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Abstract. Five collection efficiency transfer functions for unshielded precipitation gauges are presented that compensate for 

wind-induced collection loss. Three of the transfer functions presented are dependent on wind speed and precipitation fall 

velocity, and were derived through computational fluid dynamics modelling in Part 1 (CFD function) and from measurement 

data (HE1 function with fall velocity threshold and HE2 function with linear fall velocity dependence). These functions are 

evaluated alongside universal (KUniversal) and site-specific (KCARE) transfer functions with wind speed and temperature 10 

dependence. Their performance was assessed using 30-minute precipitation event accumulations reported by unshielded and 

shielded Geonor T-200B3 precipitation gauges over two winter seasons. The latter gauge was installed in a Double Fence 

Automated Reference (DFAR) configuration comprising a single-Alter shield within an octagonal, wooden double fence. 

Estimates of fall velocity were provided by a Precipitation Occurrence Sensor System (POSS).  

The CFD function reduced the RMSE (0.08 mm) relative to KUniversal, KCARE, and the unadjusted measurements, with a bias 15 

error of 0.011 mm. The HE1 function provided a RMSE of 0.09 mm and bias error of 0.006 mm, capturing well the collection 

efficiency trends for rain and snow. The HE2 function better captured the overall collection efficiency, including mixed 

precipitation, resulting in a RMSE of 0.07 mm and bias error of 0.006 mm. The improved agreement demonstrates the 

importance of fall velocity for collection efficiency. 
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1 Introduction 

Automated catchment-type precipitation gauge measurements are critical as references for, and input to, weather, climate, 

hydrology, transportation, and remote sensing applications. The systematic bias of these gauges due to wind-induced 

undercatch is a major challenge, particularly with respect to the measurement of solid precipitation (Rasmussen et al., 25 

2012;Kochendorfer et al., 2018). 

Intercomparisons to assess gauge undercatch have demonstrated that an unshielded weighing precipitation gauge can capture 

less than 50% of the actual amount of solid precipitation falling in air when the wind speed exceeds 5 m s-1 (Kochendorfer et 

al., 2017b). Various adjustment functions have been proposed to compensate for undercatch, based on measured wind speed 

and air temperature (Goodison, 1978;Yang et al., 1998;2005;Yang and Simonenko, 2013;Yang, 2014;Rasmussen et al., 30 

2001;Smith, 2007;Wolff et al., 2015;Kochendorfer et al., 2017a).  

In the 1998 World Meteorological Organization (WMO) Solid Precipitation Measurement Intercomparison, adjustments were 

determined experimentally, primarily for manual gauges, by comparison to manual reference measurements of precipitation 

using a collector with a Tretyakov shield in the WMO Double Fence Intercomparison Reference (DFIR) configuration 

(Goodison et al., 1998). Precipitation events were monitored by observers, who reported the amount and type of snow, wind 35 

speed, and temperature statistics for each event. Events were defined based on the duration of continuous snowfall when the 

reference DFIR precipitation accumulation was greater than or equal to 3 mm.  

Based on the work of Goodison (1978), Goodison et al. (1998), and Yang et al. (1998), adjustment functions for unshielded 

gauge collection efficiencies were recommended for snow, mixed precipitation, and rain, based on the wind speed at gauge 

height. While these adjustments provided improvements for manual precipitation accumulation measurements, their 40 

application to automated measurements at shorter time scales, and where the precipitation type may not be well defined, 

presents a significant challenge (Colli, 2014;Colli et al., 2014;Colli et al., 2016a;Colli et al., 2016b;Thériault et al., 

2015;Thériault et al., 2012).  

The WMO commissioned another intercomparison, the Solid Precipitation Intercomparison Experiment (SPICE), to assess 

various automated technologies for the measurement of precipitation accumulation and snow depth and to recommend 45 

automated field reference systems (Nitu et al., 2018). An automated precipitation gauge configured with a single-Alter shield 

within a DFIR fence was chosen as the field reference configuration for precipitation accumulation; this was referred to as the 

Double Fence Automated Reference (DFAR) configuration. For assessment purposes, precipitation events were defined as 30-

minute periods with  0.25 mm precipitation captured by the reference gauge and ≥ 60% (18 minutes) precipitation occurrence 

as indicated by a disdrometer. This approach was selected to ensure confidence in reference measurement accumulations 50 

relative to gauge uncertainties (e.g. due to wind and temperature), with sufficiently short duration to capture the event 

conditions (e.g. wind, temperature, precipitation characteristics) within dynamic environments (Kochendorfer et al., 2017a). 

Transfer functions for unshielded and shielded gauges were derived as an exponential function of wind speed using 30-minute 

precipitation events from the SPICE data set (Kochendorfer et al., 2017a). Separate functions were developed for solid 

https://doi.org/10.5194/hess-2020-554
Preprint. Discussion started: 26 November 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

precipitation and mixed precipitation defined by air temperature ranges: less than -2 C for solid precipitation, and between -55 

2 C and 2 C for mixed precipitation. These functions were based on an exponential model for collection efficiency as a 

function of wind speed only (Goodison, 1978).  

Using Bayesian analysis of Norwegian measurement data, Wolff et al. (2015) developed a precipitation phase-independent, 

continuous transfer function with respect to wind speed and air temperature for a single-Alter shielded Geonor precipitation 

gauge. A similar, but less complex, function was developed by Kochendorfer et al. (2017a;2018) using the SPICE data set, 60 

including results from eight measurement sites in Canada, Norway, Finland, Switzerland, and the USA. The application to 

precipitation accumulation measurements from unshielded weighing gauges in SPICE was shown to reduce the overall bias 

relative to the DFAR; however reduction in the root mean square error (RMSE) was less significant (Kochendorfer et al., 

2017a;2017b;2018;Wolff et al., 2015). The RMSE values for adjusted measurements were on the order of 0.20 mm 

(Kochendorfer et al., 2017a); however, a separate comparison of replicate configurations of weighing gauges with single-Alter, 65 

double-Alter, and US small DFIR shields at the US WMO-SPICE site exhibited errors of 0.09 mm, 0.08 mm, and 0.07 mm, 

respectively (Kochendorfer et al., 2017b), indicating that further reductions in RMSE are possible.  

The errors, based on universal adjustments with wind speed and air temperature, can vary significantly by site, presumably 

driven by differences in climatology (Smith et al., 2020;Kochendorfer et al., 2017a). This has motivated further work on site- 

and climate-specific transfer functions (Koltzow et al., 2020;Smith et al., 2020). Another potential avenue for reducing errors 70 

in adjusted measurements is by improving the ability of transfer functions to distinguish among different precipitation types 

and their aerodynamic properties (Thériault et al., 2012;Wolff et al., 2015;Nešpor and Sevruk, 1999).  

Computational fluid dynamics (CFD) studies simulate the airflow around precipitation gauges and the associated collection 

efficiencies for rain and solid precipitation (Nešpor and Sevruk, 1999;Constantinescu et al., 2007;Colli, 2014;Colli et al., 

2014;Colli et al., 2015;Colli et al., 2016a;Colli et al., 2016b;Thériault et al., 2012;Thériault et al., 2015;Baghapour and 75 

Sullivan, 2017;Baghapour et al., 2017). These studies have demonstrated the influence of wind speed, turbulence, hydrometeor 

characteristics (size, density, drag, terminal velocity), and gauge and shield geometry on precipitation gauge undercatch. For 

rainfall, Nešpor and Sevruk (1999) showed increases in wind-induced error for smaller drop sizes with lower terminal 

velocities, with errors increasing for higher wind speeds. The conversion factor (inverse of overall collection efficiency) varied 

with the precipitation intensity and rainfall type, which influenced the distribution of hydrometeor sizes and terminal velocities. 80 

Thériault et al. (2012) demonstrated similar trends for snowfall, with collection efficiencies varying significantly with 

hydrometeor type and size distribution. Simulated collection efficiencies for wet snow and dry snow hydrometeors captured 

the general upper and lower bounds of experimental observations, respectively, with the lower collection efficiency for dry 

snow hydrometeors attributed to their lower terminal velocity and interaction with the local airflow around the gauge.  

For a Geonor gauge with single-Alter shield, Thériault et al. (2012) used a constant drag coefficient hydrometeor tracking 85 

model to develop a series of adjustments based on wind speed for different hydrometeor types. Colli et al. (2015) extended 

this work to show the influence of different hydrometeor drag models on collection efficiency results. Empirical drag model 

results (Khvorostyanov and Curry, 2005), based on the relative hydrometeor-to-air velocity over the hydrometeor trajectory, 
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were shown to yield higher collection efficiencies compared with constant drag coefficient results that can overestimate drag 

values. Colli et al. (2015) developed adjustments based on wind speed for unshielded and single-Alter-shielded gauges for 90 

three specific hydrometeor size distributions. Further studies, using computationally intensive Large Eddy Simulation models, 

have better resolved the intensity and spatial extent of turbulence around the gauge orifice, which can lead to temporal 

variations in collection efficiency results (Colli et al., 2016a;Colli et al., 2016b;Baghapour and Sullivan, 2017;Baghapour et 

al., 2017). The degree of turbulence varies depending on the shielding and wind speed (Baghapour et al., 2017).  

