
Response to Reviewer #1: 

 

First of all, we would like to thank reviewer #1 for his/her comments on the paper. Their effort 

has helped us to improve the manuscript and we appreciate you agreeing to review the paper 

during these challenging times. Here, we provide point-by-point responses to each of reviewer 

1’s comments.  

 

Reviewer 1 comments Author response 

It needs to be demonstrated how/if the results 

of this study depend on the single year of the 

simulation. Why not extend the study period 

to include the last 30 years or so? All of the 

forcings used in this study go back to early 

1980s. Even MODIS goes back to the early 

2000s. A longer period of analysis can also 

help address the question of impact of forcing 

uncertainties on the long-term changes in 

mountain system recharge, which would be of 

interest given the focus on global warming 

driven changes in precipitation and 

temperature. A longer analysis period could 

also allow for independent verification of the 

mountain system recharge simulations such as 

by using GRACE based estimates of recharge, 

which goes back to early 2000s. This could 

help identify the set of atmospheric forcings 

which yield the most realistic estimates of the 

recharge. 

You are correct, thank you. The model 

requires hourly forcing data and the spatially 

downscaled, hourly forcing that we use 

(Princeton CONUS Forcing) is only available 

from 2002, and other forcing data such as the 

original NLDAS-2 would be too coarse for 

this analysis. During the 2000-2019 period, 

California suffered from the worst drought in 

recorded history. Our initial thoughts were 

that if we used this period, it would likely bias 

the model sensitivity results based on these 

extreme years. But, as you state, it would 

make the findings more robust.  

 

To address reviewer comment in the revised 

manuscript, we have added two more years of 

simulation in addition to the water year (WY) 

2016 originally selected. Please note that 

(WY) 2016 approximately represents average 

precipitation and air temperature in the 

watershed. To assess the impact of 

hydroclimatic condition on our results, we 

performed simulations for WY2014 and 

WY2011, representing extreme dry and wet 

years in the catchment, respectively. Similar 

to our approach for WY2016, we evaluated 

model simulation results at equilibrium to 

remove the impact of initial condition bias on 

sensitivity analysis results. Integrated 

hydrologic models like ParFlow.CLM model 

are sensitive to initial conditions particularly 

for subsurface storages due to dynamic 

interactions between the subsurface and land 

surface fluxes. As a result, we chose to 

analyze simulations that had reached dynamic 

equilibrium conditions with respect to 

subsurface storages for each water year. It is 



not feasible to allow a 15-30 year simulation 

reach equilibrium because of the 

computational demands of the model. 

Therefore, we perform simulations for the 

select dry and wet water years at equilibrium 

conditions to assess generality of our results.  

 

While using GRACE data is ideal for 

confirming changes in terrestrial water 

storages, the resolution of GRACE data is too 

coarse for the study basin. Furthermore, we 

do not include irrigation and water 

management options in this version of the 

model so it is not possible to assess the 

impacts of forcing uncertainty over the entire 

basin.    

Additionally, how are the results of this study 

dependent on the choice of the hydrologic 

model? As shown by Vano et al, 2012 (cited 

by this manuscript too) depending on the 

choice of hydrologic model sensitivity of 

hydrologic variables (such as runoff) to 

changes in precipitation and temperature can 

vary substantially. 

We agree that the choice of hydrologic model 

will impact our results. In the revised 

manuscript, we made it clear that our results 

are applicable to integrated surface water – 

groundwater models that implement the 3D 

Richard’s equation to simulate variably 

saturated subsurface flow across the entire 

subsurface, and have a fully integrated 

overland flow simulator. Of course, different 

model physics will result in different 

sensitivities. However, we are using the most 

physically-based approach for simulating 

surface water-groundwater processes, and 

have done detailed model validation to make 

sure major hydrologic processes are captured 

by the model. Ideally, one should perform 

such simulations using different model 

structures to assess the impact of all 

uncertainty sources on simulated hydrologic 

response. However, such model 

intercomparison beyond the scope of this 

study.   

