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Abstract. Mountainous regions act as the water towers of the world by producing streamflow and groundwater recharge, a 

function that is particularly important in semiarid regions. Quantifying rates of mountain system recharge is difficult, and 

hydrologic models offer a method to estimate recharge over large scales. These recharge estimates are prone to uncertainty 

from various sources including model structure and parameters. The quality of meteorological forcing datasets, particularly in 10 

mountainous regions, is a large source of uncertainty that is often neglected in groundwater investigations. In this contribution, 

we quantify the impact of uncertainty in both precipitation and air temperature forcing datasets on the simulated groundwater 

recharge in the mountainous watershed of the Kaweah River in California, USA. We make use of the integrated surface water 

– groundwater model, ParFlow.CLM and several gridded datasets commonly used in hydrologic studies, downscaled NLDAS-

2, PRISM, Daymet, Gridmet, and TopoWx. Simulations indicate that across all forcing datasets, mountain front recharge is an 15 

important component of the water budget in the mountainous watershed accounting for 9-72% of the annual precipitation, and 

~90% of the total mountain system recharge to the adjacent Central Valley aquifer. The uncertainty in gridded air temperature 

or precipitation datasets, when assessed individually, results in similar ranges of uncertainty in the simulated water budget. 

Variations in simulated recharge to changes in precipitation (elasticities) and air temperature (sensitivities) are larger than 1% 

change in recharge per 1% change in precipitation or 1-degree C change in temperature. The total volume of snowmelt is the 20 

primary factor creating the high water budget sensitivity; and snowmelt volume is influenced by both precipitation and air 

temperature forcings. The combined effect of uncertainty in air temperature and precipitation on recharge is additive, and 

results in uncertainty levels roughly equal to the sum of the individual uncertainties depending on the hydroclimatic condition 

of the watershed. Mountain system recharge pathways including mountain block recharge, mountain aquifer recharge, and 

mountain front recharge are less sensitive to changes in air temperature than changes in precipitation. Mountain front and 25 

mountain block recharge are more sensitive to changes in precipitation than other recharge pathways. The magnitude of 

uncertainty in the simulated water budget reflects the importance of developing high quality meteorological forcing datasets 

in mountainous regions.  
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1 Introduction 

Mountainous catchments are known to be important sources of water in semiarid and seasonally dry ecosystems 30 

(Viviroli et al., 2007). While it is well understood that mountain systems provide the majority of freshwater resources via 

streamflow (Viviroli and Weingartner, 2004), the contribution of mountain systems to groundwater resources remains highly 

uncertain (Ajami et al., 2011). As meteorological conditions are the primary drivers of the hydrologic cycle, understanding 

how groundwater recharge in mountain systems reacts to different meteorological forcings is important. Since mountain 

recharge processes have been defined in various ways, we define three distinct recharge pathways in mountain catchments. 35 

Mountain bedrock aquifer recharge (MAR) consists of snowmelt or rainfall derived infiltration into the bedrock system of the 

mountain block, which either discharges to streams or may eventually reach an alluvial aquifer in an adjacent valley as 

mountain block recharge (MBR). MBR consists of lateral subsurface flow from the mountains to an adjacent valley aquifer. 

Finally, mountain front recharge (MFR) consists of direct infiltration of streamflow, that originated in the mountains, along 

the piedmont zone. Various efforts have been conducted to estimate the relative importance of each recharge pathway (Ajami 40 

et al., 2011; Mailloux et al., 1999; Manning and Solomon, 2003; Schreiner-McGraw and Vivoni, 2017; Newman et al., 2006), 

but an analysis of how they respond to uncertainty in atmospheric drivers, such as precipitation or air temperature, is lacking. 

Hydrologic models are important tools to quantify recharge rate as a function of precipitation because recharge rates 

are difficult to measure, especially over large spatial extents (Bridget R. Scanlon et al., 2002). Physically based, integrated 

hydrologic models that simulate land surface – subsurface hydrologic processes have high computational requirements, but 45 

are the best modeling tools to study connections between meteorological variability and hydrologic function. Furthermore, 

they are not limited to empirical relationships or calibrated parameters to a set of historical conditions (Fatichi et al., 2016). 

Hydrologic models, however, are prone to uncertainty that can arise from many sources including the model structure, the 

selection of equations to represent processes, parameterization, and uncertainty in the model forcing data (Woldemeskel et al., 

2012; Beven, 2006). The impact of the uncertainty in forcing data upon model performance is particularly important when 50 

models are used to assess the impact of climate change or drought on groundwater processes.  

The hydrologic system response to changes in precipitation and air temperature has been studied in depth, the impact 

of meteorological changes on groundwater, however, has received comparably less attention. It has been shown that the 

physiographic features of a watershed, particularly those that control the depth to the water table (DTWT), impact the 

groundwater system response to climate variability, but the depth at which these sensitivities are highest is highly uncertain. 55 

Some authors suggest higher groundwater sensitivity to meteorological variability at regions with high DTWT, while others 

find higher sensitivity for shallow water table regions (Maxwell and Kollet, 2008; Erler et al., 2019). In a recent review, the 

direct impacts of climate on groundwater is explained by describing processes that control the water surplus (precipitation – 

evaporation). While precipitation and air temperature impact the magnitude of water surplus, subsurface geology controls the 

translation of water surplus (potential recharge) to groundwater head variability (Taylor et al., 2013). The precise impacts of 60 

meteorological variability on groundwater recharge, particularly in mountainous catchments that supply the majority of water 
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in semiarid regions, remain important unknowns (Meixner et al., 2016). Several studies have used hydrologic models to 

examine how meteorological focings impact mountain recharge processes, but none has considered the importance of 

meteorological forcing uncertainty on recharge estimates (Schreiner-Mcgraw et al., 2019; Crosbie et al., 2011; Hartmann et 

al., 2017; Ajami et al., 2012). This is particularly important in mountainous regions where observational datasets (e.g., forcings, 65 

subsurface structure, and parameters) are scarce. 

The water budgets in mountainous watersheds are typically dominated by snow processes. As a result, the two most 

important meteorological variables for controlling the hydrologic response are precipitation amount and air temperature. 

Datasets of both variables are highly uncertain, particularly in regions with high relief, and it is difficult to determine which 

variable is more uncertain as they have different units (Lundquist et al., 2015; Henn et al., 2018; Daly et al., 2008). From a 70 

hydrologic standpoint, the more important question is whether the level of uncertainty contained in precipitation or air 

temperature has larger impacts on the simulated hydrologic budget. Recent work in the Colorado River basin has demonstrated 

the importance of air temperature to simulated hydrologic processes, particularly in regions with snow (Udall and Overpeck, 

2017). Climate change is expected to alter both precipitation and air temperature, but their relative changes are unknown, 

especially for precipitation. It is therefore important to understand how air temperature and precipitation uncertainty might 75 

combine, over a range of conditions, to impact simulated subsurface hydrologic response. 

