Response to Reviewer #1:

First of all, we would like to thank reviewer #1 for his/her comments on the paper. Their effort has helped us to improve the manuscript and we appreciate you agreeing to review the paper during these challenging times. Here, we provide point-by-point responses to each of reviewer 1's comments.

	not feasible to allow a 15-30 year simulation reach equilibrium because of the computational demands of the model. Therefore, we perform simulations for the select dry and wet water years at equilibrium conditions to assess generality of our results. While using GRACE data is ideal for confirming changes in terrestrial water storages, the resolution of GRACE data is too coarse for the study basin. Furthermore, we do not include irrigation and water management options in this version of the model so it is not possible to assess the impacts of forcing uncertainty over the entire basin.
Additionally, how are the results of this study dependent on the choice of the hydrologic model? As shown by Vano et al, 2012 (cited by this manuscript too) depending on the choice of hydrologic model sensitivity of hydrologic variables (such as runoff) to changes in precipitation and temperature can vary substantially.	We agree that the choice of hydrologic model will impact our results. In the revised manuscript, we made it clear that our results are applicable to integrated surface water – groundwater models that implement the 3D Richard's equation to simulate variably saturated subsurface flow across the entire subsurface, and have a fully integrated overland flow simulator. Of course, different model physics will result in different sensitivities. However, we are using the most physically-based approach for simulating surface water-groundwater processes, and have done detailed model validation to make sure major hydrologic processes are captured by the model. Ideally, one should perform such simulations using different model structures to assess the impact of all uncertainty sources on simulated hydrologic response. However, such model intercomparison beyond the scope of this study. We have added a new section to the discussion, section 3.7, to discuss the impact of the hydrologic model and model parameterization on our results. On L571 we state:

"In this study, we use a physically-based, integrated hydrologic model, ParFlow.CLM, to quantify the impact of uncertainty in meteorological forcings on the simulated groundwater. However, the generality of results are influenced by multiple factors as described below. The results from this study are applicable to integrated surface water groundwater models that implement the 3D Richard's equation to simulate variably saturated subsurface flow across the entire subsurface, and have a fully integrated overland flow simulator. Previous studies have found that hydrologic sensitivities of land surface models can vary widely based on the model used (Vano et al., 2012).

We also explain how model parameterization might affect our simulated mountain system recharge. On L580 we state:

"Additionally, model parameterization is expected to affect the uncertainty to meteorological forcings. Previous results showed that three different conceptual models of the saprolite layer did not systematically impact the simulated groundwater response to precipitation variability (Schreiner-McGraw and Ajami, 2020). However, the simulated MFR depends on the subsurface permeability values assigned to the Central Valley aquifer in the piedmont slope region. Our hydraulic parameter values are based on drill core data and a previously calibrated hydrologic model (Faunt, 2009), but hydraulic conductivity values may be too high causing overestimation of simulated MFR (Brush et al., 2013). Historical observations under predevelopment conditions suggest that the Kaweah River branched into several smaller distributaries, some of which did not flow all the way to the historic Tulare Lake (U.S. EPA, 2007; Hall, 1886). These observations suggest that our MFR estimates from the Kaweah River are reasonable, but are likely overestimated due to coarse horizontal model

	resolution resulting in streambeds that are
	uproscopably wide and potentially
	unreasonably while and potentially
	overestimated hydraulic conductivity of the
	Central Valley sediments. Conversely, the
	coarse resolution of the model may result in
	an underestimation of MFR via small
	channels and first-order watersheds located
	on the piedmont slope (Schreiner-McGraw
	and Vivoni, 2018)."
Finally, it also should be at least discussed	Ves this is a good point Model
how the results of this study may depend on	noremeterization and geologic setting are
the shoise of the study demain	likely glave main gels in her yr setting are
the choice of the study domain.	inkery play a major role in now uncertainty in
	meteorological forcings will propagate into
	groundwater. In the revised manuscript, we
	expanded upon this discussion. For example,
	our simulations are performed in a mountain
	region underlain by fractured, low
	permeability bedrock. Previous work has
	shown that groundwater in these regions
	responds quickly to changes in precipitation
	(Distant et al. 2017) which would likely
	(Prister et al., 2017), which would likely
	impact the results. While the role of
	uncertainty in precipitation forcing is
	discussed extensively, our main goal here was
	to highlight the role of temperature in
	addition to precipitation for regions with high
	relief. Of course, the obtained sensitivities in
	different mountain settings are impacted by
	the quality of meteorological forcings
	topography, vagatation and subsurface
	shows staristics
	characteristics.
	On L592 of the revised manuscript we state:
	"In addition to the hydrologic model
	structure, the selection of study domain will
	affect our results, and we would expect
	different sensitivities depending on the
	topography and vegetation type in other
	regions. Despite site specific nature of our
	study the overgreen forest in our study
	study, the evergreen forest fill our study
	watersned is broadly representative of
	evergreen forests in the mountainous,
	Western United States. In our simulations, the
	weathered bedrock zone is the most
	hydrologically active region of the

