
1 

Unshielded Precipitation Gauge Collection Efficiency with Wind 

Speed and Hydrometeor Fall Velocity 

Jeffery Hoover1, Michael E. Earle1, Paul I Joe1, Pierre E. Sullivan2

1Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada 
2Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada 5 

Correspondence to: Jeffery Hoover (jeffery.hoover@canada.ca) 

Abstract. Collection efficiency transfer functions that compensate for wind-induced collection loss are presented and 

evaluated for unshielded precipitation gauges. Three novel transfer functions with wind speed and precipitation fall velocity 

dependence are developed, including a function from computational fluid dynamics modelling (CFD), an experimental fall 

velocity threshold function (HE1), and an experimental linear fall velocity dependence function (HE2). These functions are 10 

evaluated alongside universal (KUniversal) and climate-specific (KCARE) transfer functions with wind speed and temperature 

dependence. Transfer function performance is assessed using 30-minute precipitation event accumulations reported by 

unshielded and shielded Geonor T-200B3 precipitation gauges over two winter seasons. The latter gauge was installed in a 

Double Fence Automated Reference (DFAR) configuration. Estimates of fall velocity were provided by a Precipitation 

Occurrence Sensor System (POSS). The CFD function reduced the RMSE (0.08 mm) relative to KUniversal (0.20 mm), KCARE 15 

(0.13 mm), and the unadjusted measurements (0.24 mm), with a bias error of 0.011 mm. The HE1 function provided a RMSE 

of 0.09 mm and bias error of 0.006 mm, capturing well the collection efficiency trends for rain and snow. The HE2 function 

better captured the overall collection efficiency, including mixed precipitation, resulting in a RMSE of 0.07 mm and bias error 

of 0.006 mm.  These functions are assessed across solid and liquid hydrometeor types and for temperatures between -22 °C 

and 19 °C. The results demonstrate that transfer functions incorporating hydrometeor fall velocity can dramatically reduce the 20 

uncertainty of adjusted precipitation measurements relative to functions based on temperature.    
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1 Introduction 

Automated catchment-type precipitation gauge measurements are critical as references for, and input to, weather, climate, 25 

hydrology, transportation, and remote sensing applications. The systematic bias and uncertainty of gauge measurements due 

to wind-induced undercatch is a major challenge, particularly with respect to the measurement of mixed and solid precipitation 

(Rasmussen et al., 2012;Kochendorfer et al., 2018). For example, an unshielded weighing precipitation gauge can capture less 

than 50% of the actual amount of solid precipitation falling in air when the wind speed exceeds 5 m s-1 (Kochendorfer et al., 

2017b). This measurement challenge has prompted: (1) modelling studies to better understand and visualize the undercatch of 30 

hydrometeors by precipitation gauges; and (2) the development of transfer functions to adjust measurements for undercatch 

effects. Previous work in each of these domains is outlined in Sections 1.1 and 1.2, respectively. The objectives of the present 

study, which implements numerical modelling and experimental analysis to develop transfer functions with wind speed and 

hydrometeor fall velocity dependence, are presented in Section 1.3. 

1.1 Modelling studies 35 

Computational fluid dynamics (CFD) studies have been used to simulate the airflow around precipitation gauges and the 

associated collection efficiencies for rain and solid precipitation (Nešpor and Sevruk, 1999;Constantinescu et al., 2007;Colli, 

2014;Colli et al., 2014;Colli et al., 2015;Colli et al., 2016a;Colli et al., 2016b;Thériault et al., 2012;Thériault et al., 

2015;Baghapour and Sullivan, 2017;Baghapour et al., 2017). These studies have demonstrated the influence of wind speed, 

turbulence, hydrometeor characteristics (size, density, drag, terminal velocity), and gauge and shield geometry on precipitation 40 

gauge undercatch. For rainfall, Nešpor and Sevruk (1999) showed increases in wind-induced error for smaller drop sizes with 

lower terminal velocities, with errors increasing for higher wind speeds. The conversion factor (inverse of integral collection 

efficiency) varied with the precipitation intensity and rainfall type, which influenced the distribution of hydrometeor sizes and 

terminal velocities. Thériault et al. (2012) demonstrated similar trends for snowfall, with collection efficiencies varying 

significantly with the type of solid precipitation and size distribution. Simulated collection efficiencies for wet snow and dry 45 

snow hydrometeors captured the general upper and lower bounds of experimental observations, respectively, with the lower 

collection efficiency for dry snow hydrometeors attributed to their lower terminal velocity and interaction with the local airflow 

around the gauge.  

