dS), 

potential recharge (R), land surface temperature (Tg), root zone soil moisture (ϴ), snow water equivalent (SWE), and 

streamflow (Q), if the effects of air temperature and precipitation changes are linearly additive. (b) The relative 

difference between the base case and each of the VarPVarTA scenarios. (c) The difference between the predicted and 

actual changes from combined variability in P and TA. 555 

4 Summary 

 In this paper, we examine the propagation of uncertainty in the meteorological forcings, precipitation and air 

temperature, into groundwater recharge simulated with the integrated hydrologic model, ParFlow.CLM. We use the Kaweah 

River watershed as a study domain to (1) quantify groundwater recharge from the mountain system, and assess which recharge 

pathway is most sensitive to meteorological variability, (2) determine whether uncertainty contained in common P or TA 560 

gridded datasets has a larger impact on the simulated water budget, and (3) evaluate the strength of interaction effects when 
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both P and TA are uncertain. In the course of this analysis, we perform three sets of model experiments by altering forcing 

datasets to compare to our base case scenario forced with the mean P and mean TA. These experiments include variable P 

constant TA (VarPConstTA), constant P variable TA (ConstPVarTA), and variable P variable TA (VarPVarTA). 

 Given that the P datasets differ in their total annual precipitation by 30% (125 mm), and variability in the spatial 565 

distribution of precipitation is large, one might expect that the choice of P dataset would be more important than the choice of 

TA dataset. Our analysis revealed that in a mountainous system, the impact of uncertainty in gridded P datasets is similar to 

the impact of uncertainty in available TA datasets. The range of values in the simulated water budget partitioning for the 

VarPConstTA scenarios and the ConstPVarTA scenarios are comparable. This result is attributed to the impact of air 

temperature on snow processes. Variability in TA creates variability in the partitioning of precipitation into rain and snow. This 570 

partitioning alone impacts the water budget where higher ratios of snow/rain results in more potential recharge. Additionally, 

air temperature impacts the snowmelt rate and the total amount of snowmelt is a strong control of the water budget partitioning, 

with higher snowmelt leading to less ET and more potential recharge, which is discharged from the mountain system into 

streamflow. We calculate the sensitivity and elasticity of changes in the water budget to changes in TA and P, respectively. 

We find that groundwater recharge and storage changes are highly sensitive to both changes in TA and P. Our results 575 

demonstrate that the high levels of uncertainty in both TA and P gridded datasets have profound impacts on the water budget 

simulated by an integrated hydrologic model where surface and subsurface processes are coupled. 

 The uncertainty in the simulated water budget caused by the separate uncertainty in TA and P forcing datasets is 

largely superimposed when the model is forced with variable TA and variable P. For most water budget components, the 

interaction effects of TA and P uncertainty reduce the combined impact of uncertainty by less than 5%, i.e. the variability in 580 

the simulated water budget caused by combined changes to TA and P forcing is within 5% of the sum of the variability from 

individual changes. The exception to this result is found in the groundwater system. Potential groundwater recharge and 

changes in subsurface storage exhibit larger interaction effects than the surface water budget. This is attributed to the role of 

topography in controlling lateral subsurface flow in the shallow groundwater system. The uncertainty in groundwater recharge 

rates is highest in regions of convergent topography for all three experiments. But the uncertainty in these regions is much 585 

higher when variable TA forcings are used. This is because the topography concentrates water in these locations so that ET 

becomes energy limited. As a result, variability in TA creates more variable ET and recharge.  

Finally, all of the recharge pathways present in the mountainous Kaweah watershed, MAR, MBR, and MFR, are more 

sensitive to changes in P than changes in TA. It should be noted, however, that comparisons are difficult due to different units 

for P and TA sensitivities. The higher sensitivity to P dataset is because these pathways largely depend on snowmelt, and 590 

precipitation is concentrated in the winter at high elevation regions where the air temperature remains well below freezing 

during this time period. The MAR pathway is less sensitive to changes in P than the other pathways, particularly when MAR is 

derived from rainfall. Our simulations suggest that mountain system recharge to the Central Valley aquifer is a significant 

portion of the water budget regardless of the meteorological forcing dataset used. Indeed, MFR contributes between 186 and 

504 mm/yr of recharge from the Kaweah Terminus watershed to the Central Valley aquifer. A large fraction of the Kaweah 595 
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Terminus watershed water budget (25-46%) becomes MFR in the Central Valley region. In our simulations, MFR is the primary 

pathway via which the mountain system recharges the Central Valley aquifer, accounting for 85-99% of the total recharge. 

The high uncertainty in subsurface geologic structure and parameters, however, creates large uncertainties in the quantities of 

MBR. Overall, the results from this study highlight the importance of uncertainty in forcing datasets when simulating the 

groundwater response to climate change. The magnitude of simulated changes in the groundwater recharge due to 600 

meteorological forcing uncertainty highlights the need for hydrologists to improve gridded datasets to improve our 

understanding of how meteorological variability propagates into groundwater in topographically complex mountain systems.  
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