Gridded precipitation and air temperature datasets are especially uncertain in mountainous regions due to a lack of 

gauges and sharp topographic gradients that alter meteorological conditions over relatively small scales. Previous efforts to 

test the accuracy of gridded precipitation datasets in mountainous regions have found that datasets are particularly uncertain 

at the highest elevations (Henn et al., 2018; Lundquist et al., 2015). These uncertainties have been attributed to poor 80 

representation of snow (Rasmussen et al., 2012) and the lack of gauges due to poor infrastructure (Lundquist et al., 2003). The 

lack of gauges requires extrapolation of meteorological values from gauges in different locations. Gridded datasets vary in 

their extrapolation techniques of gauge based observations, their use of different input gauges, and their consideration of snow 

measurements (Daly et al., 1994; Thornton et al., 1997). As a result, there is considerable uncertainty in both precipitation and 

air temperature gridded datasets that has the potential to alter hydrologic simulations.  85 

In this study, we utilize an integrated surface water-groundwater hydrologic model to study the propagation of 

uncertainty in precipitation and air temperature into the groundwater system of a mountainous watershed. The model domain 

encompasses the Kaweah River watershed in California, USA. This domain covers a wide range of climate and topographic 

conditions and is prone to high inter-annual variability in climate conditions and strong prevalence of drought. We focus on 

understanding the physical properties that affect the propagation of uncertainty from the atmosphere to the groundwater, and 90 

our discussion aims to answer the three following questions. (1) Which mountain recharge pathway is most impacted by 

meteorological uncertainty? (2) Is uncertainty in precipitation or air temperature forcing more impactful on the simulated water 

budget of a mountain system, especially with regards to groundwater processes? (3) How does uncertainty in precipitation 

combine with uncertainty in air temperature to impact simulated groundwater recharge?  
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2 Methods 95 

2.1 Study Site 

Model simulations are carried out in the Kaweah River watershed, located in the southern Sierra Nevada Mountains 

in California, USA (Fig. 1). This location was selected for the study because of the presence of large topographic gradients 

(elevation ranges from 57 to 4,354 m), steep slopes, and locations with both high and low uncertainty in air temperature and 

precipitation datasets (Schreiner-McGraw and Ajami, 2020). We identify the Kaweah Terminus sub-watershed, which 100 

encompasses the mountainous portion of the Kaweah River watershed upstream of the Terminus dam to investigate the 

mountain system recharge processes. Furthermore, this undisturbed portion of the domain makes streamflow validation 

possible. In the Kaweah River watershed, the regional topography is dominated by the Sierra Nevada mountain block, which 

is largely composed of granitic rocks (Jennings, 1977). The eastern Sierra Nevada mountains contain the tallest peaks in the 

continental United States and are located in the eastern portion of the study domain. A complex assemblage of landforms 105 

composes the piedmont slope of sediments eroding off of the western portion of the mountain range, where our study is focused 

(Olmsted and Davis, 1961). The elevation decreases to the west of the study domain until reaching the flat Central Valley 

province. The Central Valley province (Fig. 1) is composed of interbedded sand and silt layers and is a highly productive 

groundwater aquifer (Faunt, 2009). The climate in the region is a Mediterranean climate with cool, wet winter seasons and hot 

dry summers. The precipitation in the study domain ranges from ~140 mm – 1,400 mm per year roughly following the elevation 110 

gradient. As a result, the vegetation also ranges from desert grasslands (and irrigated agriculture) in the lowlands to oak 

savannahs and pine forest in the mountain regions.  

 

 

Figure 1: The location of the model domain within the state of California, USA. A 30-m digital elevation model is used to delineate 115 
the Kaweah Terminus watershed and Kaweah River watershed boundaries. The model extent is larger than the watershed boundary 
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to reduce the impact of boundary conditions on simulated groundwater flow. The dashed line indicates the boundary between 

mountain block and Central Valley aquifer system defined by using a geologic map of the region.  

2.2 Model Description 

 In this study, we use the ParFlow.CLM integrated hydrologic model code (Kollet and Maxwell, 2006; Maxwell and 120 

Miller, 2005; Maxwell, 2013) for hydrologic simulations. The ParFlow.CLM model simulates variably saturated subsurface 

flow that is fully integrated with overland flow and is coupled to the land surface model CLM 3.0 (Dai et al., 2003). The 

ParFlow model solves the Richards’ equation in three dimensions to simulate variably saturated subsurface flow and 

simultaneously solves the kinematic wave approximation to simulate overland flow. Channel networks are not predefined in 

the model, rather they develop naturally in response to the hydrologic conditions and the uniform application of the kinematic 125 

wave approximation to every cell in the model domain. ParFlow has been coupled with the Common Land Model 3.0 (Dai et 

al., 2003) to simulate the land surface water and energy budgets. The CLM portion of the code interacts with ParFlow over the 

top soil layers where ParFlow simulates water movement and feeds the soil water state into CLM. We apply the terrain 

following grid formulation of ParFlow that is best suited to simulate domains with high topographic relief (Maxwell, 2013). 

 Prior efforts parameterized the model using estimates of topography, land cover type, drill core data, and geologic 130 

maps of the study region (Schreiner-McGraw and Ajami, 2020). A detailed description of the model construction and validation 

can be found in Schreiner-McGraw and Ajami (2020). Here, we present the conceptual framework relevant to this study. We 

conceptualize the study domain in two primary physiographic regions, the Sierra Nevada mountain block and the Central 

Valley, which contains a highly productive aquifer. We apply a 1 km horizontal grid resolution to the 12,276 km2 study domain 

resulting in a horizontal model grid of 99 x 124. We focus on the groundwater system that is likely to interact with the surface 135 

water and therefore simulate the domain to a depth of 622 m. This depth is consistent with a conceptual model that includes 2 

m thick surface soils consisting of 6 layers (0.05, 0.1, 0.15, 0.3, 0.4, and 1.0 m thick) that overlay a 620 m thick aquifer system 

consistent with observations from drill cores (Faunt, 2009). Surface soil parameters including the saturated hydraulic 

conductivity, porosity, and van Genuchten parameters are derived from the POLARIS dataset (Chaney et al., 2016). The 

alluvial aquifer of the Central Valley is conceptualized as 9 rock layers of variable thickness and parameterized following drill 140 

core data compiled by Faunt (2009). The mountain block subsurface is conceptualized as a fractured bedrock aquifer system 

with three geological layers, saprolite (15 m thick), fractured bedrock (145 m thick), and less fractured bedrock (460 m thick). 

The mountain bedrock is characterized by low porosity and hydraulic conductivity values that are derived from a geologic 

map and reference tables (Jennings, 1977; Welch and Allen, 2014). The land surface requires Manning’s n values and slope 

values. Manning’s n parameters are based on reference table values (Chow, 2009) and slopes are derived from a 30 m digital 145 

elevation model obtained from the National Elevation Dataset (Gesch et al., 2018). Vegetation types are based on the USDA 

CropScape data and are aggregated to the IGBP classification system.  

 For our primary analysis, the hydrologic model is run at an hourly time step over the water year (WY) 2016 simulation 

period. We chose WY2016 because remote sensing products were available for model validation, and the meteorological 
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conditions were approximately representative of the average conditions in the study watershed. The hourly meteorological 150 

datasets required as model forcing include precipitation, air temperature, air pressure, specific humidity, downward short and 

long wave radiation, and wind speed in the x and y directions. We obtain all meteorological forcings, except precipitation (P) 

and air temperature (TA), from the Princeton CONUS Forcing dataset, which provides hourly forcings at 3-km spatial 

resolution based on the NLDAS-2 dataset (Pan et al., 2016). This dataset downscales the NLDAS-2 precipitation dataset using 

Stage IV and Stage II radar products (Pan et al., 2016) and has been validated and compared to several other gridded datasets, 155 

showing good performance (Beck et al., 2019). Additional precipitation and air temperature forcings are derived from several 

publically available gridded datasets; Daymet (Thornton et al., 1997), Gridmet (Abatzoglou, 2013), PRISM (Daly et al., 1994), 

and TopoWx which only includes daily minimum and maximum air temperature (Oyler et al., 2015) (Fig. 2). The Daymet, 

Gridmet, and PRISM datasets provide daily total precipitation as well as the daily minimum and maximum temperature. These 

daily precipitation datasets are downscaled to hourly resolution by applying the temporal downscaling method of NLDAS-2 160 

precipitation.  

 Model initialization consists of a two-step spin up process to bring the subsurface water storage into dynamic 

equilibrium with the meteorological conditions. In the first step of the initialization, we start from a initially dry system and 

run the ParFlow code without CLM by applying a constant in time net precipitation flux (P-ET) (Livneh et al., 2013) to fill up 

the groundwater storage and create a rough approximation of the flow network. From this point, each model scenario is run 165 

recursively using the ParFlow.CLM code and the WY2016 forcing data applied in that scenario (see scenario descriptions in 

section 2.3). Recursive simulations are continued until the total subsurface storage reaches dynamic equilibrium (Ajami et al., 

2014). We define dynamic equilibrium as the point in which the absolute change in total subsurface storage becomes less than 

0.01% in recursive simulations (Ajami et al., 2015). In addition to WY2016, we run simulations for WY2011 and WY2014 

representing wet and dry conditions in the watershed, respectively (see section 2.3). The model initialization process is repeated 170 

for each of these years using their respective meteorological forcings until the model reached dynamic equilibrium with respect 

to these forcings.   