	subsurface, which has been observed as a feature of the Sierra Nevada (Holbrook et al., 2014). This is a common pattern in other mountainous regions with low-permeability bedrock (Jencso et al., 2009; Pfister et al., 2017; Spencer et al., 2019). Previous work in mountain regions with low-permeability bedrock has found that storage can respond quickly to meteorological conditions as a result of the low-permeability and low storage capacity (Pfister et al., 2017), and would impact the overall hydrologic response. Further research to examine how meteorological forcing uncertainty propagates
	into groundwater systems across a range of bedrock conditions is warranted."
I am surprised a bit about the differences in the simulated variables generated using GridMET, NLDAS and PRISM datasets. As described in Abatzoglou 2013, GridMET is based on the NLDAS-2 and PRISM dataset. Please at least discuss why this might be the case.	We agree that it is worth further highlighting these differences in the paper. We believe that the differences among products are caused by the fact that we are using different versions of PRISM and NLDAS-2 than the version used in Abatzoglou (2013) paper to generate the Gridmet dataset. To build the Gridmet dataset, they used the 800 m resolution version of PRISM, while we used the freely available 4 km resolution of PRISM data. Additionally, we used a downscaled version of the NLDAS-2 dataset, called the Princeton CONUS Forcing dataset with ~3 km resolution. As described in the paper, the Princeton dataset is the downscaled version of the original NLDAS-2 data with ~12 km resolution and the rainfall data is updated by using the radar products. We believe that the differences in the resolution of the dataset and interpolation approach have caused the differences in precipitation forcing datasets.
	"Differences in mean annual daily temperature from the mean temperature
	dataset range between -8 to 8 °C (Fig. 2b-f). Differences in mean daily temperature among different forcing datasets exist irrespective of the wetness condition (wet vs dry or average

	year), and the ranges are larger for WY2011
	(Fig. 3 a,c,e). Considerable uncertainty exists
	in the daily and annual totals of precipitation
	from the different gridded datasets as well
	(Fig. 3 b,d,f). The differences between the
	gridded products in our study are surprising,
	especially considering that Gridmet is based
	on the NLDAS-2 and PRISM datasets. We
	believe that the differences among products
	are caused by contrasting spatial resolutions.
	For example, Abatzoglou (2013) used the 800
	m PRISM data to generate the Gridmet
	dataset while we used the freely available
	PRISM data at 4 km resolution Additionally
	we used a downscaled version of the
	NI DAS-2 dataset called the Princeton
	CONUS Forcing dataset at ~3 km resolution
	with the undated precipitation data using the
	Stage IV and Stage II radar products. We
	believe that the differences in the resolution
	of the datasets and interpolation approaches
	by a caused the differences in precipitation
	and air temperature forcing datasets "
Page 1 line 28: "high qualify" should be	Thank you for pointing this out, we have
"high quality"	fixed this type
Page 8 217-219 how does this chosen	To be clear, this threshold was not chosen by
threshold of 2.5 deg C for partition of	us it is the threshold that the CI M model
precipitation into rainfall and snow affect the	uses to partition precipitation into rainfall and
results of this analysis especially in the mid	snow. That being said, this threshold likely
to low elevation parts of the domain?	impacts the results. However, we did not
to low elevation parts of the domain?	assess its impacts
	assess its impacts.
	In the mid to low elevation portions of the
	domain where precipitation can currently fall
	as either rain or snow, the snow malts quickly
	and snowpack does not accumulate due to
	higher temperatures in mid elevation ragions
	ingher temperatures in mid-elevation regions.
	On L576 of the revised manuscript we state:
	"The land surface model we apploy CLM
	applies a threshold temperature of 2.5 °C
	below which precipitation falls as snow
	which could have implications for our results
	when could have implications for our results.
	Howayar wa avport its import to be minimal
	However, we expect its impact to be minimal,