Collection efficiency results have been shown to be highly dependent on the hydrometeor fall velocity (Nešpor and Sevruk, 95 

1999;Thériault et al., 2012;Colli et al., 2016b;Hoover et al., 2020). The computational fluid dynamics analysis presented in 

Hoover et al. (2020, hereafter Part I) characterized the collection efficiency dependence on wind speed and precipitation fall 

velocity for different precipitation types. Collection efficiencies were shown to be similar for different hydrometeor types with 

identical fall velocities, enabling the development of a universal transfer function based on wind speed and hydrometeor fall 

velocity. The use of precipitation fall velocity offers a physically-based approach to improve adjustment functions by 100 

exploiting the aerodynamic properties of falling precipitation that influence collection efficiency. This information may be 

provided by instruments such as present weather sensors and disdrometers. 

In this work, adjustment functions are developed and evaluated for unshielded Geonor T-200B3 weighing precipitation gauges. 

The unshielded gauge configuration allows for the assessment of a broader range of collection efficiencies, as the degree of 

undercatch is generally more pronounced for unshielded gauges relative to shielded configurations. Further, by focussing on 105 

the unshielded configuration, no assumptions are required regarding the behaviour of the shield slats and their role in 

momentum reduction and turbulence generation around the gauge. For this study, three transfer functions with wind speed and 

fall velocity dependence are assessed, including the CFD transfer function developed in Part I and two other transfer functions 

(HE1 and HE2) developed herein. The Precipitation Occurrence Sensor System (POSS) was used to estimate fall velocities 

and hydrometeor types for the assessment. These transfer functions are assessed against transfer functions with dependence 110 

on wind speed and air temperature, including one of the universal functions developed by Kochedorfer et al. (2017a) and a 

site-specific function determined herein using similar methodology.  

2 Method 

2.1 Instrumentation 

Experimental measurements were performed in conjunction with SPICE over the 2013/14 and 2014/15 winter periods 115 

(November 1 to April 30) at the Centre for Atmospheric Research Experiments (CARE) site in Egbert, Ontario, Canada. 

Measurements of precipitation accumulation were performed using 600 mm capacity Geonor T-200B3 gauges in unshielded 

and reference DFAR configurations. Both gauges were securely mounted on concrete foundations to limit wind-induced 

vibrations. The performance of these gauges was confirmed by full-scale field verifications at the start and end of testing, with 

annual maintenance to inspect, clean, level, and recharge each gauge. The gauges were charged with a mixture of antifreeze 120 
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(60% methanol and 40% propylene glycol) and oil (Esso Bayol 35 in 2013/14, discontinued; Exxon Mobil Isopar M in 

2014/15).  

Measurements of precipitation occurrence were obtained using a Thies Laser Precipitation Monitor (LPM) installed inside the 

inner fence of the DFAR. Wind speed and direction measurements at 2 m gauge height were performed with a Vaisala WS425 

ultrasonic wind sensor adjacent to the unshielded gauge. Temperature was measured with a Yellow Springs International model 125 

44212 thermistor in an aspirated Stevenson screen. Further details are available in the SPICE final report (Nitu et al., 2018). 

2.2 Sampling, quality control, and precipitation event selection 

The instruments were sampled using a Campbell Scientific CR3000 data logger. For each Geonor T-200B3 precipitation gauge, 

the frequency and precipitation accumulation for each of the three transducers was reported at 6-second intervals, the latter 

computed from the former using manufacturer-provided calibration coefficients. Minutely measurements of precipitation 130 

occurrence from the Thies LPM were recorded. The scalar average wind speed and vector average wind direction were 

recorded over 1-minute intervals. Based on SPICE procedures, these data were processed using a format check to replace 

missing data with null values, a range check to identify and remove outliers outside the manufacturer-specified output 

thresholds, a jump filter to remove spikes exceeding maximum point-to-point variation thresholds, and a Gaussian filter to 

smooth out high frequency noise in Geonor precipitation accumulation measurements (Nitu et al., 2018). Periods of instrument 135 

maintenance and power outages were removed from the analysis. The Geonor accumulation data were aggregated to 1-minute 

intervals for subsequent analysis. 

Precipitation events were identified during both measurement periods using the SPICE event selection procedure (Nitu et al. 

2018). These events were defined as 30-minute periods with at least 0.25 mm of precipitation recorded by the reference DFAR 

precipitation gauge and at least 60% precipitation occurrence reported by the Thies LPM. The use of the LPM as a secondary 140 

confirmation of precipitation occurrence minimizes the likelihood of events with false precipitation due to dumps of snow or 

ice into the gauge, wind induced vibrations, or other factors. Following the approach of Kochendorfer (2018), a minimum 

0.075 mm accumulation threshold was applied for the unshielded gauge to ensure that measurements exceeded the gauge 

uncertainty and that derived collection efficiency values were reliable. The 30-minute event duration was chosen to be 

sufficiently long to reduce noise and ensure high confidence in measured parameters and sufficiently short to avoid the 145 

influence of diurnal temperature variations, while also providing a larger number of events for analysis relative to longer 

durations. Note that unless otherwise stated, all precipitation events referred to hereafter are 30-minute events derived using 

the above approach. 

2.3 POSS fall velocity and precipitation type 

The POSS is a small upward-facing bistatic X band radar capable of measuring the precipitation fall velocity based on the 150 

Doppler frequency shift of the received signal (Canada, 1995;Sheppard, 1990, 2007;Sheppard et al., 1995;Sheppard and Joe, 

1994, 2000, 2008). During periods of precipitation, the POSS outputs both the mean and mode received signal frequency 
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derived from the Doppler frequency spectrum over the previous minute. The mean precipitation fall velocity f_meanu  is 

estimated from the transmitted wavelength   and the mean frequency 
meanf  of the measured Doppler power density spectrum 

for falling precipitation hydrometeors.  155 

mean

f_mean
2

f
u


 , (1a) 

The mode precipitation fall velocity f_modeu  is described by a similar function, based on the mode frequency 
modef of the 

measured Doppler power density spectrum.  

mode

f_mode
2

f
u


 , (1b) 

For each 30-minute event, the mean and mode event fall velocity correspond to the average of all minutely mean and mode 160 

values, respectively. The transfer functions presented in this work were derived using both forms of event fall velocity and 

assessed in terms of the RMSE and bias error (BE) of adjusted measurements relative to the DFAR. The specific fall velocity 

indicated for each transfer function corresponds to that which produced the lowest RMSE and BE. The POSS also provides a 

minutely precipitation type output corresponding to very light, light, moderate, and heavy precipitation for rain, snow, hail, 

and undefined precipitation. Each event is classified as ‘rain’ or ‘snow’, corresponding to a minimum 70 % occurrence of that 165 

precipitation type over the event period (i.e. at least 21 minutes of precipitation occurrence). ‘Mixed’ precipitation events 

correspond to the presence of both ‘rain’ and ‘snow’ for the remaining events not classified as rain or snow. ‘Undefined’ 

precipitation corresponds to events where the precipitation is not captured by the three other classifications.  

2.4 Transfer functions 

Due to the systematic error associated with gauge undercatch, the unshielded gauge can capture less precipitation than the true 170 

amount falling in the air. The measured collection efficiency 
mCE  is defined as the ratio of the precipitation accumulation 

reported by the unshielded gauge 
unh  relative to that reported by the DFAR 

DFARh for each event, and is given by: 

un

m

DFAR

h
CE

h
 , (2) 

Assuming that the gauge measurement uncertainties are independent and random with equivalent accumulations 

(corresponding to a collection efficiency equal to 1) and uncertainties, the uncertainty in the collection efficiency 
CE  scales 175 

with the relative magnitude of the gauge uncertainty 
h  and the event accumulation value h  by error propagation.  

 
2 h

CE
h


  , (3) 

Collection efficiency transfer functions CE  attempt to capture the performance of the unshielded gauge relative to the 

reference configuration based on wind speed, temperature, or other meteorological parameters. They can then be applied to 
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adjust precipitation accumulations from an unshielded gauge in operational settings where reference measurements are not 180 

available. 

un

adj

h
h

CE
 , (4) 

Building upon previous work on transfer functions (Goodison, 1978;Goodison et al., 1998;Wolff et al., 2015), Kochendorfer 

et al. (2017a;2018) used SPICE measurement data from eight test sites to develop an exponential and trigonometric transfer 

function based on wind speed 
wu  and air temperature T . This is referred to as KUniversal in this work (Eq. 5a). For wind speeds 185 

above a threshold value 
wtu  of 7.2 m s-1, the wind speed is fixed at the threshold value (Eq. 5b) to avoid the potential for 

erroneous catch efficiency values at higher wind speeds that were not well represented in the SPICE measurement dataset. 