 Model performance is extensively validated in Schreiner-McGraw and Ajami (2020). As we are focused on 

quantifying the impact of air temperature, we present a limited validation, using WY2016, primarily related to the energy 

budget. An important component of the land surface energy balance in mountainous terrain is the role of snow. We validate 175 

model performance using a reanalysis gridded product that contains estimates of snow water equivalent (SWE) and snow 

covered area (SCA) for the majority of the Sierra Nevada (Margulis et al., 2016). This 90 m resolution dataset is generated 

using a Bayesian data assimilation technique with remotely sensed estimates of snow covered area (Margulis et al., 2016). The 

dataset is clipped to 1,500 m elevation to remove uncertainty related to the infrequent snow below this elevation. When making 

comparisons between this reanalysis dataset and our simulated datasets, we also set SWE and SCA below 1,500 m elevation to 180 

0. Additionally, we use remote sensing estimates of evapotranspiration (MOD16A2 product) at 1 km resolution from the 

MODIS Terra satellite to compare with simulated evapotranspiration (ET) and test performance of the simulated energy 

budget.  
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 185 

Figure 2:(a) Mean daily air temperature from 5 air temperature datasets used within this study, for WY2016. Spatial 

maps represent differences in mean annual daily temperature from the mean dataset (calculated as: dataset – mean) 

in (b) downscaled NLDAS-2, (c) PRISM, (d) Gridmet, (e) Daymet and (f) TopoWx forcing datasets.   

2.3 Model Experiments  

 In this study, we are interested in quantifying how the uncertainty in air temperature and precipitation focings impact 190 

the simulated water budget. To simplify the system and reduce the impact of uncertainty in anthropogenic management 

practices, we treat the system as a quasi-pre-development state that is not impacted by groundwater pumping, irrigation, or 

stream diversions. As a result, all of our model scenarios use consistent parameterizations for the subsurface and the land 

surface, and the only difference is in the air temperature and precipitation forcings from different gridded meteorological 

products. We perform a ‘base case’ simulation where we use the mean precipitation from the 4 available datasets (Daymet, 195 

Gridmet, downscaled NLDAS-2, and PRISM), and the mean air temperature from the same four datasets plus the TopoWx 

dataset. Prior efforts have demonstrated that using the mean of the precipitation datasets results in the best model performance 

compared to simulations with each product individually (Schreiner-McGraw and Ajami, 2020). This base case scenario is used 

for comparison purposes. In addition to the base case scenario, we run three different numerical experiments: (1) variable 
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precipitation and constant air temperature (VarPConstTA), (2) constant precipitation and variable air temperature 200 

(ConstPVarTA), and (3) variable precipitation and variable air temperature (VarPVarTA). In experiment 1, VarPConstTA, we 

run four scenarios each using the mean air temperature and one of the four precipitation datasets. Experiment 2 is the opposite 

with 5 scenarios, where each scenario is forced with the mean precipitation and one of the five air temperature datasets. Finally, 

experiment 3 consists of four scenarios and each scenario is forced with the precipitation and air temperature from one of the 

four available gridded products. To assess how results are impacted by the choice of a single year of forcing data, we perform 205 

three numerical experiments for 3 different years, WY2011, WY2014, and WY2016, with above average, below average, and 

average precipitation totals, respectively. We focus our analysis on the year with near-average meteorological conditions 

(WY2016) and use the additional years to examine the variability and propagation of meteorological uncertainty introduced 

by unusually wet or dry conditions.  

2.4 Analysis Techniques  210 

2.4.1 Relative Importance of Uncertainty in Precipitation and Air Temperature on the Simulated Water Budget 

 We first assess the uncertainty in the precipitation and air temperature datasets by calculating the mean absolute 

difference (MAD) between each pair of datasets at a daily scale for each grid cell in the domain (Henn et al., 2018). We 

calculate the MAD between a pair of datasets at a single grid cell as 

𝑀𝐴𝐷𝑖,𝑗 =
1

𝑑
∑ abs(𝑃𝑖,𝑘 − 𝑃𝑗,𝑘)𝑑

𝑘=1           (1) 215 

where i,j represents the difference between dataset i and dataset j, k represents the day, and d is the number of days in the year. 

We calculate the MAD for each pair of datasets and take the mean value of all MADs to represent the mean uncertainty in 

total precipitation for each year of forcing data. For presentation purposes, we also calculate the overall mean MAD using the 

three water years used in our simulations (WY2011, WY2014, and WY2016). The same approach is applied to air temperature. 

We acknowledge that this is not a true measure of uncertainty in precipitation or air temperature as ground truth data from 220 

weather stations are not available.  

Next, we assess the relative importance of uncertainty in the precipitation and air temperature forcing datasets on the 

annual water budget partitioning from each simulation scenario. We perform this calculation for the Kaweah Terminus 

watershed, upstream of the Terminus dam, (Fig. 1) to focus on the mountain groundwater system. The Terminus dam is not 

represented in the model, and streamflow evaluation downstream of this point is difficult. We calculate the groundwater flux 225 

(GW) out of the Kaweah Terminus watershed as a residual of the annual water balance, GW = P – ET – Q – dS, where P is the 

precipitation, ET is the evapotranspiration, Q is the streamflow, and dS is the change in subsurface storage. This groundwater 

flux is equivalent to the mountain block recharge (MBR) that is generated within the Kaweah Terminus watershed. We 

additionally calculate the precipitation partitioning into rain and snow components. The version of CLM in the model uses a 

threshold air temperature of 2.5 °C to partition precipitation, so we apply the same threshold to the precipitation data to 230 

determine snowfall and rainfall.  
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Given the seasonality of the water balance in the study watershed, we also calculate the monthly relative range of 

hydrologic fluxes from the Kaweah Terminus watershed to determine months with the highest uncertainty in simulated fluxes. 

The relative range (Rr) is defined as the range in monthly simulated hydrologic fluxes for each experiment divided by the 

monthly value from the base case scenario. 235 

 

2.4.2 Relative Elasticity and Sensitivity Metrics to Changes in Precipitation and Air Temperature 

 To determine the relative sensitivity of the simulated annual hydrologic budget to precipitation and air temperature 

forcings, we calculate the sensitivity and elasticity of multiple hydrologic variables relative to the baseline simulation for the 

Kaweah river watershed (Fig. 1). We perform these calculations using the catchment averaged values from experiment 1 (P 240 

elasticity) and experiment 2 (TA sensitivity) simulations where P and TA are modified individually. The precipitation elasticity 

(ε) is the fractional change in a hydrologic variable v from dataset i divided by the fractional change in P from dataset i, both 

relative to our base case scenario.  

𝜀 =

𝑣𝑖−𝑣𝑏𝑎𝑠𝑒
𝑣𝑏𝑎𝑠𝑒

𝑃𝑖−𝑃𝑏𝑎𝑠𝑒
𝑃𝑏𝑎𝑠𝑒

,            (2) 

Following the reasoning from (Vano et al., 2012), we also calculate the temperature sensitivity (S) in a similar manner. We 245 

define S as the percent change of a hydrologic variable v, caused by a change in TA. 

𝑆 =

𝑣𝑖−𝑣𝑏𝑎𝑠𝑒
𝑣𝑏𝑎𝑠𝑒

𝑇𝐴𝑖−𝑇𝐴𝑏𝑎𝑠𝑒
,             (3) 

While we cannot directly compare whether TA or P uncertainty adds more variability to hydrologic simulations, by comparing 

the ε and S we can determine whether the range of uncertainty in TA or P contained in common gridded datasets adds more 

uncertainty to the simulated hydrologic budget. We recognize that the ε and S are overestimated in this analysis because the 250 

datasets have different spatial patterns in TA and P, and the basin average differences in simulated hydrology are not solely 

caused by the basin average differences in TA and P. We contend, however, that this is a reliable approach to estimate the 

relative importance of model forcing dataset selection. We also assess spatial variability of precipitation elasticities and 

temperature sensitives by applying Equations 2 and 3 at pixel scale.  