	temperature is much less than 2.5 °C. Models with different rain/snow partitioning schemes, however, might find different sensitivities than what we describe here."
Page 22, lines 496-498, I am not sure why land surface temperature and soil moisture would not be affected by the choice of forcings, wouldn't changes in ET affect both? Please clarify.	Yes, changes in ET does affect both land surface temperature and soil moisture. At the annual scale, however, changes in soil moisture are small because changes in ET can be balanced out by changes in potential recharge and lateral soil moisture redistribution. In the revised manuscript, we clarified the text in this section.
	We believe that lower sensitivity to land surface temperature is partly related to the simplification made to represent the ground heat flux calculation in CLM. Many land surface models, including CLM, only incorporate heat transport via conduction and this simplification decouples heat transport from soil moisture transport. Including heat convective transport through soil moisture distribution will increase computational time. While the ParFlowE model (Kollet et al., 2009) incorporates these processes, we did not use this version of ParFlow in our study. In the revised manuscript we state on L528:
	"At the annual scale, the result of Θ is not surprising because the soil moisture is controlled by both ET and R, where an increase in one can be compensated by a decrease in the other flux. Additionally, variability of these fluxes is highest at a daily compared to the annual scale. We believe that lower sensitivity of Tg is related to the simplification made to represent the ground heat flux calculation in CLM. To reduce computational time, many land surface models, including CLM, only incorporate heat transport via conduction and this simplification decouples heat transport from soil moisture transport (Kollet et al., 2009)."

References:

Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological

applications and modelling. *International Journal of Climatology*, *33*(1), 121–131. https://doi.org/10.1002/joc.3413

Kollet, S.J., Cvijanovic, I., Schüttemeyer, D., Maxwell, R.M., Moene, A.F. and Bayer, P. (2009), The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface. *Vadose Zone Journal*, 8: 846-857. https://doi.org/10.2136/vzj2009.0005

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J. (2017). Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. *Hydrological Processes*, 31(10), 1828–1845. https://doi.org/10.1002/hyp.11134

Response to Reviewer #2:

First of all, we would like to thank reviewer #2 for his/her comments on the paper. Their effort has helped us to improve the manuscript and we appreciate you agreeing to review the paper during these challenging times. Here, we provide point-by-point responses to each of reviewer 2's comments.

Reviewer 2 comments	Author response
What could be added is a discussion of how	We agree with the reviewer comment here,
the model parameterisation affects the	and reviewer #1 had similar comments. In our
conclusions. Such a discussion is started on	previous work (Schreiner-McGraw and
page 14 but could be more comprehensive.	Ajami, 2020), we performed a limited set of
	simulations to test the impact of saprolite
	layer parameterization, the most
	hydrologically active zone in the subsurface,
	on simulated water budget. The
	parameterization of this geologic layer did not
	systematically impact the propagation of
	uncertainty in precipitation into the
	groundwater. Please see figure 12 in
	Schreiner-McGraw and Ajami, 2020.
	Our previous experiments were limited in
	scope by the high computational demands of
	running ParFlow.CLM. Unfortunately, that
	limitation applies to this current experiment
	as well and has prevented us from being able
	to use parameter uncertainty approaches such
	as the Generalized Likelihood Uncertainty
	Estimation (GLUE) to evaluate the full
	impact of model parameterization on our
	results.
	Model parameterization and geologic setting,
	however, likely play a role in how uncertainty
	in meteorological forcings will propagate into
	groundwater. In the revised manuscript, we
	will expand upon this discussion. For
	example, our simulations are performed in a
	mountain region underlain by fractured, low
	permeability bedrock. Previous work has
	shown that groundwater in these regions
	responds quickly to changes in precipitation
	(Pfister et al., 2017), and would likely impact
	the results.

	In the revised manuscript we have included a discussion section (section 3.7) to discuss the role of model domain, model selection, and model parameterization on our results.
In terms of presentation, although the paper is	Thank you for the reminder. We will aim to
and the flow of arguments could be	manuscript. We have improved our topic
sharpened.	sentences for paragraphs to highlight the
	purpose of each discussion, and help with the
	flow of arguments. We have also removed
	several repetitive sentences. Finally, we
	removed what was Figure 11, and its
	associated discussion because we did not
	believe they were essential to our findings.

References:

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J. (2017). Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. *Hydrological Processes*, 31(10), 1828–1845. https://doi.org/10.1002/hyp.11134

Schreiner-McGraw, A.P. and Ajami, H. 2020. Impact of uncertainty in precipitation datasets on the hydrologic budget of an integrated hydrologic model in mountainous terrain. *Water Resources Research*, 56(12), doi: 10.1029/2020WR027639