Response to Reviewer #1:

First of all, we would like to thank reviewer #1 for his/her comments on the paper. Their effort has helped us to improve the manuscript and we appreciate you agreeing to review the paper during these challenging times. Here, we provide point-by-point responses to each of reviewer 1's comments.

Reviewer 1 comments	Author response
Reviewer 1 comments It needs to be demonstrated how/if the results of this study depend on the single year of the simulation. Why not extend the study period to include the last 30 years or so? All of the forcings used in this study go back to early 1980s. Even MODIS goes back to the early 2000s. A longer period of analysis can also help address the question of impact of forcing uncertainties on the long-term changes in mountain system recharge, which would be of interest given the focus on global warming driven changes in precipitation and temperature. A longer analysis period could also allow for independent verification of the mountain system recharge simulations such as by using GRACE based estimates of recharge, which goes back to early 2000s. This could help identify the set of atmospheric forcings which yield the most realistic estimates of the recharge.	Author responseYou are correct, thank you. The model requires hourly forcing data and the spatially downscaled, hourly forcing that we use (Princeton CONUS Forcing) is only available from 2002. During this period, California suffered from the worst drought in recorded history. Our initial thoughts were that if we used this period, it would likely bias the model results based on these extreme years. But, as you state, it would make the findings more robust.To address reviewer comment in the revised manuscript, we will add two more years of simulation in addition to the water year (WY) 2016 originally selected. Please note that (WY) 2016 approximately represents average precipitation and air temperature in the watershed. To assess the impact of hydroclimatic condition on our results, we plan to perform simulations for WY2014 and WY2011, representing extreme dry and wet years, respectively. Similar to our approach for WY2016, we will evaluate model simulations results at equilibrium to remove the impact of initial condition bias on results. Integrated hydrologic models like ParFlow.CLM model are particularly sensitive to initial conditions, which is why we chose to analyze simulations for each water year. It is not feasible to allow a 15-30 year simulation reach equilibrium because of the computational demands of the model. Therefore, we plan to perform simulations for the select dry and wet water years at equilibrium conditions to assess generality of

	our results. While using GRACE data is ideal for confirming changes in terrestrial water storages, the resolution of GRACE data is too coarse for the study basin. Furthermore, we do not include irrigation and water management options in this version of the model so it is not possible to assess the impacts of forcing uncertainty over the entire basin.
Additionally, how are the results of this study dependent on the choice of the hydrologic model? As shown by Vano et al, 2012 (cited by this manuscript too) depending on the choice of hydrologic model sensitivity of hydrologic variables (such as runoff) to changes in precipitation and temperature can vary substantially.	We agree that the choice of hydrologic model will impact our results. In the revised manuscript we will make it clear that our results are applicable to integrated surface water – groundwater models that implement 3D Richard's equation to simulate variably saturated subsurface flow across the entire subsurface, and have a fully integrated overland flow simulator. Of course, different model physics will result in different sensitivities. However, we are using the most physically-based approach for simulating surface water-groundwater processes, and have done detailed model validation to make sure major hydrologic processes are captured by the model. Ideally, one should perform such simulations using different model structures to assess the impact of all uncertainty sources on simulated hydrologic response.
	We will add text to discuss the role of model selection in our results.
Finally, it also should be at least discussed how the results of this study may depend on the choice of the study domain.	Yes, this is a good point. Model parameterization and geologic setting are likely play a major role in how uncertainty in meteorological forcings will propagate into groundwater. In the revised manuscript, we will expand upon this discussion. For example, our simulations are performed in a mountain region underlain by fractured, low permeability bedrock. Previous work has shown that groundwater in these regions responds quickly to changes in precipitation (Pfister et al., 2017), which would likely impact the results. In the revised manuscript we will include discussion of how the