For a Geonor gauge with single-Alter shield, Thériault et al. (2012) used a constant drag coefficient hydrometeor tracking 

model to develop a series of transfer functions based on wind speed for different hydrometeor types. Colli et al. (2015) extended 50 

this work to show the influence of different hydrometeor drag models on collection efficiency results. Empirical drag model 

results (Khvorostyanov and Curry, 2005), based on the relative hydrometeor-to-air velocity over the hydrometeor trajectory, 

were shown to yield higher collection efficiencies compared with constant drag coefficient results that can overestimate drag 

values. Colli et al. (2015) developed transfer functions based on wind speed for unshielded and single-Alter-shielded gauges 

for three specific hydrometeor size distributions. Further studies, using computationally intensive Large Eddy Simulation 55 
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models, better resolved the intensity and spatial extent of turbulence around the gauge orifice, which can lead to temporal 

variations in collection efficiency results (Colli et al., 2016a;Colli et al., 2016b;Baghapour and Sullivan, 2017;Baghapour et 

al., 2017). The degree of turbulence was found to vary depending on the specific shield configuration and wind speed 

(Baghapour et al., 2017).  

1.2 Transfer functions 60 

Intercomparisons of precipitation gauges have served as the primary mechanism for developing transfer functions. In the 1998 

World Meteorological Organization (WMO) Solid Precipitation Measurement Intercomparison, transfer functions were 

determined experimentally by comparing measurements from different gauges (primarily manual) with those from a manual 

collector with a Tretyakov shield in the WMO Double Fence Intercomparison Reference (DFIR) configuration (Goodison et 

al., 1998). Precipitation events were monitored by observers, who reported the amount and type of snow, wind speed, and 65 

temperature statistics for each event. Events were defined based on the duration of continuous snowfall when the reference 

DFIR precipitation accumulation was greater than or equal to 3 mm. Adjustment functions for unshielded gauge collection 

efficiencies were recommended for snow, mixed precipitation, and rain, based on the wind speed at gauge height (Goodison, 

1978;Goodison et al., 1998;Yang et al., 1998). While these adjustments could be applied to manual precipitation accumulation 

measurements, their application to automated measurements at shorter time scales, and where the precipitation type may not 70 

be well defined, presents a significant challenge (Colli, 2014;Colli et al., 2014;Colli et al., 2016a;Colli et al., 2016b;Thériault 

et al., 2015;Thériault et al., 2012) 

The WMO commissioned another intercomparison, the Solid Precipitation Intercomparison Experiment (SPICE), to assess 

various automated technologies for the measurement of precipitation accumulation and snow depth, and to recommend 

automated field reference systems (Nitu et al., 2018). An automated precipitation gauge configured with a single-Alter shield 75 

within a DFIR fence was chosen as the field reference configuration for precipitation accumulation; this was referred to as the 

Double Fence Automated Reference (DFAR) configuration. Transfer functions for unshielded and shielded gauges were 

derived as an exponential function of wind speed following the approach of Goodison (1978) and using 30-minute precipitation 

events from the SPICE data set (Kochendorfer et al., 2017a). Separate functions were developed for solid precipitation and 

mixed precipitation, as defined by air temperature ranges: less than -2 C for solid precipitation, and between -2 C and 2 C 80 

for mixed precipitation.  