Based on a similar rationale, no adjustment is applied for temperatures above 5 C. Note that while Kochendorfer et al. (2017b) 

considered wind speeds at both gauge height and at 10 m, 
wu will denote the gauge height wind speed in this work. 

    1

K w wt 1 w 2 3, exp 1 tanCE u u T b u b T b     
  , (5a) 190 

    1

K wt 1 wt 2 3, exp 1 tanwCE u u T b u b T b     
  , (5b) 

The coefficients for KUniversal are provided in Table 1.  

 

Table 1. Unshielded Geonor T-200B3 precipitation gauge collection efficiency transfer function coefficients for solid and mixed 

precipitation with 30-minute scalar mean wind speed uw at gauge height for: KUniversal function with wind speed and air temperature T 195 
dependence, with constant value above wind speed threshold with Kochendorfer et al. (2017a) coefficients; KCARE function with wind speed 

and air temperature dependence, with constant value above wind speed threshold; present study CFD model with dependence on wind speed 

and mode hydrometeor fall velocity uf_mode; HE1 model with dependence on wind speed and mean hydrometeor fall velocity uf_mean threshold; 

and HE2 model with wind speed and mode hydrometeor fall velocity dependence and mode hydrometeor fall velocity threshold. 

   Coefficients  

Description Eq. Function b1 b2 b3 b4 Threshold 

KUniversal 5 ƒ(uw,T) 0.0785 0.729 0.407 - uwt = 7.2 m s-1, T  5 °C 

KCARE 5 ƒ(uw,T) 0.1651 0.186 -0.757  uwt = 7.2 m s-1, T  1.33 °C 

CFD 6 ƒ(uw,uf_mode) 0.908 1.387 0.143 2.422 uw  uwc, uw  10 m s-1 

HE1 7 ƒ(uw,uf_mean) 0.139 - - - uf_mean  1.93 m s-1, uw  7.19 m s-1 

HE2 8 ƒ(uw,uf_mode) 0.244 0.0869 - - uf_mode  2.81 m s-1 

 200 

Using the same formulation, a site-specific transfer function based on wind speed and temperature was derived using the CARE 

dataset, for comparison with KUniversal. Best-fit regression coefficients were determined by varying the temperature threshold 

below 5 C with the collection efficiency constrained to 1 above the threshold value. Solving Eq. 5a for the temperature when 

the collection efficiency equals 1 provides additional constraint on the 
3b  coefficient as a function of the 

2b  coefficient and 

temperature threshold 
tT .  205 

 1

3 2tan 1tb b T  , (5c) 
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The coefficients for the CARE site-specific transfer function, referred to as KCARE in this work, are provided in Table 1. 

The transfer function derived from CFD simulations in Part I was formulated using the wind speed and hydrometeor fall 

velocity 
fu . The collection efficiency decreases nonlinearly with increasing wind speed, but increases with increasing 

fu  (Eq. 

6a). A wind speed cut-off value 
wcu , which is a function of 

fu , defines the wind speed above which the CE is zero (Eq. 6b). 210 

For wind speeds above the cut-off value, the collection efficiency is equal to 0 (Eq. 6c). These expressions were derived using 

CFD analysis for wind speeds up to 10 m s-1. The hydrometeor fall velocity is given by the mode of the POSS Doppler velocity 

spectrum. 

      2

CFD w wc f 1 2 f w 3 4 f w, 1 exp expCE u u u b b u u b b u u      ,       (6a) 

 
   

 

2

1 2 f 3 4 f1

wc 4 2 f

3 3 4 f

exp 2 4 exp
exp

2 2 exp

b b u b b ub
u b b u

b b b u

  
     

, (6b) 215 

 CFD w wc f, 0CE u u u  , (6c) 

3 Results 

3.1 Precipitation type 

Using the minutely POSS precipitation type output, events were classified as ‘rain’, ‘snow’, ‘mixed’, or ‘undefined’ following 

the methodology in Sect. 2.3. The relative occurrence of different precipitation types as reported by the POSS for the event 220 

dataset is summarized in Table 2.  

 

Table 2. Mean fall velocities and temperatures of precipitation events by type classification.  

Precipitation 

phase 

Fall velocities 

(m s-1) 

Temperatures 

(C) 

Events 

(#) 

Snow 0.93 to 2.32 < 0.5 233 

Mixed 1.2 to 4.6 -7.0 to 2.1 45 

Undefined 1.0 to 4.3 -5.4 to 6.6 40 

Rain 1.4 to 6.4 -4.8 to 18.9 196 

 

Based on the mean fall velocities and temperatures for each precipitation event (Fig. 1, Table 2), snow events occurred at 225 

temperatures below 0.5 C and with fall velocities of 0.93 m s-1 to 2.32 m s-1. Mixed events were characterized by mean 

temperatures between -7.0 C and 2.1 C and mean fall velocities between 1.2 m s-1 and 4.6 m s-1, while undefined precipitation 

events occurred at mean temperatures between -5.4 C and 6.6 C and fall velocities between 1.0 m s-1 and 4.3 m s-1. Rain 

events were characterized by mean temperatures between -4.8 C and 18.9 C and mean fall velocities between 1.4 m s-1 and 

6.4 m s-1. Over the temperature range between -5 C and 2 C, rain, snow, mixed, and undefined precipitation types were all 230 
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present, demonstrating the challenge of estimating precipitation type using temperature alone (e.g. as done for the KUniversal and 

KCARE transfer functions). Within this temperature range, a wide variety of mean fall velocities, between 1 and 6 m s-1, is also 

apparent. 

 

 235 

Figure 1. Mean air temperature and fall velocity for 30-minute events with rain, snow, mixed, and undefined precipitation (see Table 1 for 

summary). 

 

3.2 Collection efficiency 

The unshielded gauge collection efficiency results are shown as a function of the 30-minute DFAR event accumulations in 240 

Fig. 2a and stratified by precipitation type classification. The collection efficiency for rain shows less scatter and less 

uncertainty for higher reference precipitation accumulations. The dashed lines in Fig. 2a show the decrease in the collection 

efficiency uncertainty with increasing precipitation accumulation for a collection efficiency equal to 1 and a precipitation 

accumulation uncertainty of 0.1 mm (k = 2) given by Eq. 3. These lines appear to capture the overall trend observed for rain 

events. The snowfall events show a markedly different trend, however, with collection efficiencies as low as 0.3.  245 

The collection efficiency for all events as a function of mean wind speed and precipitation type classification is shown in Fig. 

2b. For rain events, the collection efficiencies are close to 1. For snow, an approximately linear decrease in the collection 

efficiency with mean wind speed is apparent, with the collection efficiency decreasing to 0.3 at a wind speed of 5 m s-1. Mixed 

precipitation collection efficiencies span a range of values between those of rain and snow. For undefined precipitation, some 
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events have collection efficiencies close to 1 at high wind speeds, similar to rain events, while others appear to decrease with 250 

increasing wind speed in a similar fashion to that observed for snow events.  

 

 

Figure 2. Collection efficiency of the unshielded gauge as a function of: (a) precipitation accumulation and event precipitation type (dashed 

lines illustrate accumulation uncertainty threshold); (b) wind speed and event precipitation type; (c) wind speed and mean air temperature T 255 
categories; and (d) wind speed and mode fall velocity up categories. 
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The dependence of collection efficiencies on the mean wind speed over four separate mean temperature ranges is shown in 

Fig. 2c. For mean event temperatures above 2 C, the collection efficiencies are generally close to 1, typical of rain. For 

temperatures between -5 C and -2 C and between -2 C and 2 C, a range of collection efficiency values are observed, from 260 

those typical of snow to those typical of rain. This variation is attributed to the wide range of fall velocities within this 

temperature range, which includes snow, rain, and mixed precipitation events (Fig. 2). At colder temperatures, below -5 C, 

collection efficiencies appear to decrease approximately linearly with wind speed, consistent with the trend observed for snow 

events in Fig. 2b.  

Stratifying the collection efficiency results as a function of mean event wind speed by the mode fall velocity shows more 265 

distinct trends (Fig. 2d) relative to those observed when stratifying by temperature (Fig. 2c). Collection efficiencies are close 

to 1 for fall velocities greater than 2.5 m s-1, generally corresponding to rain. Conversely, fall velocities below 1.5 m s-1 show 

an approximately linear decrease in collection efficiency with increasing wind speed up to about 6 m s-1. A number of the 

values with higher collection efficiencies in this low fall velocity range correspond to mixed precipitation, where both snow 

and rain may be present. Between 1.5 m s-1 to 2.5 m s-1 fall velocity, intermediate collection efficiency values are evident, with 270 

collection efficiencies transitioning from lower to higher values, despite a fewer number of observations in this range.  