2.4.3 Impact of Combined Uncertainty in Precipitation and Air Temperature on the Simulated Water Budget 255 

  As a result of climate change, both P and TA are expected to change simultaneously. In the analysis described above, 

we only alter P or TA individually in experiments 1 and 2, respectively. We make use of the scenarios from experiments 1, 2, 

and 3 to examine the combination effects of uncertainty in both P and TA on simulated hydrologic response in the Kaweah 

River watershed for each simulated water year. We calculate the relative change in a hydrologic variable, v, relative to our 

‘base case’ scenario forced with the mean of both the air temperature and precipitation datasets. For each forcing dataset 260 

(Daymet, Gridmet, etc.), we calculate the individual relative difference in simulated hydrologic fluxes or states caused by 

changing the precipitation dataset (vΔP) and the temperature dataset (vΔTA) from the base case using catchment averaged values. 
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We then estimate the total relative differences in simulated hydrology caused by the combined changes in P and TA by 

summing the relative differences of P and TA as if there were no interaction effects (vΔPΔTAest) (Vano et al., 2012) 

𝑉∆𝑃∆𝑇𝐴𝑒𝑠𝑡 =
(𝑉∆𝑃−𝑉𝑏𝑎𝑠𝑒)

𝑉𝑏𝑎𝑠𝑒
+

(𝑉∆𝑇𝐴−𝑉𝑏𝑎𝑠𝑒)

𝑉𝑏𝑎𝑠𝑒
         (4) 265 

The estimated combined impact of P and TA changes on the variable, v, are then compared to the simulated values of a given 

variable when both P and TA are simultaneously altered in model simulations (vΔPΔTA) to determine the degree of interaction 

effects for both variables in the Kaweah River watershed.  

2.4.4 Sensitivity of Recharge Pathways to Meteorological Forcings 

 We make use of the integrated hydrologic model to examine the sensitivity of different recharge pathways to changes 270 

in P and TA forcing. We calculate recharge via three primary pathways, MAR (derived from rain or snow), MBR, and MFR. 

We calculate each of these fluxes using the simulated pressure head and saturation values and the Richards’ Equation (Maxwell 

and Miller, 2005) for specific regions of the model domain. MAR is defined as the vertical flux of water leaving the 2 m deep 

soil zone (potential recharge) within the Kaweah Terminus watershed, located upstream of the Terminus dam in the Sierra 

Nevada Mountains (Fig. 1). We separate MAR derived from snowmelt as MAR that occurs in the same model time step that 275 

snowmelt occurs (i.e. changes in daily SWE is negative), otherwise we assume that MAR is sourced from rainfall. We estimate 

the MBR sourced from the mountainous region of the Kaweah Terminus watershed as a residual of the water balance that is 

equivalent to the GW flux out of the watershed. We recognize that this is not explicitly MBR because the Kaweah Terminus 

boundary does not exactly trace the boundary between the mountain block and the valley aquifer. However, the regional flow 

pathways ensure that groundwater leaving the Terminus watershed will reach the Central Valley aquifer. Finally, MFR is 280 

calculated as the volume of streamflow that infiltrates into the channel bottom as the Kaweah River flows across the piedmont 

slope, defined as the area adjacent to the mountain block where topographic slope is greater than 2% (11 km of the Kaweah 

River reach). 

Previous efforts have shown the role of topography in the propagation of uncertainty in precipitation to groundwater 

(Schreiner-McGraw and Ajami, 2020). To examine how this propagation impacts MAR under the combined P and TA 285 

uncertainty versus individual uncertainty in P or TA, we make use of the relationship between topographic wetness index (TWI) 

and uncertainty in simulated MAR where the TWI is calculated as: 

𝑇𝑊𝐼 =  ln (
𝐴𝑐

tan 𝛼
),           (5) 

where AC is the contributing drainage area and α is the slope (Beven and Kirkby, 1979). As the TWI is meant to be applied in 

climatically similar regions, we apply the analysis only to the Kaweah Terminus watershed where land cover and subsurface 290 

geology are constant, and climate is relatively similar (mean annual precipitation ranges from 435 to 960 mm/yr and mean 

annual TA ranges from 0 to 15 °C). We estimate the uncertainty in the simulated MAR as the standard deviation of MAR values 

from the multiple scenarios in each TWI bin.  
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3 Results and Discussion 

3.1 Air Temperature and Precipitation Uncertainty  295 

Differences in mean annual daily temperature from the mean temperature dataset range between -8 to 8 ⁰C (Fig. 2b-

f). Differences in mean daily temperature among different forcing datasets exist irrespective of the wetness condition (wet vs 

dry or average year), and the ranges are larger for WY2011 (Fig. 3 a,c,e). Considerable uncertainty exists in the daily and 

annual totals of precipitation from the different gridded datasets as well (Fig. 3 b,d,f). The differences between the gridded 

products in our study are surprising, especially considering that Gridmet is based on the NLDAS-2 and PRISM datasets. We 300 

believe that the differences among products are caused by contrasting spatial resolutions. For example, Abatzoglou (2013) 

used the 800 m PRISM data to generate the Gridmet dataset, while we used the freely available PRISM data at 4 km resolution. 

Additionally, we used a downscaled version of the NLDAS-2 dataset, called the Princeton CONUS Forcing dataset at ~3 km 

resolution with the updated precipitation data using the Stage IV and Stage II radar products. We believe that the differences 

in the resolution of the datasets and interpolation approaches have caused the differences in precipitation and air temperature 305 

forcing datasets. 

 

 

Figure 3: (a,c,e) daily domain averaged values of air temperature for 5 temperature datasets, and (b,d,f) The cumulative 

sum of domain averaged precipitation for each of the four gridded datasets in (a,b) WY2011, (c,d) WY2014, and (e,f) 310 

WY2016.  



12 

 

We analyze the uncertainty in the forcing datasets by presenting the average MAD between the datasets available for 

TA (Fig. 4a) and P (Fig. 4b) for three water years. Figure 4a presents the annual mean daily MAD averaged across the 5 

temperature datasets and three water years. Overall, the uncertainty in air temperature is high with large portions of the model 

domain expressing an average MAD greater than 5 °C/day. MAD in the topographically flat portion of the domain in the 315 

Central Valley is relatively consistent with values of approximately 4 °C/day. The mountainous region of the study domain 

has more variability in temperature-based MAD estimates. Coincidentally, the majority of the mountainous portion of the 

Kaweah River watershed has relatively low MAD in TA and mountainous regions outside the watershed boundary have much 

higher uncertainty in TA that in places exceeds 7 °C/day. Uncertainty in P follows a more consistent pattern than uncertainty 

in TA where the MAD in P increases consistently with elevation (Fig. 4b). This pattern is partially attributable to the annual 320 

total precipitation increases in the high elevation regions, but the lack of meteorological gauges at high elevations also increases 

the uncertainty in these regions. The spatial patterns of MAD for both P and TA remain relatively constant between years, 

suggesting that the differences are related to the interpolation algorithms, rather than different observed data. These findings 

are consistent with previous efforts to quantify uncertainty in gridded precipitation datasets that found uncertainty between 

150-200 mm/year in this region (Henn et al., 2018; Lundquist et al., 2015). 325 

 

 

Figure 4: Uncertainty in the daily air temperature (a) and precipitation (b) datasets represented by the mean absolute 

difference (MAD) for the three water years (2011, 2014, and 2016) used in this study.  