 

We have added a new section to the 

discussion, section 3.7, to discuss the impact 

of the hydrologic model and model 

parameterization on our results. On L571 we 

state: 

 



“In this study, we use a physically-based, 

integrated hydrologic model, ParFlow.CLM, 

to quantify the impact of uncertainty in 

meteorological forcings on the simulated 

groundwater. However, the generality of 

results are influenced by multiple factors as 

described below. The results from this study 

are applicable to integrated surface water – 

groundwater models that implement the 3D 

Richard’s equation to simulate variably 

saturated subsurface flow across the entire 

subsurface, and have a fully integrated 

overland flow simulator. Previous studies 

have found that hydrologic sensitivities of 

land surface models can vary widely based on 

the model used (Vano et al., 2012). 

 

We also explain how model parameterization 

might affect our simulated mountain system 

recharge. On L580 we state: 

 

“Additionally, model parameterization is 

expected to affect the uncertainty to 

meteorological forcings. Previous  results 

showed that three different conceptual models 

of the saprolite layer did not systematically 

impact the simulated groundwater response to 

precipitation variability (Schreiner-McGraw 

and Ajami, 2020). However, the simulated 

MFR depends on the subsurface permeability 

values assigned to the Central Valley aquifer 

in the piedmont slope region. Our hydraulic 

parameter values are based on drill core data 

and a previously calibrated hydrologic model 

(Faunt, 2009), but hydraulic conductivity  

values may be too high causing 

overestimation of simulated MFR (Brush et 

al., 2013). Historical observations under pre-

development conditions suggest that the 

Kaweah River branched into several smaller 

distributaries, some of which did not flow all 

the way to the historic Tulare Lake (U.S. 

EPA, 2007; Hall, 1886). These observations 

suggest that our MFR estimates from the 

Kaweah River are reasonable, but are likely 

overestimated due to coarse horizontal model 



resolution resulting in streambeds that are 

unreasonably wide and potentially 

overestimated hydraulic conductivity of the 

Central Valley sediments. Conversely, the 

coarse resolution of the model may result in 

an underestimation of MFR via small 

channels and first-order watersheds located 

on the piedmont slope (Schreiner-McGraw 

and Vivoni, 2018).” 

Finally, it also should be at least discussed 

how the results of this study may depend on 

the choice of the study domain. 

Yes, this is a good point. Model 

parameterization and geologic setting are 

likely play a major role in how uncertainty in 

meteorological forcings will propagate into 

groundwater. In the revised manuscript, we 

expanded upon this discussion. For example, 

our simulations are performed in a mountain 

region underlain by fractured, low 

permeability bedrock. Previous work has 

shown that groundwater in these regions 

responds quickly to changes in precipitation 

(Pfister et al., 2017), which would likely 

impact the results. While the role of 

uncertainty in precipitation forcing is 

discussed extensively, our main goal here was 

to highlight the role of temperature in 

addition to precipitation for regions with high 

relief. Of course, the obtained sensitivities in 

different mountain settings are impacted by 

the quality of meteorological forcings, 

topography, vegetation and subsurface 

characteristics.   

 

On L592 of the revised manuscript we state: 

 

“In addition to the hydrologic model 

structure, the selection of study domain will 

affect our results, and we would expect 

different sensitivities depending on the 

topography and vegetation type in other 

regions. Despite site specific nature of our 

study, the evergreen forest in our study 

watershed is broadly representative of 

evergreen forests in the mountainous, 

Western United States. In our simulations, the 

weathered bedrock zone is the most 

hydrologically active region of the 



subsurface, which has been observed as a 

feature of the Sierra Nevada (Holbrook et al., 

2014). This is a common pattern in other 

mountainous regions with low-permeability 

bedrock (Jencso et al., 2009; Pfister et al., 

2017; Spencer et al., 2019). Previous work in 

mountain regions with low-permeability 

bedrock has found that storage can respond 

quickly to meteorological conditions as a 

result of the low-permeability and low storage 

capacity (Pfister et al., 2017), and would 

impact the overall hydrologic response. 

Further research to examine how 

meteorological forcing uncertainty propagates 

into groundwater systems across a range of 

bedrock conditions is warranted.” 