The dependence of the collection efficiency on 30-minute mean air temperature and the 30-minute mean of mode fall velocity 

values for 2 m s-1 to 4 m s-1 wind speeds is shown in Figs. 3a and 3b, respectively. This range of wind speeds shows the most 

significant overlap among rain, snow, mixed and undefined precipitation, and is sufficiently high that a wide range of collection 

efficiencies is observed. The collection efficiency generally increases with temperature (Fig. 3a), although values are spread 275 

broadly across air temperature values, with collection efficiencies below 0.6 occurring between -22 C and 0 C. More clearly-

defined trends with fall velocity are apparent, with collection efficiencies increasing sharply with fall velocity up to ~ 2.5 m s-

1 and distributed around 1 for higher fall velocities.     
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Figure 3. Collection efficiency of unshielded gauge for 2 m s-1 to 4 m s-1 30-minute mean wind speeds with (a) 30-minute mean air 280 
temperature and (b) 30-minute mean of mode fall velocities. 

  

3.3 Derivation of fall velocity transfer functions from CE results 

Two additional transfer functions were formulated based on the apparent linear dependence of CE on wind speed for different 

hydrometeor fall velocity regimes observed in experimental results (Fig. 2d). These functions are applicable to all hydrometeor 285 

types, and have different fall velocity thresholds to describe the transition of precipitation phase from the lower fall velocities 

characteristic of snow to the higher fall velocities characteristic of rain and mixed precipitation.  

The first transfer function, referred to as HE1, is based on the assumption of a linear decrease in collection efficiency 
HE1CE  

with wind speed 
wu  for hydrometeors with mean fall velocity 

fu  below 1.93 m s-1, generally corresponding to snowfall. This 

linear decrease is extrapolated to 7.19 m s-1 wind speed (Eq. 7a), above which the collection efficiency for snowfall is zero 290 

(Eq. 7b). For hydrometeors with mean fall velocity greater than 1.93 m s-1, corresponding to mixed and liquid precipitation, 

the collection efficiency is 1 (Eq. 7c). 

 1 1

HE1 w f 1 w7.19m s , 1.93m s 1CE u u b u     , (7a) 

 1 1

HE1 w f7.19m s , 1.93m s 0CE u u    , (7b) 
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 1

HE1 f 1.93m s 1CE u   , (7c) 295 

The second transfer function, referred to as HE2, adds another dimension to describe the slope of the linear decrease in CE 

with increasing wind speed: the hydrometeor fall velocity. For mode fall velocity 
fu  below 2.81 m s-1 and wind speed 

wu  

below the cut-off value, which is also dependent on the fall velocity, the collection efficiency 
HE2CE  is assumed to decrease 

linearly with decreasing wind speed to zero (Eq. 8a). For mode fall velocity below 2.81 m s-1 and wind speed above the cut-

off value, the collection efficiency is zero (Eq. 8b). For mode fall velocity above 2.81 m s-1, the collection efficiency is equal 300 

to 1 (Eq. 8c). 

 1

HE2 w f 1 2 f w

1 2 f

1
, 2.81m s 1CE u u b b u u

b b u

 
     

 
, (8a) 

1

HE2 w f

1 2 f

1
, 2.81m s 0CE u u

b b u

 
   

 
, (8b) 

 1

HE2 f 2.81m s 1CE u   , (8c) 

3.4 Assessment of transfer functions: collection efficiency 305 

Observed collection efficiencies were compared with adjusted values using both existing transfer functions from SPICE and 

those presented in this work. Results are presented in Fig. 4, with relevant transfer function parameters compiled in Table 1, 

and resulting bias errors, root mean square errors, and correlation coefficients (r) presented in Table 3. To further contextualize 

the assessment of the different transfer functions, the RMSE results are presented for different precipitation classifications, 

temperature ranges, and fall velocity ranges in Tables 4 to 6, respectively.  310 
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Figure 4. Collection efficiency of unshielded gauge as a function of wind speed for: (a) mean air temperature T categories for the KUniversal 

and KCARE transfer functions; (b) mode fall velocity up categories with the CFD transfer function; (c) mean fall velocity up categories for the 

HE1 transfer function; and (d) mode fall velocity up categories with the HE2 transfer function. 315 
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Table 3. Unshielded gauge 30-minute event bias error (BE), root mean square error (RMSE), correlation coefficient (r), and number of 

events (N) for collection efficiency and precipitation accumulation between the unshielded and reference DFAR shielded Geonor T-200B3 

gauge for: unadjusted comparison; KUniversal transfer function with wind speed and air temperature dependence; KCARE transfer function with 320 
wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall velocity dependence; HE1 

transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed and mode fall velocity 

dependence. Statistics are based on the comparison of experimental results from the CARE site between November 1 and April 30, 2013/14 

and 2014/15. 

 Collection efficiency Precip accum (mm)  

Description BE RMSE r BE RMSE r N 

Unadjusted - - - -0.13 0.24 0.900 514 

KUniversal 0.07 0.15 0.853 0.07 0.20 0.949 514 

KCARE -0.005 0.12 0.878 0.002 0.13 0.963 514 

CFD -0.02 0.08 0.949 0.011 0.08 0.986 514 

HE1 0.0004 0.10 0.928 0.006 0.09 0.983 514 

HE2 -0.009 0.08 0.950 0.006 0.07 0.988 514 

 325 

Table 4. Unshielded gauge 30-minute event collection efficiency RMSE between the unshielded and reference DFAR shielded Geonor T-

200B3 gauge by POSS precipitation type for: KUniversal transfer function with wind speed and air temperature dependence; KCARE transfer 

function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall velocity 

dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed and 

mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 1 and 330 
April 30, 2013/14 and 2014/15. 

 RMSE 

 Rain Mixed Undefined Snow 

Description (N = 196) (N = 45) (N = 40) (N = 233) 

KUniversal 0.17 0.27 0.09 0.09 

KCARE 0.12 0.20 0.13 0.11 

CFD 0.08 0.09 0.09 0.09 

HE1 0.07 0.16 0.08 0.10 

HE2 0.08 0.10 0.09 0.08 

 

Table 5. Unshielded gauge 30-minute event collection efficiency RMSE between the unshielded and reference DFAR shielded Geonor T-

200B3 gauge by temperature classification for: KUniversal transfer function with wind speed and air temperature dependence; KCARE transfer 

function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall velocity 335 
dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed and 

mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 1 and 

April 30, 2013/14 and 2014/15. 

 RMSE 

 T > 2 °C -2 °C < T  2 °C -5 °C < T  -2 °C T  -5 °C 

Description (N = 150) (N = 89) (N = 134) (N = 141) 

KUniversal 0.08 0.19 0.21 0.11 

KCARE 0.07 0.13 0.17 0.10 

CFD 0.09 0.08 0.08 0.09 

HE1 0.07 0.10 0.11 0.10 

HE2 0.09 0.08 0.07 0.08 

 

 340 
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Table 6. Unshielded gauge 30-minute event collection efficiency RMSE between the unshielded and reference DFAR shielded Geonor T-

200B3 gauge by fall velocity classification for: KUniversal transfer function with wind speed and air temperature dependence; KCARE transfer 

function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall velocity 

dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed and 

mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 1 and 345 
April 30, 2013/14 and 2014/15. 

 RMSE 

 uf > 2.5 m s-1 2 m s-1 < uf  2.5 m s-1 1.5 m s-1 < uf  2 m s-1 uf  1.5 m s-1 

Description (N = 212) (N = 15) (N = 40) (N = 247) 

KUniversal 0.19 0.23 0.16 0.09 

KCARE 0.13 0.17 0.12 0.11 

CFD 0.08 0.10 0.08 0.09 

HE1 0.08 0.13 0.15 0.10 

HE2 0.08 0.12 0.08 0.08 

 

 

Both KUniversal and the site-specific KCARE transfer function have continuous temperature dependence and display similar 

profiles at -8 C, with the collection efficiency for the KCARE transfer function decreasing more gradually with wind speed 350 

compared to the KUniversal transfer function at -4 C and 0 C (Fig. 4a). Using the approach outlined in Sect. 2.4, a temperature 

cutoff 
tT  of 1.33 C for the best-fit KCARE transfer function was found to minimize the precipitation accumulation RMSE. The 

overall collection efficiency root mean square error is reduced from 0.15 for the KUniversal transfer function to 0.12 for the KCARE 

transfer function (Table 3). The bias error is also reduced from 0.07 for the KUniversal transfer function to -0.005 for the best-fit 

KCARE transfer function. For KUniversal and KCARE, respectively, the RMSE is reduced from 0.17 to 0.12 for rain and from 0.27 355 

to 0.20 for mixed precipitation, with slightly elevated RMSE from 0.09 to 0.13 for undefined precipitation and 0.09 to 0.11 for 

snow (Table 4). For mean event temperatures between -2 C and 2 C, and between -5 C and -2 C, respectively, the RMSE 

values of 0.19 and 0.21 for the KUniversal transfer function are relatively large compared to the 0.13 and 0.17 values for the 

KCARE transfer function (Table 5). This results from the more gradual decrease in the KCARE transfer function with wind speed 

over these temperature ranges (Fig. 4a).  360 

A comparison of the CFD transfer function with observed CE is shown in Fig. 4b. Overall, the measured data have less scatter 

when stratified by fall velocity than when stratified by temperature (Table 3, Figs. 4a and b). The CFD transfer function 

provides a lower overall RMSE (0.08) and higher r (0.949) relative to the KUniversal and KCARE transfer functions based on 

temperature. Reductions in the collection efficiency RMSE using the CFD transfer function are most pronounced for rain and 

mixed precipitation (Table 4) and for mean event temperatures between -2 C and 2 C and between -5 C and -2 C (Table 365 

5) compared with the KUniversal and KCARE functions. Collection efficiency RMSE values are between 0.08 and 0.10 over all fall 

velocity classes, despite fewer numbers of events with fall velocities between 1.5 m s-1 and 2.5 m s-1 (Table 6).  