3.2 Model Validation  330 

 A comprehensive validation of model performance is presented in Schreiner-McGraw and Ajami (2020). In this study 

we present a validation of model performance in simulating two components of the energy balance, ET and SWE, using 

WY2016 simulations. Figure 5 presents a comparison between the simulated ET from each of the experiments 1, 2, and 3 and 

remote sensing values from the 8-day MODIS product. The values presented are watershed average values for the Kaweah 

River watershed with irrigated croplands removed due to the lack of irrigation in the simulations. Generally, the range of 335 

simulated monthly ET encompasses the remote sensing values. The peak value of monthly ET of 40 mm/mon is replicated by 

the model simulations. The timing of the peak value, however, is inconsistent between the simulations and the remote sensing 
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product. At the monthly scale, both the peak ET and the minimum ET throughout the year are delayed by 1 month. This result 

is partially attributable to the coarse temporal resolution of the remote sensing data composited at 8-day intervals, as well as 

the monthly aggregation of this data. In addition, we believe that some of the discrepancy arises from restricting the plant 340 

rooting depth in the simulations to the top 2 m of soil in ParFlow.CLM simulations, limiting their ability to draw on water 

stored in the saprolite layer. As saprolite storage is recharged by spring snowmelt (Thayer et al., 2018), this model specification 

creates temporal discrepancy in ET. Because the simulated energy budget captures ET quantities, however, we are satisfied 

with the model performance considering the study objectives. The patterns observed during WY2016 are replicated in WY2011 

and WY2014, but the peak simulated ET is delayed relative to the remote sensing product. For the rest of the year, the remotely 345 

sensed values are generally bracketed by the range of simulated ET values. 

 

 

Figure 5: Monthly ET in WY2016 from the MODIS remote sensing product (solid lines) as well as the range of simulated 

ET from each of the three experiments (a) VarPConstTA, (b) ConstPVarTA, and (c) VarPVarTA (dashed lines) in the 350 

Kaweah River watershed. Croplands are removed from this comparison as irrigation is not included in simulations.  

 We also assess the performance of the energy budget simulations by comparing the simulated SWE to a reanalysis 

product developed for the Sierra Nevada region (Margulis et al., 2016), using the WY2016 simulations. Figure 6 presents the 

annual cycle of snowpack accumulation and melting as simulated SWE from each of the three experiments. We present the 

total volume of SWE for each day in the Kaweah River watershed. For all the experiments, the simulated annual pattern of 355 
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daily SWE encompasses the observed values. The only exception is the period from DOY 65-150 from the ConstPVarTA 

scenarios, where the simulated SWE is larger than the reanalysis product values (Fig. 6b). In the ConstPVarTA scenarios, 

significant variability within the simulated SWE exists, especially for the peak SWE values. The peak SWE of the Daymet 

scenario is 27% higher than the observed and SWE from the Gridmet scenario is 42% higher than the observed. The Daymet 

and Gridmet datasets have lower air temperatures in the mid-elevation zone where temperatures fluctuate between below and 360 

above freezing (Fig. 2). In terms of timing, the peak SWE occurs on DOY 74 for all ConstPVarTA scenarios except in the 

Daymet forcing scenario, where the peak SWE occurs on DOY 34. The timing of full snowmelt is more variable and is delayed 

for the scenarios with higher peak SWE. Full snowmelt occurs on DOY 216 for Daymet, DOY 221 for Gridmet, DOY 211 for 

downscaled NLDAS-2, and DOY 194 for the PRISM scenario. The simulated SWE from each of the VarPConstTA scenarios 

(Fig. 5a) has similar temporal patterns, but there is considerable spread in the SWE values that reflect the spread in precipitation 365 

volumes from the different forcing datasets. The VarPVarTA scenarios have the largest variability in SWE across the forcing 

datasets, with downscaled NLDAS-2 forcing underestimating the peak SWE and other forcings overestimating it relative to 

the observations (Fig. 6c). In WY2011 and WY2014, as in WY2016, the observed SWE is bracketed by the range of simulated 

values. 

 370 

Figure 6: Daily SWE from the reanalysis product (black lines) as well as the range of simulated SWE from each of the 

three experiments (a) VarPConstTA, (b) ConstPVarTA, and (c) VarPVarTA (color lines) in WY2016. 
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3.3 Recharge Pathway Sensitivity to Meteorological Variability    

 Mountain system recharge to the Central Valley is a key unknown for water management in this highly productive 

agricultural system. During WY2016, with roughly average meteorological conditions, the total mountain system recharge 375 

from the mountainous portion of the Kaweah River watershed, the Kaweah Terminus sub-watershed, to the valley aquifer 

(MBR + MFR) ranges from 186–504 mm/yr, depending on which meteorological forcing scenario is used. In our simulations, 

the majority of this recharge comes from the MFR pathway, the ratio of MFR/(MBR + MFR) ranges from 0.85 to 0.99 across 

all simulations performed. Our results are consistent with observational studies (Visser et al., 2018), but there is considerable 

uncertainty related to characterizing the source of mountain system recharge.  380 

Across all simulations, the total MAR (MAR from rain + MAR from snow) is dramatically larger than the MBR. This 

is expected as the MAR is calculated as the potential recharge, and most of it may flow via local flow paths to topographically 

convergent zones where it could be subsequently transpired or discharged as baseflow; while the remainder becomes MBR. 

Figure 7 presents the range of simulated annual recharge from each of the mountain system recharge pathways, for each year 

of equilibrium simulations. For all recharge pathways, the simulated value is impacted by the choice of temperature and 385 

precipitation datasets. Using the average conditions in WY2016 as an example, the temperature datasets used in the 

ConstPVarTA scenarios result in a range of simulated recharge that is 16%, 24%, 3%, and 24% of the mean value from the 5 

scenarios for the MAR from rain, MAR from snow, MBR, and MFR pathways, respectively. The corresponding precipitation 

datasets included in the VarPConstTA scenarios result in a larger range in simulated recharge for all recharge pathways. The 

range of simulated recharge for the VarPConstTA scenarios is 26%, 52%, 240%, and 76% of the mean of 4 scenarios for the 390 

MAR from rain, MAR from snow, MBR, and MFR pathways, respectively. When variability in TA is added to P variability in 

the VarPVarTA scenarios, the range of simulated recharge for each pathway increases to 33%, 70%, 238%, and 91% of the 

mean of the four VarPVarTA scenarios, for the MAR from rain, MAR from snow, MBR, and MFR pathways, respectively. 

While the magnitudes of various recharge pathways are different during the wet (WY2011) and dry (WY2014) years compared 

to WY2016 simulations, the WY2016 patterns are replicated in all three simulation years (Fig. 7).  395 
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Figure 7: Mean and standard deviation of simulated mean MAR from rain and snow, mountain block recharge (MBR), 

and mountain front recharge (MFR) from scenarios in three simulation experiments: ConstPVarTA, VarPConstTA 

and VarPVarTA in the Kaweah Terminus watershed. Results are presented for WY2011 (a), WY2014 (b), and WY2016 

(c). 400 

 To compare the sensitivity of each mountain recharge pathway to changes in meteorological forcings, we calculate 

the ε and S for different recharge pathways in the Kaweah Terminus watershed. Figure 8 displays the average ε and S across 

the four forcing datasets, for each of the four mountain recharge pathways, in each year of equilibrium simulation. During the 

average conditions in WY2016 and wet year of WY2011, MBR and MFR are more sensitive to the precipitation datasets than 

the MAR components. While the rain-MAR is the most sensitive pathway to changes in TA datasets under average conditions, 405 

the sensitivity of snow-MAR is highest under wet conditions. During low precipitation conditions (WY2014), the rain-MAR is 

highly sensitive to changes in both TA and P compared to other recharge pathways due to extreme water limitation and small 

magnitude of recharge from soils. For all three simulated years, the snow-MAR expresses low sensitivity to the TA datasets (|S| 

< 0.2). This result in part is a reflection of the higher mean snow-MAR values that makes changes relative to the mean value 

smaller. Additionally, most of the precipitation uncertainty is in the high elevation zone where temperatures are low across all 410 

forcing datasets, and snow is dominant. As a result, although we might expect snow-MAR to be highly sensitive to changes in 

TA, it is more sensitive to changes in P. Following the same logic, each of the three recharge pathways that is controlled by 

SWE (Snow-derived MAR, MBR, and MFR) is more sensitive to changes in P than changes in TA (Fig. 8). Much higher ε 

values than the S values during the dry and wet years indicate that the recharge pathways are more sensitive to changes in P 

dataset than TA dataset even during the high precipitation year (WY2011), which is a result of the water limited conditions in 415 

California.  