I am surprised a bit about the differences in 

the simulated variables generated using 

GridMET, NLDAS and PRISM datasets. As 

described in Abatzoglou 2013, GridMET is 

based on the NLDAS-2 and PRISM dataset. 

Please at least discuss why this might be the 

case. 

We agree that it is worth further highlighting 

these differences in the paper. We believe that 

the differences among products are caused by 

the fact that we are using different versions of 

PRISM and NLDAS-2 than the version used 

in Abatzoglou (2013) paper to generate the 

Gridmet dataset. To build the Gridmet 

dataset, they used the 800 m resolution 

version of PRISM, while we used the freely 

available 4 km resolution of PRISM data. 

Additionally, we used a downscaled version 

of the NLDAS-2 dataset, called the Princeton 

CONUS Forcing dataset with ~3 km 

resolution. As described in the paper, the 

Princeton dataset is the downscaled version of 

the original NLDAS-2 data with ~12 km 

resolution and the rainfall data is updated by 

using the radar products. We believe that the 

differences in the resolution of the dataset and 

interpolation approach have caused the 

differences in precipitation forcing datasets.  

 

In the revised manuscript we state on L294:  

 

“Differences in mean annual daily 

temperature from the mean temperature 

dataset range between -8 to 8 ⁰C (Fig. 2b-f). 

Differences in mean daily temperature among 

different forcing datasets exist irrespective of 

the wetness condition (wet vs dry or average 



year), and the ranges are larger for WY2011 

(Fig. 3 a,c,e). Considerable uncertainty exists 

in the daily and annual totals of precipitation 

from the different gridded datasets as well 

(Fig. 3 b,d,f). The differences between the 

gridded products in our study are surprising, 

especially considering that Gridmet is based 

on the NLDAS-2 and PRISM datasets. We 

believe that the differences among products 

are caused by contrasting spatial resolutions. 

For example, Abatzoglou (2013) used the 800 

m PRISM data to generate the Gridmet 

dataset, while we used the freely available 

PRISM data at 4 km resolution. Additionally, 

we used a downscaled version of the 

NLDAS-2 dataset, called the Princeton 

CONUS Forcing dataset at ~3 km resolution 

with the updated precipitation data using the 

Stage IV and Stage II radar products. We 

believe that the differences in the resolution 

of the datasets and interpolation approaches 

have caused the differences in precipitation 

and air temperature forcing datasets.” 

Page 1, line 28: “high qualify” should be 

“high quality” 

Thank you for pointing this out, we have 

fixed this typo.  

Page 8, 217-219, how does this chosen 

threshold of 2.5 deg C for partition of 

precipitation into rainfall and snow, affect the 

results of this analysis, especially in the mid 

to low elevation parts of the domain? 

To be clear, this threshold was not chosen by 

us, it is the threshold that the CLM model 

uses to partition precipitation into rainfall and 

snow. That being said, this threshold likely 

impacts the results. However, we did not 

assess its impacts.  

 

In the mid to low elevation portions of the 

domain, where precipitation can currently fall 

as either rain or snow, the snow melts quickly 

and snowpack does not accumulate due to 

higher temperatures in mid-elevation regions. 

 

On L576 of the revised manuscript we state: 

 

“The land surface model we employ, CLM, 

applies a threshold temperature of 2.5 °C, 

below which precipitation falls as snow, 

which could have implications for our results. 

However, we expect its impact to be minimal, 

as most of the snow falls when the air 



temperature is much less than 2.5 °C. Models 

with different rain/snow partitioning schemes, 

however, might find different sensitivities 

than what we describe here.” 

Page 22, lines 496-498, I am not sure why 

land surface temperature and soil moisture 

would not be affected by the choice of 

forcings, wouldn’t changes in ET affect both? 

Please clarify. 

Yes, changes in ET does affect both land 

surface temperature and soil moisture. At the 

annual scale, however, changes in soil 

moisture are small because changes in ET can 

be balanced out by changes in potential 

recharge and lateral soil moisture 

redistribution. In the revised manuscript, we 

clarified the text in this section.  