Using Bayesian analysis of Norwegian measurement data, Wolff et al. (2015) developed a precipitation phase-independent, 

continuous transfer function with respect to wind speed and air temperature for a single-Alter shielded Geonor precipitation 

gauge. A similar, but less complex, function was developed by Kochendorfer et al. (2017a;2018) using the SPICE data set, 

including results from eight measurement sites in Canada, Norway, Finland, Spain, Switzerland, and the USA. The application 85 

of this “universal” function to precipitation accumulation measurements from unshielded weighing gauges in SPICE was 

shown to reduce the overall bias relative to the DFAR; however, reductions in the root mean square error (RMSE) were less 

significant (Kochendorfer et al., 2017a;2017b;2018;Wolff et al., 2015).  
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When applying universal adjustments with wind speed and air temperature dependence, the errors can vary significantly by 

site, presumably driven by differences in climatology (Smith et al., 2020;Kochendorfer et al., 2017a). This has motivated 90 

further work on climate-specific transfer functions (Koltzow et al., 2020;Smith et al., 2020). Other studies have proposed the 

use of precipitation intensity for the improved adjustment of solid precipitation (Chubb et al., 2015;Colli et al., 2020). Another 

potential avenue for reducing errors in adjusted measurements is by improving the ability of transfer functions to distinguish 

among different precipitation types and their aerodynamic properties (Thériault et al., 2012;Wolff et al., 2015;Nešpor and 

Sevruk, 1999).  95 

1.3 Objectives 

In this work, adjustment functions incorporating hydrometeor fall velocity are developed to reduce the uncertainty (RMSE) in 

collection efficiency and precipitation accumulation estimates from unshielded Geonor T-200B3 precipitation gauges. The 

unshielded gauge configuration allows for the assessment of a broader range of collection efficiencies, as the degree of 

undercatch is generally more pronounced for unshielded gauges relative to shielded configurations. Further, by focussing on 100 

the unshielded configuration, no assumptions are required regarding the behaviour of the shield slats and their role in 

momentum reduction and turbulence generation around the gauge.  

A combined modelling and experimental approach is used in this study. In the modelling component, computational fluid 

dynamics and Lagrangian analysis is used to characterize the gauge collection efficiency dependence explicitly in terms of 

wind speed and hydrometeor fall velocity, and to derive a corresponding transfer function. Details of the modelling work are 105 

included in the supplement. In the experimental component, fall velocity and precipitation type estimates from a Precipitation 

Occurrence Sensor System (POSS) are used to investigate how the hydrometeor properties influence the relationships among 

measured catch efficiency, wind speed, and temperature. Two additional transfer functions are derived experimentally with 

wind speed and fall velocity dependence. These new transfer functions are assessed against transfer functions with dependence 

on wind speed and air temperature, including one of the universal functions developed by Kochendorfer et al. (2017a) and a 110 

climate-specific function derived herein using a similar methodology.  

42 Experimental mMethod 

2.1 Computational fluid dynamicsCFD model 

A computational fluid dynamics model was used to characterize the collection efficiency dependence with wind speed and 

hydrometeor fall velocity. The model is detailed in the supplement (Sect. S1.1). Briefly, a high-resolution 3-dimensional 115 

computer aided design model of the Geonor T-200B3 600 mm capacity gauge (hereafter Geonor gauge) with 2 m gauge orifice 

height was developed for the analysis. Time-averaged Navier-Stokes equations and a k– turbulence model with 5 % turbulence 

intensity at the inlet (Kato and Launder, 1993) were used to model the airflow around the gauge for horizontal wind speeds 
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(Uw) from 0 to 10 m s-1, applied in 1 m s-1 increments. Separate simulations were conducted for each wind speed using 

monodispersed hydrometeors (Sect. S1.2) and size distributions for specified hydrometeor types (Sect. S1.3).  120 

42.1 2 Instrumentation 

Experimental measurements were performed in conjunction with SPICE over the 2013/14 and 2014/15 winter periods 

(November 1 to April 30) at the Centre for Atmospheric Research Experiments (CARE) site in Egbert, Ontario, Canada. 

Measurements of precipitation accumulation were performed using 600 mm capacity Geonor T-200B3 gauges in unshielded 

and reference DFAR configurations. Both gauges were securely mounted on concrete foundations to limit wind-induced 125 

vibrations. The performance of these gauges was confirmed by full-scale field verifications at the start and end of testing, with 

annual maintenance to inspect, clean, level, and recharge each gauge. The gauges were charged with a mixture of antifreeze 

(60% methanol and 40% propylene glycol) and oil (Esso Bayol 35 in 2013/14, discontinued; Exxon Mobil Isopar M in 

2014/15).  