 

Figure 8: Sensitivity to TA and elasticity to P of different mountain system recharge pathways for WY2011 (a,b), 

WY2014 (c,d), and WY2016 (e,f). Each bar represents the mean value for the scenarios in the ConstPVarTA (a,c,e) 

and VarPConstTA (b,d,f) experiments in the Kaweah Terminus watershed. 420 
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 Prior efforts have demonstrated that topography driven subsurface flow is an important process that redistributes 

uncertainty in P forcing throughout the watershed (Schreiner-McGraw and Ajami, 2020). Figure 9 presents the relations 

between TWI and the uncertainty in simulated MAR (σMAR - defined as the standard deviation of recharge across the scenarios 

in each experiment) for the Kaweah Terminus watershed in WY2016. We limit this analysis to the Kaweah Terminus watershed 

because it has the same vegetation type (evergreen forest) and relatively consistent climate conditions to make the TWI a valid 425 

expression of the topographic effect on soil water movement. By limiting the analysis to the mountainous region, the potential 

recharge is equivalent to our definition of MAR. Across all experiments, the uncertainty in MAR increases with TWI because 

topography driven flow moves water into convergent zones via lateral soil and shallow groundwater fluxes. An ANCOVA test 

reveals that the strength of the topographic control on MAR uncertainty is higher for the ConstPVarTA scenarios than the 

VarPConstTA scenarios, as represented by the statistically significant higher slope (Fig. 9a,b). This result, along with higher 430 

soil moisture values (data not shown), suggests that the ET in convergent zones is more energy limited than water limited 

throughout the year, so TA uncertainty creates larger variability in ET than P uncertainty. Supporting this idea, the patterns are 

replicated in the WY2011 and WY2014 datasets as well. Due to the link between ET and potential recharge via soil wetness, 

the variability in ET is reflected in increases in MAR variability. When uncertainty in both TA and P is considered, the slope 

of the TWI and σMAR relation increases, but according to an ANCOVA test, the slope is not significantly different (p<0.05) 435 

than the ConstPVarTA scenarios. The relations between TWI and σMAR are consistent in WY2011 and WY2014 with the 

WY2016, and the VarPVarTA scenarios have a higher slope, but it is not significantly different (p<0.05). Because topography 

driven subsurface flow concentrates soil water in convergent zones, the individual spatial patterns of P and TA uncertainty 

become less important and their uncertainties cancel each other out, creating consistently negative interaction effects in the 

VarPVarTA scenarios. This impact is more pronounced with MAR compared to other variables because MAR is the most 440 

dependent variable on topography driven flow.  
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Figure 9: Scatterplots between the binned values of TWI and the standard deviation of MAR from each of the scenarios 

included in the WY2016 VarPConstTA experiment (a), the ConstPVarTA experiment (b), and the VarPVarTA 

experiment (c) in the Kaweah Terminus watershed. Circles represent the bin average and the bars represent the bin’s 445 

standard deviation. Solid lines present statistically significant (p<0.05) linear regressions. 

 

3.4 Relative Importance of Precipitation and Air Temperature Uncertainty on Simulated Water Budget 

To address research question 2, whether uncertainty in P or TA data impacts the simulated hydrology of a mountain 

watershed, we plot the annual water budget partitioning for the WY2016 with average meteorological conditions. Figure 10a 450 

presents the simulated annual water budget partitioning for the mountainous Kaweah Terminus watershed for all of the 

scenarios in experiments 1, 2, and 3, for WY2016. The Kaweah Terminus watershed is used because it is the largest sub-
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watershed in the domain where accurate streamflow simulations can be ensured through model validation. Variable 

precipitation forcing applied in experiment 1 (VarPConstTA) results in significant changes to the water budget partitioning. 

For all P forcing datasets (ConstTAVarP scenarios), MBR remains the smallest portion of the water budget, while ET composes 455 

the largest portion of the water budget. The largest changes in the water budget partitioning occur in the simulated Q that 

ranges from 28% to 46% of the precipitation. Changes to the TA forcing dataset when the precipitation is constant 

(ConstPVarTA scenarios), result in similar patterns as changes to the P forcing when the temperature is constant. For all TA 

datasets, ET is the largest component of the water budget and MBR is the smallest. The variable TA scenarios result in a smaller 

range of simulated Q (36-45%) than the variable P datasets (28-46%), but a larger range in simulated ET (46-54% for 460 

VarPConstTA and 44-53% for ConstPVarTA). The right-most column in Figure 10a presents the water budget partitioning 

when both TA and P forcing datasets are varied. There is considerable uncertainty in the major water budget components, and 

when both Daymet P and TA are used, the water budget shifts so that ET is no longer the largest component. The ET ranges 

from 39% (Daymet) to 56% (downscaled NLDAS-2) while the Q ranges from 25% (Gridmet) to 44% (Daymet) of the total 

water budget. These ranges are much larger than the range in water budget partitioning caused by modifying P or TA 465 

individually, and suggests that the uncertainty from the individual forcing variables is additive, rather than cancelling each 

other out. Besides P and TA uncertainties, differences in the water budget partitioning of VarPVarTA scenarios are due to non-

linear feedbacks between the spatial patterns of P and TA and subsurface properties, vegetation type, and topography. Although 

the proportion of P that becomes ET and Q varies depending on the annual precipitation amount, this pattern in water budget 

partitioning remains consistent with WY2011 and WY2014 as well. 470 
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Figure 10: (a) Water budget partitioning shown as a fraction of the incoming annual precipitation for the Kaweah 

Terminus watershed during WY2016, and (b) rain/snow partitioning in the Kaweah Terminus watershed for each of 

the scenarios in the three simulation experiments, during WY2016. Fractions are rounded to the nearest 1%. 

 To explain the simulated water budget partitioning during WY2016, Figure 10b presents the proportion of the total 475 

precipitation that falls as snow or rain for each scenario from experiments 1, 2, and 3. Changes to the TA forcing dataset create 

a larger range in the snowfall/P ratio than changes to the P forcing dataset (snowfall/P ratio of 38-43% in VarPConstTA and 

38-50% in VarTAConstP). A close inspection of the charts presented in Figure 10 suggests that the snow/rain ratio impacts 

the annual water budget partitioning, and Figure 10a-c demonstrates this conclusion by presenting relations between the ratio 

of snowfall/P and the ET/P, MBR/P, and Q/P ratios. Each point in Figure 11 represents the mean value for each scenario in 480 

experiments 1, 2, and 3 for WY2016. Statistically significant linear relations (p<0.05) demonstrate that an increase in the 

proportion of P that falls as snow, decreases the ET/P ratio and increases the Q/P ratio. As the ConstPVarTA scenarios create 

a larger range in snowfall/P ratio than the VarPConstTA scenarios (Figure 10b), this raises the question of why the 

ConstPVarTA scenarios do not create a larger range in simulated MBR or Q? Although there are significant relations (p < 0.05) 

between the Snowfall/P ratio and water budget partitioning, the relations are weak with r2 values between 0.17 and 0.35. Figure 485 

11d-f presents the relations between the total annual snowmelt (Sm) and the ET/P, MBR/P, and Q/P ratios. The Sm has stronger 

relations with the water budget partitioning than the snowfall/P ratio with r2 values of 0.68-0.79. In the mountainous study 
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watershed, the total volume of snowmelt is more dependent on P than TA because the high elevation regions where the majority 

of the precipitation falls remain below freezing for most of the wet season across all air temperature datasets. The increased 

variability in total snowmelt results in the larger changes to Q and MBR caused by the VarPConstTA scenarios.  490 

 

Figure 11: Scatterplots illustrating the relation between the annual snow/precipitation ratio and ET/P (a), MBR/P (b), 

and Q/P (c) ratios for WY2016. We also present the relation between the total annual snowmelt (Sm) and the ET/P (d), 

MBR/P (e), and Q/P (f) ratios. Each point represents the value for the Kaweah Terminus watershed from each of the 

forcing scenarios in experiments 1-3. Black lines represent statistically significant (p<0.05) linear relationships.  495 