The HE1 transfer function provides good agreement with observed data in the mean fall velocity regimes relevant to snow and 

rain (Fig. 4c), resulting in an overall RMSE of 0.10, BE of 0.0004, and r of 0.928 (Table 3). The RMSE for mixed precipitation 
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is 0.16, which is lower than that of the KCARE transfer function with temperature (0.20) but higher that that of the CFD model 370 

(0.09), which varies continuously with fall velocity (Table 4).   

The HE2 function better captures the observed collection efficiencies for mode fall velocities between the snow and rain 

regimes (Fig. 4d), improving the overall RMSE to 0.08 and r to 0.95, while increasing slightly the BE (-0.009) relative to HE1 

(Table 3). Note the distinction between mean fall velocity for HE1 and mode fall velocity for HE2 (and CFD). In general, the 

Doppler frequency spectrum tends to be skewed such that mode fall velocities are slightly lower than the mean fall velocities, 375 

impacting the fits to observed data. The HE2 transfer function provides similar results to that of the CFD transfer function, 

with slightly higher RMSE values for mixed precipitation and slightly reduced RMSE values for snow (Table 4) and 

temperatures below -2 C (Table 5). For intermediate fall velocities between 2.0 m s-1 and 2.5 m s-1, the HE2 transfer function, 

with a linear change in collection efficiency with fall velocity, has a higher RMSE (0.12) than that for the CFD function (0.10), 

which exhibits a nonlinear change in collection efficiency with fall velocity (Table 6). Only 15 events were recorded in this 380 

intermediate fall velocity range with higher uncertainty relative to the CFD function. In contrast, 212 events were recorded at 

fall velocities above 2.5 m s-1 and 247 events at fall velocities below 1.5 m s-1, representing a greater proportion of the events 

with lower RMSE relative to the CFD function.  

3.5 Assessment of transfer functions: precipitation accumulation 

The unadjusted and adjusted accumulated precipitation values are compared with reference DFAR accumulation 385 

measurements in Fig. 5. Bias, RMSE, and correlation coefficient results are shown in Table 3. Similar to the approach for 

assessing transfer functions based on collection efficiency results in Sect. 3.4, the precipitation accumulation RMSE results 

for each transfer function are assessed by precipitation classification, temperature range, and fall velocity range in Tables 7 to 

9, respectively. 

 390 
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Figure 5. Unshielded and reference DFAR 30-minute event precipitation accumulation comparison for: (a) unadjusted precipitation 

accumulation; (b) KUniversal continuous transfer function with wind speed and air temperature dependence;  (c) KCARE continuous transfer 

function with wind speed and air temperature dependence; (d) CFD transfer function with wind speed and fall velocity dependence; (e) HE1 

transfer function with wind speed and fall velocity dependence; and (f) HE2 transfer function with wind speed and fall velocity dependence. 395 
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Table 7. Unshielded gauge 30-minute event RMSE (mm) between the unshielded and reference DFAR shielded Geonor T-200B3 gauge by 

POSS precipitation type for: unadjusted comparison; KUniversal transfer function with wind speed and air temperature dependence; KCARE 

transfer function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall 

velocity dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed 

and mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 400 
1 and April 30, 2013/14 and 2014/15. 

 RMSE (mm) 

 Rain Mixed Undefined Snow 

Description (N = 196) (N = 45) (N = 40) (N = 233) 

Unadjusted 0.04 0.15 0.09 0.35 

KUniversal 0.25 0.33 0.05 0.10 

KCARE 0.14 0.22 0.06 0.11 

CFD 0.04 0.07 0.04 0.11 

HE1 0.04 0.17 0.04 0.10 

HE2 0.04 0.09 0.04 0.09 

 

 

Table 8. Unshielded gauge 30-minute event RMSE (mm) between the unshielded and reference DFAR shielded Geonor T-200B3 gauge by 

temperature classification for: unadjusted comparison; KUniversal transfer function with wind speed and air temperature dependence; KCARE 405 
transfer function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall 

velocity dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed 

and mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 

1 and April 30, 2013/14 and 2014/15. 

 RMSE (mm) 

 T > 2 °C -2 °C < T  2 °C -5 °C < T  -2 °C T  -5 °C 

Description (N = 150) (N = 89) (N = 134) (N = 141) 

Unadjusted 0.04 0.14 0.23 0.39 

KUniversal 0.05 0.25 0.29 0.12 

KCARE 0.04 0.11 0.20 0.12 

CFD 0.05 0.06 0.08 0.11 

HE1 0.04 0.12 0.09 0.10 

HE2 0.05 0.07 0.08 0.09 

 410 

 

Table 9. Unshielded gauge 30-minute event RMSE (mm) between the unshielded and reference DFAR shielded Geonor T-200B3 gauge by 

fall velocity classification for: unadjusted comparison; KUniversal transfer function with wind speed and air temperature dependence; KCARE 

transfer function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall 

velocity dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed 415 
and mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 

1 and April 30, 2013/14 and 2014/15. 

 RMSE (mm) 

 uf > 2.5 m s-1 2 m s-1 < uf  2.5 m s-1 1.5 m s-1 < uf  2 m s-1 uf  1.5 m s-1 

Description (N = 212) (N = 15) (N = 40) (N = 247) 

Unadjusted 0.04 0.06 0.16 0.34 

KUniversal 0.26 0.22 0.22 0.10 

KCARE 0.15 0.14 0.15 0.11 

CFD 0.04 0.05 0.06 0.10 

HE1 0.04 0.06 0.16 0.10 

HE2 0.04 0.06 0.07 0.09 
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In the comparison of unadjusted accumulation measurements with reference values (Fig. 5a), some values fall along the 1-to-

1 line, while others are considerably lower. The values along the 1-to-1 line generally correspond to rain events with high 420 

precipitation fall velocity, or to events with low mean wind speeds. The RMSE for the unadjusted unshielded gauge 

measurements relative to the DFAR is 0.24 mm, with a bias error of -0.13 mm and correlation coefficient of 0.900 (Table 3).  

Using the KUniversal transfer function, with wind and temperature dependence, shifts the adjusted values up to and above the 1-

to-1 line (Fig. 5b). This yields a positive bias error of 0.07 mm, reduced RMSE of 0.20 mm, and correlation coefficient of 

0.949 (Table 3) relative to the unadjusted measurements (Fig. 5a). While the KUniversal transfer function greatly reduces the 425 

RMSE for snow from 0.35 mm to 0.10 mm compared with unadjusted values, the RMSE is increased from 0.04 mm to 0.25 

mm for rain, and from 0.15 mm to 0.33 mm for mixed precipitation (Table 7). Compared with the unadjusted results, RMSE 

increases for the KUniversal function are also apparent for temperatures between -2 C and 2 C and between -5 C and -2 C 

(Table 8), and for fall velocities greater than 1.5 m s-1 (Table 9).  

Applying the site-specific KCARE transfer function, based on the best-fit results to the CARE SPICE dataset, results in a reduced 430 

bias error of 0.002 mm, lower RMSE of 0.13 mm, and higher correlation coefficient of 0.963 (Table 3) relative to the KUniversal 

results, with the scatter in adjusted accumulations more evenly balanced across the 1-to-1 line (Fig. 5c). The scatter in adjusted 

values using the KCARE transfer function results primarily from mixed precipitation (Table 7) at temperatures between -5 C 

and -2 C (Table 8). Compared to the KUniversal transfer function, the KCARE transfer function has lower RMSE values for rain 

(0.14 mm) and mixed precipitation (0.22 mm), with 0.01 mm higher RMSE for undefined precipitation and snow (Table 7). 435 

The more rapid increase in collection efficiency with temperature for KCARE relative to KUniversal reduces the overadjustment of 

some of the rain and mixed precipitation events at temperatures between -5 C and -2 C, at the expense of the underadjustment 

of some snow events in this temperature range. It is also worth noting that the adjusted precipitation accumulation RMSE for 

the KCARE transfer function is larger than that for unadjusted results for rain and mixed precipitation, similar to the results for 

KUniversal. Both the KUniversal and KCARE transfer functions with temperature show signs of heteroscedasticity, with an increased 440 

spread of values with increasing magnitude of event precipitation accumulation.       