Measurements of precipitation occurrence were obtained using a Thies Laser Precipitation Monitor (LPM) installed inside the 130 

inner fence of the DFAR. Wind speed and direction measurements at 2 m gauge height were performed with a Vaisala WS425 

ultrasonic wind sensor adjacent to the unshielded gauge. Temperature was measured with a Yellow Springs International model 

44212 thermistor in an aspirated Stevenson screen. Further details are available in the SPICE final report (Nitu et al., 2018). 

24.2 3 Data sSampling, quality control, and precipitation event selection 

The instruments were sampled using a Campbell Scientific CR3000 data logger. For each Geonor T-200B3 precipitation gauge, 135 

the frequency and precipitation accumulation for each of the three transducers was reported at 6-second intervals, the latter 

computed from the former using manufacturer-provided calibration coefficients. Minutely measurements of precipitation 

occurrence from the Thies LPM were recorded. The scalar average wind speed and vector average wind direction were 

recorded over 1-minute intervals. Based on SPICE procedures, these data were processed using a format check to replace 

missing data with null values, a range check to identify and remove outliers outside the manufacturer-specified output 140 

thresholds, a jump filter to remove spikes exceeding maximum point-to-point variation thresholds, and a Gaussian filter to 

smooth out high frequency noise in Geonor precipitation accumulation measurements (Nitu et al., 2018). Periods of instrument 

maintenance and power outages were removed from the analysis. The Geonor accumulation data were aggregated to 1-minute 

intervals for subsequent analysis. 

Precipitation events were identified during both measurement periods using the SPICE event selection procedure (Nitu et al. 145 

2018). These events were defined as 30-minute periods with at least 0.25 mm of precipitation recorded by the reference DFAR 

precipitation gauge and at least 60% precipitation occurrence reported by the Thies LPM. The use of the LPM as a secondary 

confirmation of precipitation occurrence minimizes the likelihood of events with false precipitation due to dumps of snow or 

ice into the gauge, wind induced vibrations, or other factors. Following the approach of Kochendorfer (2018), a minimum 

0.075 mm accumulation threshold was applied for the unshielded gauge to ensure that measurements exceeded the gauge 150 
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uncertainty and that derived collection efficiency values were reliable. The 30-minute event duration was chosen to be 

sufficiently long to reduce noise and ensure high confidence in measured parameters and sufficiently short to avoid the 

influence of diurnal temperature variations, while also providing a larger number of events for analysis relative to longer 

durations. Note that unless otherwise stated, all precipitation events referred to hereafter are 30-minute events derived using 

the above approach. 155 

24.3 4 POSS fall velocity and precipitation type 

The POSS is a small upward-facing bistatic X band radar capable of measuring the precipitation fall velocity based on the 

Doppler frequency shift of the received signal (Canada, 1995;Sheppard, 1990, 2007;Sheppard et al., 1995;Sheppard and Joe, 

1994, 2000, 2008). During periods of precipitation, the POSS outputs both the mean and mode received signal frequency 

derived from the Doppler frequency spectrum over the previous minute. The mean precipitation fall velocity ( f_meanU ) is 160 

estimated from the transmitted wavelength (  ) and the mean frequency ( meanf ) of the measured Doppler power density 

spectrum for falling precipitation hydrometeors.  

mean
f_mean

2

f
U


 , (19a) 

The mode precipitation fall velocity ( f_modeU ) is described by a similar function, based on the mode frequency (
modef ) of the 

measured Doppler power density spectrum.  165 

mode
f_mode

2

f
U


 , (19b) 

For each 30-minute event, the mean and mode event fall velocity correspond to the average of all minutely mean and mode 

values, respectively. The transfer functions presented in this work were derived using both forms of event fall velocity and 

assessed in terms of the RMSE and bias error (BE) of adjusted measurements relative to the DFAR. The specific fall velocity 

indicated for each transfer function corresponds to that which produced the lowest RMSE and BE. The POSS also provides a 170 

minutely precipitation type output corresponding to very light, light, moderate, and heavy precipitation for rain, snow, hail, 

and undefined precipitation. Each event is classified as ‘rain’ or ‘snow’, corresponding to a minimum 70 % occurrence of that 

precipitation type over the event period (i.e. at least 21 minutes of precipitation occurrence). ‘Mixed’ precipitation events 

correspond to the presence of both ‘rain’ and ‘snow’ for the remaining events not classified as rain or snow. ‘Undefined’ 

precipitation corresponds to events where the precipitation is not captured by the three other classifications.  175 
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24.4 5 Transfer functions with wind speed and temperature 