	geologic setting of our study site, and
	parameterization choices that we made are
	likely to impact the study results. While the
	role of uncertainty in precipitation forcing is
	discussed extensively, our main goal here was
	to highlight the role of temperature in
	addition to precipitation for regions with high
	relief. Of course, the obtained sensitivities in
	different mountain settings are impacted by
	the quality of meteorological forcings,
	topography, vegetation and subsurface
	characteristics.
I am surprised a bit about the differences in	We agree that it is worth further highlighting
the simulated variables generated using	these differences in the paper. We believe that
GridMET, NLDAS and PRISM datasets. As	the differences among products are caused by
described in Abatzoglou 2013, GridMET is	the fact that we are using different versions of
based on the NLDAS-2 and PRISM dataset.	PRISM and NLDAS-2 than the version used
Please at least discuss why this might be the	in Abatzoglou (2013) paper to generate the
case.	Gridmet dataset. To build the Gridmet
	dataset, they used the 800 m resolution
	version of PRISM, while we used the freely
	available 4 km resolution of PRISM data.
	Additionally, we used a downscaled version
	of the NLDAS-2 dataset, called the Princeton
	CONUS Forcing dataset with ~3 km
	resolution. As described in the paper, the
	Princeton dataset is the downscaled version of
	the original NLDAS-2 data with ~12 km
	resolution and the rainfall data is updated by
	using the radar products. We believe that the
	differences in the resolution of the dataset and
	interpolation approach have caused the
	differences in precipitation forcing datasets.
	In the revised manuscript we will add this
	information to clarify.
Page 1, line 28: "high qualify" should be	Thank you for pointing this out, it will be
"high quality"	fixed in the revised manuscript.
Page 8, 217-219, how does this chosen	To be clear, this threshold was not chosen by
threshold of 2.5 deg C for partition of	us, it is the threshold that the CLM model
precipitation into rainfall and snow, affect the	uses to partition precipitation into rainfall and
results of this analysis, especially in the mid	snow. That being said, this threshold likely
to low elevation parts of the domain?	impacts the results. However, we did not
	assess its impacts.

	In the mid to low elevation portions of the
	domain, where precipitation can currently fall
	as either rain or snow, the snow melts quickly
	and snowpack does not accumulate due to
	higher temperatures in mid-elevation regions.
	We will add discussion to the revised
	manuscript, in the same location where we
	discuss the effect of model formulation on the
	results, to include the impact of temperature
	threshold to partition between rain and snow.
Page 22, lines 496-498, I am not sure why	Yes, changes in ET does affect both land
land surface temperature and soil moisture	surface temperature and soil moisture. At the
would not be affected by the choice of	annual scale, however, changes in soil
forcings, wouldn't changes in ET affect both?	moisture are small because changes in ET can
Please clarify.	be balanced out by changes in potential
r rouse oranny.	recharge and lateral soil moisture
	redistribution. In the revised manuscript, we
	will clarify the text in this section.
	will clarify the text in this section.
	We believe that lower sensitivity to land
	surface temperature is partly related to the
	simplification made to represent the ground
	1 1 0
	heat flux calculation in CLM. Many land
	surface models, including CLM, only
	incorporate heat transport via conduction and
	this simplification decouples heat transport
	from soil moisture transport. Including heat
	convective transport through soil moisture
	distribution will increase computational time.
	While the ParFlowE model (Kollet et al.,
	2009) incorporates these processes, we did
	not use this version of ParFlow in our study.
	We will add this discussion to our revised
	manuscript.

References:

Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. *International Journal of Climatology*, *33*(1), 121–131. https://doi.org/10.1002/joc.3413

Kollet, S.J., Cvijanovic, I., Schüttemeyer, D., Maxwell, R.M., Moene, A.F. and Bayer, P. (2009), The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface. *Vadose Zone Journal*, 8: 846-857. https://doi.org/10.2136/vzj2009.0005

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J. (2017). Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. *Hydrological Processes*, 31(10), 1828–1845. https://doi.org/10.1002/hyp.11134