In the Mediterranean climate of California, the distinct dry season creates challenges for water management, making 

the temporal patterns in simulated water budget variability of interest. Figure 12 presents the monthly time series of ET, MAR, 

and Q from the Terminus watershed for the base case scenario (solid lines) with the range of simulated values (dashed lines), 

as well as the relative range for each (black bars), during WY2016. The variable P forcings, from the VarPConstTA scenarios, 

result in a relatively consistent monthly ET-based Rr throughout the year. On average, the ET-based Rr is 0.2 throughout the 500 

year and January (0.3) and February (0.1) are the months with the largest discrepancies. Changes in the P forcing dataset cause 

larger variability in the Rr for the Q and MAR, but a seasonal pattern does not emerge. Scenarios with altered TA, however, 

display a more prominent annual trend in the Rr of simulated ET and Q. The ET-based Rr is considerably higher in November, 

December, and January for the ConstPVarTA scenarios (average Rr is 0.5), compared to 0.07 for the rest of the year. This 

increased in ET-based Rr during the winter months of the ConstPVarTA scenarios, is consistent across all three simulation 505 

years. This finding is striking because the divergence in the TA forcing datasets is primarily found during the summer months 

(DOY ~150 – 230) (Fig. 3). We attribute this result to the fact that ET does not occur if the temperatures are below freezing, 
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and TA variability at a given location may result in below freezing temperature for one TA dataset, but not another. The Q-

based Rr increases during March through July consistent with the snowmelt period and increases in TA variability (Fig. 3). 

During the dry WY2014, the Q-based Rr increases between March and May as the lower snowpack shortens the snowmelt 510 

period when streamflow is high. For the wet WY2011, the Q-based Rr remains high through August as the wetter conditions 

result in more streamflow throughout the summer period. For VarPVarTA experiments, in all three years, the MAR-based Rr 

varies throughout the year without consistent patterns emerging.  

 

Figure 12: Monthly values of ET, Q, and MAR from the Kaweah Terminus watershed are presented for each of the 515 

three experiments (a) VarPConstTA, (b) ConstPVarTA, and (c) VarPVarTA for WY2016. The solid lines represent the 

values from the base case scenario while the dashed lines present the range of values from the scenarios included in 

each experiment. Bars represent the relative range (Rr), defined as the range of simulated values for each experiment 

divided by the monthly value from the base case. 

3.5 Sensitivity and Elasticity of Simulated Water Budget to Precipitation or Air Temperature  520 

 To determine the relative sensitivity of the simulated annual hydrologic budget to precipitation and air temperature 

forcings, we present the elasticity (ε) and sensitivity (S) of water budget components to changes in P or TA, respectively. Figure 

13 presents the ε and S calculated for each meteorological forcing scenario in experiments 1 and 2, relative to the base case, 

for the water budget components simulated using the average WY2016 conditions. In general, results suggest that the water 

budget is very sensitive to changes in forcing. Elasticities are larger than 1 for most datasets and variables such as SWE, dS, 525 

potential recharge (R), and Q at the Terminus dam indicate that the simulated variables exhibit a larger percent change than 

the percent change in precipitation. The sensitivity of the simulated water budget to changes in temperature is also quite high, 

especially when the Gridmet and downscaled NLDAS-2 datasets are used (Fig. 13b). The only hydrologic variables that are 
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not heavily impacted by changes in P or TA are the land surface temperature (Tg) and root zone volumetric water content (ϴ). 

At the annual scale, the result of ϴ is not surprising because the soil moisture is controlled by both ET and R, where an increase 530 

in one can be compensated by a decrease in the other flux. Additionally, variability of these fluxes is highest at a daily compared 

to the annual scale. We believe that lower sensitivity of Tg is related to the simplification made to represent the ground heat 

flux calculation in CLM. To reduce computational time, many land surface models, including CLM, only incorporate heat 

transport via conduction and this simplification decouples heat transport from soil moisture transport (Kollet et al., 2009). 

Overall, the water budget exhibits high ε and S to both changes in P and TA. This behaviour does not necessarily mean that 535 

the magnitude of P and TA effects on the water budget are equal. It means that the range of uncertainty contained in the 

meteorological forcing datasets for both P and TA results in similar amounts of uncertainty in the simulated water budget. 

 

Figure 13: Elasticity (a) and sensitivity (a) of simulated hydrologic variables evapotranspiration (ET), change in 

subsurface storage (dS), potential recharge (R), land surface temperature (Tg), root zone soil moisture (ϴ), snow water 540 

equivalent (SWE), and streamflow (Q), to variability in precipitation and air temperature for WY2016. Each bar 

represents the average value from the Kaweah River watershed, except streamflow measured at the Kaweah Terminus 

dam. Elasticities were calculated using the scenarios from the VarPConstTA experiment and sensitivities were 

calculated using the scenarios from the ConstPVarTA experiment.  
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3.6 Interaction Effects of Combined Changes to Precipitation and Air Temperature on the Water Budget 545 

 Understanding the individual impacts of uncertainty in TA and P forcings provides a foundation for how to manage 

uncertainty in meteorological forcings. But, as climate change is expected to alter both air temperature and precipitation, it is 

important to understand how uncertainty in both datasets combines to alter the simulated water budget. To test the extent to 

which the two sources of uncertainty superimpose, we compare the differences between hydrologic variables simulated with 

the base case scenario to simulations that alter both TA and P (VarPVarTA, experiment 3). Initially, we use WY2016 550 

simulations to calculate these sensitivities for the average value of each hydrologic variable over the Kaweah River watershed, 

while Q is represented at the Kaweah Terminus dam. Fig. 14 presents the difference between the estimated and actual changes 

caused by the VarPVarTA simulations for each of the three simulation years. The difference can be interpreted as the strength 

of the interaction effects, i.e. a difference of 0.05 indicates that the interaction effects between TA and P increased the value 

of the variable, v, by 5%. Generally, the differences between estimated and simulated values are quite small, suggesting that 555 

the interaction effects between TA and P uncertainty are small. Indeed, the majority of interaction effects are between -5% and 

5%. The primary exception to this pattern is found in the variables related to groundwater, dS and R. The dS is the simulated 

variable with the largest variability in the interaction effects. For example, in WY2016 the Gridmet dataset results in interaction 

effects of -40% while the PRISM dataset results in interaction effects of 3% in changes in subsurface storage. With the 

exception of the PRISM dataset, the interaction effects for dS are all negative (Fig. 14c). Additionally, across all four datasets 560 

the interaction effects decrease R, with an average value of -5.1%. In both WY2011 and WY2014, the combination effects of 

precipitation and air temperature are largest for dS and R. This response in R, and subsequently dS, is expected as groundwater 

recharge is controlled by infiltration, ET, and soil moisture redistribution, and all of these processes are impacted by both P 

and TA creating a highly non-linear response. This non-linearity can be exacerbated by topography driven flow that 

concentrates soil moisture and groundwater in convergent zones.  565 
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Figure 14: The difference between the predicted and actual changes from combined variability in P and TA for WY2011 

(a), WY2014 (b), and WY2016 (c). 570 

 

3.8 Dependency of Results on Other Uncertainty Sources  

 In this study, we use a physically-based, integrated hydrologic model, ParFlow.CLM, to quantify the impact of 

uncertainty in meteorological forcings on the simulated groundwater. However, the generality of results are influenced by 

multiple factors as described below. The results from this study are applicable to integrated surface water – groundwater 575 

models that implement the 3D Richard’s equation to simulate variably saturated subsurface flow across the entire subsurface, 

and have a fully integrated overland flow simulator. Previous studies have found that hydrologic sensitivities of land surface 

models can vary widely based on the model used (Vano et al., 2012). The land surface model we employ, CLM, applies a 

threshold temperature of 2.5 °C, below which precipitation falls as snow, which could have implications for our results. 

However, we expect its impact to be minimal, as most of the snow falls when the air temperature is much less than 2.5 °C. 580 

Models with different rain/snow partitioning schemes, however, might find different sensitivities than what we describe here.  