Due to the systematic error associated with gauge undercatch, the unshielded gauge can capture less precipitation than the true 

amount falling in the air. The measured collection efficiency ( mCE ) is defined as the ratio of the precipitation accumulation 

reported by the unshielded gauge ( unP ) relative to that reported by the DFAR ( DFARP ) for each event, and is given by: 

un
m

DFAR

CE
P

P
 , (20) 180 

Assuming that the gauge measurement uncertainties are independent and random with equivalent accumulations 

(corresponding to a collection efficiency equal to 1) and uncertainties, the uncertainty in the collection efficiency ( CE ) scales 

with the relative magnitude of the gauge uncertainty ( P ) and the event accumulation value ( P ) by error propagation.  

P
CE

2

P


  , (213) 

Collection efficiency transfer functions attempt to capture the performance of the unshielded gauge relative to the reference 185 

configuration based on wind speed, temperature, or other meteorological parameters. They can then be applied to adjust 

precipitation accumulations from an unshielded gauge in operational settings where reference measurements are not available. 

un
adj

CE

P
P  , (224) 

Kochendorfer et al. (2017a;2018) used SPICE measurement data from eight test sites to develop an exponential and 

trigonometric transfer function based on wind speed ( wU ) and air temperature ( T ). This is referred to as KUniversal in this work 190 

(Eq. 23a5a). For wind speeds above a threshold value ( wtU ) of 7.2 m s-1, the wind speed is fixed at the threshold value (Eq. 

23b5b) to avoid the potential for erroneous catch efficiency values at higher wind speeds that were not well represented in the 

SPICE measurement dataset. Based on a similar rationale, no adjustment is applied for temperatures above 5 C. Note that 

while Kochendorfer et al. (2017b) considered wind speeds at both gauge height and at 10 m, wU will denote the gauge height 

wind speed in this work. 195 

    1
K w wt 1 w 2 3, exp 1 tanCE U U T bU b T b       , (23a5a) 

    1
K wt 1 wt 2 3, exp 1 tanwCE U U T bU b T b       , (23b5b) 

The coefficients for KUniversal are provided in Table 61.  

200 
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Table 61. Unshielded Geonor T-200B3 precipitation gauge collection efficiency transfer function coefficients for solid and mixed 
precipitation with 30-minute scalar mean wind speed Uw at gauge height for: KUniversal function with wind speed and air temperature T
dependence, with constant value above wind speed threshold with Kochendorfer et al. (2017a) coefficients; KCARE function with wind speed 
and air temperature dependence, with constant value above wind speed threshold; present study CFD model with dependence on wind speed 
and mode hydrometeor fall velocity Uf_mode; HE1 model with dependence on wind speed and mean hydrometeor fall velocity Uf_mean205 
threshold; and HE2 model with wind speed and mode hydrometeor fall velocity dependence and mode hydrometeor fall velocity threshold.

Coefficients 
Description Eq. Function b1 b2 b3 b4 Threshold 

KUniversal 235 ƒ(Uw,T) 0.0785 0.729 0.407 - Uwt = 7.2 m s-1, T  5 °C 
KCARE 235 ƒ(Uw,T) 0.1651 0.186 -0.757 - Uwt = 7.2 m s-1, T  1.33 °C
CFD 6 ƒ(Uw,Uf_mode) 0.908 1.387 0.143 2.422 Uw  10 m s-1

HE1 247 ƒ(Uw,Uf_mean) 0.139 - - - Uf_mean  1.93 m s-1, Uw  5.75 m s-1

HE2 258 ƒ(Uw,Uf_mode) 0.244 0.0869 - - Uf_mode  2.81 m s-1, Uw  0.8/(b1-b2Uf) 

Using the same formulation, a site-specific transfer function based on wind speed and temperature was derived using the CARE 

dataset, for comparison with KUniversal. Best-fit regression coefficients were determined by varying the temperature threshold 

below 5 C with the collection efficiency constrained to 1 above the threshold value. Solving Eq. 23a 5a for the temperature 210 

when the collection efficiency equals 1 provides additional constraint on the 3b  coefficient as a function of the 2b  coefficient 

and temperature threshold ( tT ).  