Applying the CFD transfer function results in a greatly reduced spread of values about the 1-to-1 line (Fig. 5d). The spread 

does not appear to increase with increasing precipitation accumulation. The overall RMSE is reduced to 0.08 mm, 2.5 times 

lower than that for the KUniversal transfer function, with a bias error of 0.011 mm and correlation coefficient of 0.986 (Table 3). 

The RMSE is reduced from 0.25 mm for the KUniversal transfer function to 0.04 mm using the CFD transfer function for rain, 445 

and from 0.33 mm to 0.07 mm (4.7 times lower) for mixed precipitation, while RMSE results for undefined precipitation and 

snow are within 0.01 mm (Table 7). Reductions in the RMSE using the CFD transfer function compared with the KUniversal 

transfer function are most pronounced for mean event temperatures between -5 C and 2 C (Table 8). Over this temperature 

range, rain, mixed precipitation, and snow may be present, corresponding to a wide range of fall velocities and collection 

efficiencies. The CFD transfer function is better able to distinguish among these precipitation types – and their respective 450 
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collection efficiencies – based on its dependence on hydrometeor fall velocity. Across the fall velocity classifications in Table 

9, the RMSE using the CFD transfer function increases from 0.04 mm for fall velocities greater than 2.5 m s-1 to 0.10 mm for 

fall velocities less than 1.5 m s-1. As shown in Table 9, the RMSE for the CFD transfer function matches the value for 

unadjusted measurements at fall velocities greater than 2.5 m s-1, where collection efficiencies are close to 1. At lower fall 

velocities, where the bias due to gauge undercatch is more prevalent, the RMSE values for the CFD function are lower than 455 

those for the unadjusted measurements.  

Using the HE1 transfer function results in similar overall improvement in the agreement between adjusted and DFAR 

accumulation values as observed for the CFD function (Fig. 5e). The adjusted values appear to be distributed symmetrically 

about the 1-to-1 line. Furthermore, there is close agreement over the full range of accumulation values; that is, the spread in 

values does not increase with the magnitude of precipitation accumulation. This results in a lower RMSE of 0.09 mm and a 460 

higher correlation coefficient of 0.983 relative to the KCARE transfer function results. While the RMSE for rain (0.04 mm) using 

the HE1 transfer function is improved compared with the KCARE transfer function results, the RMSE for mixed precipitation is 

only marginally better (0.17 mm).  

Applying the HE2 transfer function provides further improvement, with adjusted accumulation values more tightly clustered 

around the 1-to-1 line (Fig. 5f). The overall RMSE is 0.07 mm, which is 3.3 times lower than that for the unadjusted unshielded 465 

gauge measurements, and 1.8 times lower than the KCARE transfer function based on mean event temperature and wind speed. 

The HE2 transfer function exhibits the lowest overall RMSE for snow (0.09 mm), with a RMSE of 0.09 mm for mixed 

precipitation, which is slightly higher than that for the CFD function (0.07 mm), but much lower than that for the KCARE (0.22 

mm) and HE1 (0.17 mm) transfer functions. Further, the correlation coefficient of 0.988 is the highest among the transfer 

functions assessed. 470 

4 Discussion 

Transfer functions were derived using accumulated precipitation amounts reported by automatic weighing precipitation gauges 

over 30 minute periods. A 0.25 mm accumulation threshold was applied to reference measurements from a DFAR, 

corresponding to an average precipitation rate of 0.5 mm/h over 30 minutes. A lower threshold of 0.075 mm was applied to 

measurements from the unshielded Geonor gauge to ensure collection efficiency estimates were reliable. This approach is 475 

consistent with that used in SPICE (Nitu et al., 2018) and the related derivation of transfer functions (Kochendorfer et al., 

2017a). While automatic precipitation gauges can report at a temporal resolution of one minute, or even higher, the extension 

of the transfer function derivation and evaluation to other temporal periods, or different accumulation thresholds, is beyond 

the scope of this work.  

The Kochendorfer et al. (2017a) universal transfer function with wind speed and air temperature dependence, KUniversal, was 480 

derived from measurements at eight SPICE sites in the interest of making the transfer function broadly applicable across 

different climates. This broad applicability is furthered by the widespread availability of air temperature and wind speed 
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measurements at meteorological stations. Recent studies have demonstrated that the performance of KUniversal can vary 

substantially by site (Smith et al., 2020). Therefore, site-specific KCARE transfer function coefficients were also derived for 

comparison in the present study.  485 

The KCARE transfer function has a lower temperature threshold and exhibits larger increases in collection efficiency with 

increasing temperature relative to KUniversal (Fig. 4a). These differences improved the overall RMSE for KCARE by reducing the 

over-adjustment of some rain and mixed precipitation events; however, this improvement came at the expense of under-

adjusting some snow events at warmer temperatures. The use of this approach warrants further study over longer periods to 

better understand the performance impacts of seasonal variability and assessment at other sites and climate regions with 490 

different precipitation characteristics and proportions.  

Both the KUniversal and KCARE transfer functions performed well for snow, but were limited by their ability to distinguish among 

snow, rain, and mixed precipitation at temperatures between -5 C and 2 C. The largest uncertainties in collection efficiency 

and adjusted accumulation estimates were observed over this temperature range. Adjustments using wind speed and 

hydrometeor fall velocity, however, addressed this shortcoming and provided improved collection efficiency and adjusted 495 

accumulation estimates.   The CFD transfer function, derived from time-averaged numerical simulation results over a wide 

range of wind speeds and hydrometeor fall velocities, resulted in low RMSE values overall and across rain, snow, mixed, and 

undefined precipitation types. These results demonstrate the fundamental importance of both wind speed and hydrometeor fall 

velocity on gauge collection efficiency predicted by the model results of Part I and earlier studies (Nešpor and Sevruk, 

1999;Thériault et al., 2012). This transfer function exhibited the lowest RMSE of all transfer functions for mixed precipitation 500 

and for intermediate fall velocities between 1.5 m s-1 to 2.5 m s-1, which is attributed to its nonlinear increase in collection 

efficiency with fall velocity. As this transfer function was derived theoretically, it is applicable across different sites and climate 

regimes with different types and relative proportions of hydrometeors. The present results also support the methodology for 

the CFD model, which can be extended to other shield and gauge combinations.  

The HE1 transfer function showed good results for snow, supporting its use for the unshielded gauge. This approach is 505 

straightforward to implement based on its simplicity, and is less reliant on the accuracy of fall velocity estimates beyond the 

fall velocity cutoff. The collection efficiency for the HE1 transfer function decreases to zero at a wind speed of 7.19 m s-1. 

This demonstrates the limitation of adjusting unshielded gauge snow measurements at windy sites, where the 30-minute mean 

wind speeds exceed the cutoff value and the captured accumulations are small relative to gauge uncertainties. The latter can 

lead to large uncertainty in adjusted measurements, as demonstrated by other studies applying transfer functions to unshielded 510 

gauge measurements at windy sites (Smith et al., 2020). The numerical results in Part I suggest a more gradual decrease in 

collection efficiency at higher wind speeds compared with the HE1 transfer function, as some hydrometeors with higher fall 

velocities are still able to be captured by the gauge; however, these accumulations remain small relative to gauge uncertainties, 

particularly in windy conditions, making them difficult to assess. The use of shielding or gauges with higher sensitivity could 

extend the applicability of this approach for use at windy sites.  515 
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A limitation of the HE1 transfer function is the minimal improvement in the RMSE for mixed precipitation and fall velocities 

between 1.5 m s-1 to 2.0 m s-1 relative to the KCARE function. This is due to the over-adjustment of mixed precipitation events 

with fall velocities slightly below the cutoff value, and the under-adjustment of mixed precipitation events with fall velocities 

slightly above the cutoff. While the RMSE for mixed precipitation is still lower than that for adjustments based on temperature 

and wind speed (KUniversal, KCARE), further improvements are obtained by using transfer functions with continuous fall velocity 520 

dependence; specifically, the CFD and HE2 transfer functions.   

The HE2 transfer function, with a linear increase in collection efficiency with fall velocity, yields a greater reduction in the 

RMSE for mixed precipitation relative to the HE1 transfer function. The HE2 transfer function results show a higher RMSE 

for mixed precipitation than those for the CFD function, possibly due to the nonlinearity in the latter with fall velocity. The 

HE2 transfer function, however, yields the best RMSE results for snow, temperatures below -5 C, and fall velocities below 525 

1.5 m s-1. Adjusted uncertainties for snow are approximately two times higher than those for rain, and show similar trends with 

increasing temperature and decreasing fall velocity. The former may be due to the lower event accumulations for snow relative 

to rain, with measured values in closer proximity to the gauge uncertainty. While this transfer function was derived using the 

CARE dataset, it is more universally applicable than adjustments based on temperature, for which the relative proportions of 

rain, snow, and mixed precipitation at warmer temperatures can influence fit results. Further testing at other sites is 530 

recommended to assess this in different climate regions, with different hydrometeor types and associated fall velocities.    