 

We believe that lower sensitivity to land 

surface temperature is partly related to the 

simplification made to represent the ground 

heat flux calculation in CLM. Many land 

surface models, including CLM, only 

incorporate heat transport via conduction and 

this simplification decouples heat transport 

from soil moisture transport. Including heat 

convective transport through soil moisture 

distribution will increase computational time. 

While the ParFlowE model (Kollet et al., 

2009) incorporates these processes, we did 

not use this version of ParFlow in our study. 

In the revised manuscript we state on L528: 

 

“At the annual scale, the result of ϴ is not 

surprising because the soil moisture is 

controlled by both ET and R, where an 

increase in one can be compensated by a 

decrease in the other flux. Additionally, 

variability of these fluxes is highest at a daily 

compared to the annual scale. We believe that 

lower sensitivity of Tg is related to the 

simplification made to represent the ground 

heat flux calculation in CLM. To reduce 

computational time, many land surface 

models, including CLM, only incorporate 

heat transport via conduction and this 

simplification decouples heat transport from 

soil moisture transport (Kollet et al., 2009).” 
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Response to Reviewer #2: 

 

First of all, we would like to thank reviewer #2 for his/her comments on the paper. Their effort 

has helped us to improve the manuscript and we appreciate you agreeing to review the paper 

during these challenging times. Here, we provide point-by-point responses to each of reviewer 

2’s comments.  

 

Reviewer 2 comments Author response 

What could be added is a discussion of how 

the model parameterisation affects the 

conclusions. Such a discussion is started on 

page 14 but could be more comprehensive. 

 

We agree with the reviewer comment here, 

and reviewer #1 had similar comments. In our 

previous work (Schreiner-McGraw and 

Ajami, 2020), we performed a limited set of 

simulations to test the impact of saprolite 

layer parameterization, the most 

hydrologically active zone in the subsurface, 

on simulated water budget. The 

parameterization of this geologic layer did not 

systematically impact the propagation of 

uncertainty in precipitation into the 

groundwater. Please see figure 12 in 

Schreiner-McGraw and Ajami, 2020. 

 

Our previous experiments were limited in 

scope by the high computational demands of 

running ParFlow.CLM. Unfortunately, that 

limitation applies to this current experiment 

as well and has prevented us from being able 

to use parameter uncertainty approaches such 

as the Generalized Likelihood Uncertainty 

Estimation (GLUE) to evaluate the full 

impact of model parameterization on our 

results.  

 

Model parameterization and geologic setting, 

however, likely play a role in how uncertainty 

in meteorological forcings will propagate into 

groundwater. In the revised manuscript, we 

will expand upon this discussion. For 

example, our simulations are performed in a 

mountain region underlain by fractured, low 

permeability bedrock. Previous work has 

shown that groundwater in these regions 

responds quickly to changes in precipitation 

(Pfister et al., 2017), and would likely impact 

the results.  



 

In the revised manuscript we have included a 

discussion section (section 3.7) to discuss the 

role of model domain, model selection, and 

model parameterization on our results.  

In terms of presentation, although the paper is 

generally well written, it is repetitive in places 

and the flow of arguments could be 

sharpened. 

Thank you for the reminder. We will aim to 

improve the communication in the revised 

manuscript. We have improved our topic 

sentences for paragraphs to highlight the 

purpose of each discussion, and help with the 

flow of arguments. We have also removed 

several repetitive sentences. Finally, we 

removed what was Figure 11, and its 

associated discussion because we did not 

believe they were essential to our findings.  

 

References: 

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and 

McDonnell, J. J. (2017). Bedrock geology controls on catchment storage, mixing, and release: A 

comparative analysis of 16 nested catchments. Hydrological Processes, 31(10), 1828–1845. 

https://doi.org/10.1002/hyp.11134 

 

Schreiner-McGraw, A.P. and Ajami, H. 2020. Impact of uncertainty in precipitation datasets on 

the hydrologic budget of an integrated hydrologic model in mountainous terrain. Water 

Resources Research, 56(12), doi: 10.1029/2020WR027639 

 