 1
3 2tan 1tb b T  , (23c5c) 

The coefficients for the CARE site-specific transfer function, referred to as KCARE in this work, are provided in Table 61. The 

temperature threshold was varied over the measurement range in 0.01 °C increments to provide the lowest overall RMSE. 215 

53 Experimental rResults 

53.1 Precipitation type 

Using the minutely POSS precipitation type output, events were classified as ‘rain’, ‘snow’, ‘mixed’, or ‘undefined’ following 

the methodology in Section. 4.32.4. The relative occurrence of different precipitation types as reported by the POSS for the 220 

event dataset is summarized in Table 72. The fall velocities in Table 7 2 were estimated by the POSS following the 

methodology in Section. 4.32.4; the temperatures were estimated from a YSI44212 thermistor in an aspirated Stevenson screen 

as described in Section. 4.12.2.

225 
Table 72. Mean fall velocities and temperatures of precipitation events by type classification. 

Precipitation 
phase 

Fall velocities 

(m s-1) 

Temperatures 

(C) 

Events 

(#) 
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Snow 0.93 to 2.32 < 0.5 233 
Mixed 1.2 to 4.6 -7.0 to 2.1 45 
Undefined 1.0 to 4.3 -5.4 to 6.6 40 
Rain 1.4 to 6.4 -4.8 to 18.9 196 

Based on the mean fall velocities and temperatures for each precipitation event (Fig. 91, Table 72), snow events occurred at 

temperatures below 0.5 C and with fall velocities of 0.93 m s-1 to 2.32 m s-1. Mixed events were characterized by mean 

temperatures between -7.0 C and 2.1 C and mean fall velocities between 1.2 m s-1 and 4.6 m s-1, while undefined precipitation 230 

events occurred at mean temperatures between -5.4 C and 6.6 C and fall velocities between 1.0 m s-1 and 4.3 m s-1. Rain 

events were characterized by mean temperatures between -4.8 C and 18.9 C and mean fall velocities between 1.4 m s-1 and 

6.4 m s-1. Over the temperature range between -5 C and 2 C, rain, snow, mixed, and undefined precipitation types were all 

present, demonstrating the challenge of estimating precipitation type using temperature alone (e.g. as done for the KUniversal and 

KCARE transfer functions). Within this temperature range, a wide variety of mean fall velocities, between 1 and 6 m s-1, is also 235 

apparent. 

Figure 91. Mean air temperature and fall velocity for 30-minute events with rain, snow, mixed, and undefined precipitation (see Table 7 2 
for summary). 240 
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53.2 Collection efficiency 

3.2.1 CFD Mmodel results 

Simulations were run for wind speeds from 0 and 10 m s-1 and monodispersed hydrometeors with fall velocities between 0.25 

m s-1 and 10 m s-1. Details of the simulations are provided in Section S1.2. The numerical results for monodispersed 245 

hydrometeors demonstrate a clear dependence on the hydrometeor fall velocity (Fig. 2). Hydrometeors with higher fall 

velocities exhibit increased collection efficiency, and the collection efficiency tends to decrease with increasing wind speed. 

Rain, dry snow, and wet snow hydrometeors with 1.0 m s-1 fall velocity exhibit a similar collection efficiency decrease with 

increasing wind speed, despite differences in diameter, density, and mass. For rain and ice pellet hydrometeors with 5.0 m s-1

fall velocities, the results are close to 1 and nearly identical at all wind speeds, irrespective of differences in density. Here, the 250 

circles for rain overlap the squares for ice pellets in Fig. 2. Rain and wet snow with identical fall velocities between 1.0 m s-1

and 2.5 m s-1 also exhibit similar results for wind speeds under 5 m s-1. Above 5 m s-1 wind speed, the collection efficiency for 

rain is slightly elevated above that for wet snow. For dry snow hydrometeors with fall velocities between 0.5 m s-1 and 1.0 m 

s-1, there is good agreement with the corresponding rain hydrometeors for horizontal wind speeds up to about 3 m s-1. Above 

this wind speed, the 0.5 m s-1 dry snow hydrometeors exhibit good agreement with rain hydrometeors, while the collection 255 

efficiency for 1.0 m s-1 dry snow hydrometeors decreases more rapidly with wind speed relative to rain hydrometeors with the 

same fall velocity. Collection efficiency differences across all hydrometeor types with identical fall velocities are within 0.18, 

with root mean square differences of 0.05, over all wind speeds and hydrometeor fall velocities studied.  
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260 
Figure 2. Flow simulation results for Geonor unshielded gauge collection efficiency based on wind speed and hydrometeor fall velocity for 
rain, ice pellets, wet snow, dry snow, and CFD transfer function. 