It is evident that the performance of catchment-type precipitation gauges is dependent on wind speed and the aerodynamic 

properties of both the gauge and incident hydrometeors (Nešpor and Sevruk, 1999;Thériault et al., 2012;Colli et al., 2016b). 

Part I of this study demonstrated this dependence from a theoretical perspective, resulting in a transfer function that 

incorporates hydrometeor fall velocity. The present contribution validated this approach, which resulted in improved 535 

precipitation estimates from an unshielded gauge relative to those using surface temperature as a proxy for precipitation phase 

or type. Indeed, the use of surface temperature in this manner can be instructive, but does not capture the conditions defining 

hydrometeor initiation and growth aloft (Kienzle, 2008;Harder and Pomeroy, 2013;Thériault et al., 2012).   

In this study, the fall velocity of hydrometeors reported by the POSS provided direct measurement of a key parameter related 

to the aerodynamics of the catchment process. In Canada, the POSS was deployed operationally to report present weather as 540 

part of an automatic weather station. Globally, other types of disdrometers (e.g. OTT Parsivel2, Thies Laser Precipitation 

Monitor) have been deployed operationally and can also provide hydrometeor vertical velocities. The uncertainty in fall 

velocity estimates for different technologies, hydrometeor types, sizes, fall velocities, wind speeds, and wind directions 

remains to be assessed. These sensors can also be useful for reporting present weather and verifying the occurrence of 

precipitation based on their high sensitivity (Nitu et al., 2018;Sheppard and Joe, 2000).  545 

The results from this study demonstrate that the combined use of accumulation reports from an unshielded weighing gauge 

with fall velocities reported by a disdrometer, wind speed measurements, and an appropriate transfer function can greatly 

reduce the uncertainty of precipitation accumulation measurements. At high wind speeds (> 7 m s-1), the unshielded gauge 

catch may be insufficient for adjustment due to the low measured quantities. The extension of the approach in the present study 
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to shielded precipitation gauges or gauge designs with higher sensitivity may provide a means of reducing the measurement 550 

uncertainty for automatic gauges in windy environments. Application to light snow events and different event durations are 

other areas for future study. 

5 Conclusions 

Three collection efficiency transfer functions with gauge height wind speed and precipitation fall velocity dependence are 

presented for unshielded Geonor T-200B3 precipitation gauges and compared to universal and site-specific transfer functions 555 

with wind speed and temperature dependence. These functions employ different models to adjust precipitation accumulation 

measurements for wind-induced undercatch, including:  

 (1) The nonlinear CFD transfer function model presented in Part I, with collection efficiency decreasing with wind speed and 

increasing with precipitation fall velocity. 

(2) The HE1 transfer function, with a linear decrease in collection efficiency with wind speed for 30-minute mean fall velocity 560 

below 1.93 m s-1, and a collection efficiency of 1 above this value.  

(3) The HE2 transfer function, with the linear wind speed dependence transitioning with increasing mode fall velocity to 

provide a collection efficiency of 1 when the mode fall velocity reaches 2.81 m s-1.  

These transfer functions were assessed using accumulation measurements from an unshielded precipitation gauge and DFAR 

gauge over 30-minute precipitation events during two winter seasons at the CARE test site in Egbert, ON, Canada. Estimates 565 

of fall velocity were provided by the POSS upward-facing Doppler radar.  

All transfer functions presented in this study improved the agreement between the 30-minute adjusted precipitation 

accumulation values and DFAR reference values relative to the KUniversal and KCARE transfer function based on mean wind 

speed and air temperature. The CFD transfer function agreed well with experimental results over all observed fall velocities 

supporting the use of the modelling approach in Part I. The HE1 transfer function captured the collection efficiency trends for 570 

rain and snow well, with the collection efficiency for rain close to 1 and the collection efficiency for snow decreasing with 

wind speed. The HE2 transfer function better captured the collection efficiency for mixed precipitation with fall velocities 

between 1.2 m s-1 to 4.6 m s-1. Site-specific transfer functions (KCARE) based on wind speed and temperature can also be 

employed to reduce the RMSE of measurements from unshielded weighing gauges relative to universal functions. The most 

significant reductions in RMSE, however, were observed for the transfer functions based on wind speed and hydrometeor fall 575 

velocity.  

The results of this study further demonstrate the important role of fall velocity on collection efficiency shown in previous 

studies (Nešpor and Sevruk, 1999;Thériault et al., 2012). Adjustment approaches incorporating fall velocity show tremendous 

value and potential, particularly in the general situation where DFAR measurements are not feasible, and can be applied where 

the precipitation type is complex (e.g. snow transitioning to rain), uncertain, or even unknown. These approaches warrant 580 

further investigation at different sites with different precipitation characteristics, fall velocities, and wind speeds. Further study 
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to assess the collection efficiency relationships with wind speed and precipitation fall velocity for different shield 

configurations, as well as assessing the fall velocity using other means, including disdrometers or remote sensing, is also 

recommended.  

 585 

Disclaimer. Many of the results presented in this work were obtained as part of the Solid Precipitation Intercomparison 

Experiment (SPICE) conducted on behalf of the World Meteorological Organization (WMO) Commission for Instruments and 

Methods of Observation (CIMO). The POSS was not included as part of the SPICE intercomparison. The analysis and views 

described herein are those of the authors, and do not represent the official outcome of WMO-SPICE. Mention of commercial 

companies or products is solely for the purposes of information and assessment within the scope of the present work, and does 590 

not constitute a commercial endorsement of any instrument or instrument manufacturer by the authors or the WMO.  

 

Author contribution. J.H. was the lead author and was responsible for the methodology, analysis, visualization, and manuscript 

preparation and editing. M.E.E. provided guidance for the methodology, analysis, visualization, and writing – review and 

editing. P.I.J. provided guidance for the analysis, interpretation of results, visualization, and writing – review and editing.  595 

 

Acknowledgements. The authors would like to acknowledge the encouragement and support of Rodica Nitu for this field of 

study. Thank-you to Christine Best, Pierrette Blanchard, and Sorin Pinzariu for supporting this work and Brian Sheppard for 

helpful discussions regarding the POSS. Thank-you to Hagop Mouradian, Sorin Pinzariu, and Lillian Yao for the data logger 

programming, electrical wiring, site maintenance, data ingest, and quality control for the CARE test site. The authors would 600 

also like to thank the WMO-SPICE team for their contributions and for discussions inspiring many facets of this work.  

 

Data availability. The unshielded and reference event accumulations, wind speed, temperature, mean and mode fall velocity, 

and precipitation type data used in this study will be made available in a suitable online repository.  

 605 

Competing interests. The authors declare that they have no conflict of interest. 

References 

Baghapour, B., and Sullivan, P. E.: A CFD study of the influence of turbulence on undercatch of precipitation gauges, Atmospheric Research, 

197, 265-276, https://doi.org/10.1016/j.atmosres.2017.07.008, 2017. 

Baghapour, B., Wei, C., and Sullivan, P. E.: Numerical simulation of wind-induced turbulence over precipitation gauges, Atmospheric 610 
Research, 189, 82-98, https://doi.org/10.1016/j.atmosres.2017.01.016, 2017. 

Canada: Precipitation Occurrence Sensor System (POSS) Technical Manual, Environment Canada, 1995. 

Colli, M.: Assessing the accuracy of precipitation gauges: a CFD approach to model wind induced errors, PhD, Department of Civil, 

Chemical and Environmental Engineering, University of Genova, 2014. 

https://doi.org/10.5194/hess-2020-554
Preprint. Discussion started: 26 November 2020
c© Author(s) 2020. CC BY 4.0 License.



26 

 

Colli, M., Lanza, L. G., Rasmussen, R., and Thériault, J. M.: A CFD Evaluation of wind induced errors in solid precipitation measurements, 615 
TECO 2014, St. Petersburg, Russia, 2014. 

Colli, M., Rasmussen, R., Thériault, J. M., L.G., L., Baker, B., and Kochendorfer, J.: An improved trajectory model to evaluate the collection 

performance of snow gauges, J. App. Met. & Clim., 54, 1826-1836, https://doi.org/10.1175/JAMC-D-15-0035.1, 2015. 

Colli, M., Lanza, L. G., Rasmussen, R., and Thériault, J. M.: The collection efficiency of shielded and unshielded precipitation gauges. Part 

I: CFD airflow modeling, J. Hydromet., 17, 231-243, https://doi.org/10.1175/JHM-D-15-0010.1, 2016a. 620 

Colli, M., Lanza, L. G., Rasmussen, R., and Thériault, J. M.: The collection efficiency of shielded and unshielded precipitation gauges. Part 

II: Modeling particle trajectories., J. Hydromet., 17, 245-255, https://doi.org/10.1175/JHM-D-15-0011.1, 2016b. 