Additionally, model parameterization is expected to affect the uncertainty to meteorological forcings. Previous  results 

showed that three different conceptual models of the saprolite layer did not systematically impact the simulated groundwater 

response to precipitation variability (Schreiner-McGraw and Ajami, 2020). However, the simulated MFR depends on the 

subsurface permeability values assigned to the Central Valley aquifer in the piedmont slope region. Our hydraulic parameter 585 

values are based on drill core data and a previously calibrated hydrologic model (Faunt, 2009), but hydraulic conductivity  

values may be too high causing overestimation of simulated MFR (Brush et al., 2013). Historical observations under pre-
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development conditions suggest that the Kaweah River branched into several smaller distributaries, some of which did not 

flow all the way to the historic Tulare Lake (Anon, 2007; Hall, 1886). These observations suggest that our MFR estimates 

from the Kaweah River are reasonable, but are likely overestimated due to coarse horizontal model resolution resulting in 590 

streambeds that are unreasonably wide and potentially overestimated hydraulic conductivity of the Central Valley sediments. 

Conversely, the coarse resolution of the model may result in an underestimation of MFR via small channels and first-order 

watersheds located on the piedmont slope (Schreiner-McGraw and Vivoni, 2018).  

 In addition to the hydrologic model structure, the selection of study domain will affect our results, and we would 

expect different sensitivities depending on the topography and vegetation type in other regions. Despite site specific nature of 595 

our study, the evergreen forest in our study watershed is broadly representative of evergreen forests in the mountainous, 

Western United States. In our simulations, the weathered bedrock zone is the most hydrologically active region of the 

subsurface, which has been observed as a feature of the Sierra Nevada (Holbrook et al., 2014). This is a common pattern in 

other mountainous regions with low-permeability bedrock (Pfister et al., 2017; Jencso et al., 2009; Spencer et al., 2019). 

Previous work in mountain regions with low-permeability bedrock has found that storage can respond quickly to 600 

meteorological conditions as a result of the low-permeability and low storage capacity (Pfister et al., 2017),  and would impact 

the overall hydrologic response. Further research to examine how meteorological forcing uncertainty propagates into 

groundwater systems across a range of bedrock conditions is warranted.   

4 Summary 

 In this paper, we examine the propagation of uncertainty in the meteorological forcings, precipitation and air 605 

temperature, into groundwater recharge simulated with the integrated hydrologic model, ParFlow.CLM. We use the Kaweah 

River watershed as a study domain to (1) quantify groundwater recharge from the mountain system, and assess which recharge 

pathway is most sensitive to meteorological variability under a range of hydroclimatic conditions (wet, dry and average), (2) 

determine whether uncertainty contained in common P or TA gridded datasets has a larger impact on the simulated water 

budget, and (3) evaluate the strength of interaction effects when both P and TA are uncertain. In the course of this analysis, we 610 

perform three sets of model experiments by altering forcing datasets to compare to our base case scenario forced with the mean 

P and mean TA for three distinct hydroclimatic conditions. These experiments include variable P constant TA (VarPConstTA), 

constant P variable TA (ConstPVarTA), and variable P variable TA (VarPVarTA). 

 Given that the P datasets differ in their total annual precipitation by up to 30%, and variability in the spatial 

distribution of precipitation is large, one might expect that the choice of P dataset would be more important than the choice of 615 

TA dataset. Our analysis revealed that in a mountainous system, the impact of uncertainty in gridded P datasets is similar to 

the impact of uncertainty in available TA datasets. The range of values in the simulated water budget partitioning for the 

VarPConstTA scenarios and the ConstPVarTA scenarios are comparable. This result is attributed to the impact of air 

temperature on snow processes. Variability in TA creates variability in the partitioning of precipitation into rain and snow. This 

partitioning alone impacts the water budget where higher ratios of snow/rain results in more potential recharge. Additionally, 620 
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air temperature impacts the snowmelt rate and the total amount of snowmelt is a strong control of the water budget partitioning, 

with higher snowmelt leading to less ET and more potential recharge, which is discharged from the mountain system into 

streamflow. We calculate the sensitivity and elasticity of changes in the water budget to changes in TA and P, respectively. 

We find that groundwater recharge and storage changes are highly sensitive to both changes in TA and P. Our results 

demonstrate that the high levels of uncertainty in both TA and P gridded datasets have profound impacts on the water budget 625 

simulated by an integrated hydrologic model where surface and subsurface processes are coupled. 

 The uncertainty in the simulated water budget caused by the separate uncertainty in TA and P forcing datasets is 

largely superimposed when the model is forced with variable TA and variable P. For most water budget components, the 

interaction effects of TA and P uncertainty reduce the combined impact of uncertainty by less than 5%, i.e. the variability in 

the simulated water budget caused by combined changes to TA and P forcing is within 5% of the sum of the variability from 630 

individual changes. The exception to this result is found in the groundwater system. Potential groundwater recharge and 

changes in subsurface storage exhibit larger interaction effects than the surface water budget. This is attributed to the role of 

topography in controlling lateral subsurface flow in the shallow groundwater system. The uncertainty in groundwater recharge 

rates is highest in regions of convergent topography for all three experiments. But the uncertainty in these regions is much 

higher when variable TA forcings are used. This is because the topography concentrates water in these locations so that ET 635 

becomes energy limited. As a result, variability in TA creates more variable ET and recharge.  

Finally, all of the recharge pathways present in the mountainous Kaweah watershed, MAR, MBR, and MFR, are more 

sensitive to changes in P than changes in TA, and these results are consistent across the three meteorological conditions. It 

should be noted, however, that comparisons are difficult due to different units for P and TA sensitivities. The higher sensitivity 

to P dataset is because these pathways largely depend on snowmelt, and precipitation is concentrated in the winter at high 640 

elevation regions where the air temperature remains well below freezing during this time period. The MAR pathway is less 

sensitive to changes in P than the other pathways, particularly when MAR is derived from rainfall. Our simulations suggest 

that mountain system recharge to the Central Valley aquifer is a significant portion of the water budget regardless of the 

meteorological forcing dataset used. Indeed, during an approximately average precipitation year, MFR contributes between 

186 and 504 mm/yr of recharge from the Kaweah Terminus watershed to the Central Valley aquifer, and a large fraction of 645 

the Kaweah Terminus watershed water budget (9-72%, depending on the year and forcing datasets used) becomes MFR. In 

our simulations, MFR is the primary pathway via which the mountain system recharges the Central Valley aquifer, accounting 

for 85-99% of the total recharge. The high uncertainty in subsurface geologic structure and parameters, however, creates large 

uncertainties in the quantities of MBR. Overall, the results from this study highlight the importance of uncertainty in forcing 

datasets when simulating the groundwater response to climate change. The magnitude of simulated changes in the groundwater 650 

recharge due to meteorological forcing uncertainty highlights the need for hydrologists to improve gridded datasets to improve 

our understanding of how meteorological variability propagates into groundwater in topographically complex mountain 

systems.  
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Appendix 1: 655 

 Figure A1 displays the estimated changes to the simulated hydrologic variables (vΔPΔTAest), relative to the base case 

scenario, if the impact of uncertainty from the ConstPVarTA and VarPConstTA scenarios were additive. Fig. A1 displays the 

estimated (a) and actual changes (b) caused by the VarPVarTA simulations, and Fig. A1c presents the difference between the 

estimated and actual changes. The difference can be interpreted as the strength of the interaction effects, i.e. a difference of 

0.05 indicates that the interaction effects between TA and P increased the value of the variable, v, by 5%. 660 

 

Figure A1: Demonstration of the method to calculate the interaction effects between P and TA uncertainty using 

WY2016. (a) The estimated relative difference in the hydrologic variables evapotranspiration (ET), change in 

subsurface storage (dS), potential recharge (R), land surface temperature (Tg), root zone soil moisture (ϴ), snow water 

equivalent (SWE), and streamflow (Q), if the effects of air temperature and precipitation changes are linearly additive. 665 

(b) The relative difference between the base case and each of the VarPVarTA scenarios. (c) The difference between the 

predicted and actual changes from combined variability in P and TA. 
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