Constantinescu, G. S., Krajewski, W. F., Ozdemir, C. E., and Tokyay, T.: Simulation of airflow around rain gauges: comparison of LES and 

RANS models, Adv. Water Resour., 30, 43-58, https://doi.org/10.1016/j.advwatres.2006.02.011, 2007. 

Goodison, B. E.: Accuracy of Canadian snow gauge measurements, Journal of Applied Meteorology, 17, 1542-1548, 625 
https://doi.org/10.1175/1520-0450(1978)017<1542:AOCSGM>2.0.CO;2, 1978. 

Goodison, B. E., Louie, P. Y. T., and Yang, D.: WMO solid precipitation measurement intercomparisonWMO/TD 872, 1998. 

Harder, P., and Pomeroy, J.: Estimating precipitation phase using a psychrometric energy balance method, Hydrological Processes, 1901-

1914, 10.1002/hyp.9799, 2013. 

Hoover, J., Sullivan, P. E., Joe, P. I., and Earle, M. E.: Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor 630 
fall velocity. Part I: modelling results, Hydol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-553, 2020. 

Khvorostyanov, V. I., and Curry, J. A.: Fall velocities of hydrometeors in the atmosphere: refinements to a continuous analytical power law, 

Journal of Atmospheric Sciences, 62, 4343-4357, https://doi.org/10.1175/JAS3622.1, 2005. 

Kienzle, S. W.: A new temperature based method to separate rain and snow, Hydrological Processes, 5067-5085, 10.1002/hyp.7131, 2008. 

Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., 635 
Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrue, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, 

A., and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-

SPICE, Hydrol. Earth Syst. Sci., 21, 3525-3542, https://doi.org/10.5194/hess-21-3525-2017, 2017a. 

Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M. E., Meyers, T., Landolt, S., Jachcik, A., Isaksen, K., Braekkan, R., and 

Leeper, R.: The quantification and correction of wind-induced precipitation measurement errors, Hydrol. Earth Syst. Sci., 1793-1989, 640 
https://doi.org/10.5194/hess-21-1973-2017, 2017b. 

Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., M.E., E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., 

Roulet, Y.-A., Meyers, T., Buisan, S., Isaksen, K., Braekkan, R., Landolt, S., and Jachcik, A.: Testing and development of transfer 

functions for weighing precipitation gauges in WMO-SPICE, Hydol. Earth Syst. Sci., 22, 1437-1452, https://doi.org/10.5194/hess-22-

1437-2018, 2018. 645 

Koltzow, M., Casati, B., Haiden, T., and Valkonen, T.: Verification of solid precipitation forecasts from numerical weather prediction models 

in Norway, Weather and Forecasting, https:\\10.1175/WAF-D-20-0060.1., 2020. 

Nešpor, V., and Sevruk, B.: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation, Journal of 

Atmospheric & Oceanic Technology, 16, 450-464, https://doi.org/10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2, 1999. 

Nitu, R., Roulet, Y.-A., Wolff, M., Earle, M., Reverdin, A., Smith, C., Kochendorfer, J., Morin, S., Rasmussen, R., Wong, K., Alastrué, J., 650 
Arnold, L., Baker, B., Buisán, S., Collado, J. L., Colli, M., Collins, B., Gaydos, A., Hannula, H.-R., Hoover, J., Joe, P., Kontu, A., Laine, 

T., Lanza, L., Lanzinger, E., Lee, G., Lejeune, Y., Leppänen, L., Mekis, E., Panel, J.-M., Poikonen, A., Ryu, S., Sabatini, F., Theriault, 

J., Yang, D., Genthon, C., Heuvel, F. v. d., Hirasawa, N., Konishi, H., Nishimura, K., and Senese, A.: WMO Solid Precipitation 

Intercomparison Experiment (SPICE), World Meteorological Organization131, 2018. 

Rasmussen, R., Dixon, M., Hage, F., Cole, J., Wade, C., Tuttle, J., McGettigan, S., Carty, T., Stevenson, L., and Fellner, W.: Weather support 655 
to deicing decision making (WSDDM): a winter weather nowcasting system, Bulletin of the American Meteorological Society, 82, 579-

595, 2001. 

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Theriault, J. M., Kucera, P., Gochis, D., Smith, 

C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How well are we measuring snow: the NOAA/FEE/NCAR winter precipitation test 

bed, BAMS, http://dx.doi.org/10.1175/BAMS-D-11-00052.1, 2012. 660 

https://doi.org/10.5194/hess-2020-554
Preprint. Discussion started: 26 November 2020
c© Author(s) 2020. CC BY 4.0 License.



27 

 

Sheppard, B. E.: Measurement of raindrop size distributions using a small Doppler radar, J. Atmos. Oceanic Technol., 7, 255-268, 

https://doi.org/10.1175/1520-0426(1990)007<0255:MORSDU>2.0.CO;2, 1990. 

Sheppard, B. E., and Joe, P. I.: Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG 

spectrometer, and a POSS dopler radar, J. Atmos. Oceanic Technol., 11, 874-887, https://doi.org/10.1175/1520-

0426(1994)011<0874:CORSDM>2.0.CO;2, 1994. 665 

Sheppard, B. E., Joe, P., Oleskiw, M., and Kouwen, N.: Quantitative measurement of snow mass concentration using the POSS, Conf. on 

Observations and Instrumentation, Charlotte, NC, 1995. 

Sheppard, B. E., and Joe, P. I.: Automated precipitation detection and typing in winter: a two-year study, J. Atmos. Oceanic Technol., 17, 

1493-1507, https://doi.org/10.1175/1520-0426(2000)017<1493:APDATI>2.0.CO;2, 2000. 

Sheppard, B. E.: Sampling errors in the measurement of rainfall parameters using the Precipitation Occurence Sensor System (POSS), J. 670 
Atmos. Oceanic Technol., 24, 125-140, https://doi.org/10.1175/JTECH1956.1, 2007. 

Sheppard, B. E., and Joe, P. I.: Performance of the Precipitation Occurrence Sensor System as a Precipitation Gauge, Journal of Atmospheric 

& Oceanic Technology, 25, https://doi.org/10.1175/2007JTECHA957.1, 2008. 

Smith, C. D.: Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield, 

87th Annual AMS Meeting, San Antonio, TX, 2007. 675 

Smith, C. D., Ross, A., Kochendorfer, J., Earle, M. E., Wolff, M., Buisan, S., Roulet, Y.-A., and Laine, T.: Evaluation of the WMO Solid 

Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements, 

Hydol. Earth Syst. Sci., 24, 4025-4043, https://doi.org/10.5194/hess-24-4025-2020, 2020. 

Thériault, J. M., Rasmussen, R., Ikeda, K., and Landolt, S.: Dependence of Snow Gauge Collection Efficiency on Snowflake Characteristics, 

Journal of Applied Meteorology & Climatology, 51, https://doi.org/10.1175/JAMC-D-11-0116.1, 2012. 680 

Thériault, J. M., Rasmussen, R., Petro, E., Trépanier, J.-Y., Colli, M., and Lanza, L. G.: Impact of wind direction, wind speed, and particle 

characteristics on the collection efficiency of the double fence intercomparison reference, Journal of Applied Meteorology and 

Climatology, 54, 1918-1930, https://doi.org/10.1175/JAMC-D-15-0034.1, 2015. 

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous adjustment 

function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrol. Earth Syst. Sci., 19, 951-685 
967, https://doi.org/10.5194/hess-19-951-2015, 2015. 

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., and Hanson, C. L.: Accuracy of NWS 8" standard 

nonrecording precipitation gauge: results and application of WMO intercomparison, Journal of Atmospheric & Oceanic Technology, 

15, 54-68, https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2, 1998. 

Yang, D., Kane, D., and Zhang, Z.: Bias corrections of long-term (1973-2004) daily precipitation data over the northern regions, Geophysical 690 
Research Letters, 32, 1-5, https://doi.org/10.1029/2005GL024057, 2005. 

Yang, D., and Simonenko, A.: Comparison of Winter Precipitation Measurements by Six Tretyakov Gauges at the Valdai Experimental Site, 

Atmosphere-Ocean, 1-15, https://doi.org/10.1080/07055900.2013.865156, 2013. 

Yang, D.: Double fence intercomparison reference (DFIR) vs. bush gauge for 'true' snowfall measurement, Journal of Hydrology, 509, 94-

100, https://doi.org/10.1016/j.jhydrol.2013.08.052, 2014. 695 

 

 

https://doi.org/10.5194/hess-2020-554
Preprint. Discussion started: 26 November 2020
c© Author(s) 2020. CC BY 4.0 License.