3.2.2 Experimental results 

The unshielded gauge collection efficiency results are shown as a function of the 30-minute DFAR event accumulations in 265 

Fig. 10a 3a and stratified by precipitation type classification. The collection efficiency for rain shows less scatter and less 

uncertainty for higher reference precipitation accumulations. The dashed lines in Fig. 10a 3a show the decrease in the collection 

efficiency uncertainty with increasing precipitation accumulation for a collection efficiency equal to 1 and a precipitation 

accumulation uncertainty of 0.1 mm (k = 2) given by Eq. 213. These lines appear to capture the overall trend observed for rain 

events. The snowfall events show a markedly different trend, however, with collection efficiencies as low as 0.3.  270 

The collection efficiency for all events as a function of mean wind speed and precipitation type classification is shown in Fig. 

10b3b. For rain events, the collection efficiencies are close to 1. For snow, an approximately linear decrease in the collection 

efficiency with mean wind speed is apparent, with the collection efficiency decreasing to 0.3 at a wind speed of 5 m s-1. Mixed 

precipitation collection efficiencies span a range of values between those of rain and snow. For undefined precipitation, some 
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events have collection efficiencies close to 1 at high wind speeds, similar to rain events, while others appear to decrease with 275 

increasing wind speed in a similar fashion to that observed for snow events.  

Figure 103. Collection efficiency of the unshielded gauge as a function of: (a) precipitation accumulation and event precipitation type 280 
(dashed lines illustrate accumulation uncertainty threshold); (b) wind speed and event precipitation type; (c) wind speed and mean air 
temperature T categories; and (d) wind speed and mode fall velocity Uf_mode categories. 
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The dependence of collection efficiencies on the mean wind speed over four separate mean temperature ranges is shown in 

Fig. 10c3c. For mean event temperatures above 2 C, the collection efficiencies are generally close to 1, typical of rain. For 285 

temperatures between -5 C and -2 C and between -2 C and 2 C, a range of collection efficiency values are observed, from 

those typical of snow to those typical of rain. This variation is attributed to the wide range of fall velocities within this 

temperature range, which includes snow, rain, and mixed precipitation events (Fig. 10b3b). At colder temperatures, below -5 

C, collection efficiencies appear to decrease approximately linearly with wind speed, consistent with the trend observed for 

snow events in Fig. 10b3b.  290 

Stratifying the collection efficiency results as a function of mean event wind speed by the mode fall velocity shows more 

distinct trends (Fig. 10d3d) relative to those observed when stratifying by temperature (Fig. 10c3c). Collection efficiencies are 

close to 1 for fall velocities greater than 2.5 m s-1, generally corresponding to rain. Conversely, fall velocities below 1.5 m s-1

show an approximately linear decrease in collection efficiency with increasing wind speed up to about 6 m s-1. A number of 

the values with higher collection efficiencies in this low fall velocity range correspond to mixed precipitation, where both 295 

snow and rain may be present. Between 1.5 m s-1 to 2.5 m s-1 fall velocity, intermediate collection efficiency values are evident, 

with collection efficiencies transitioning from lower to higher values, despite a fewer number of observations in this range.  

35.3 Derivation of fall velocity transfer functions from CE results 

3.3.1 CFD mModel results 300 

The simulation results in Section S2.23.2.1 demonstrate that the collection efficiency is dependent on the free-stream wind 

speed ( wU ) and hydrometeor fall velocity ( fU ). The CFD transfer function, CECFD , is presented based on a polynomial fit to 

wind speed and an exponential hydrometeor fall velocity dependence, with both velocities having units of m s-1.  

2 f 4 f2
1 w 3 wCE 1 b U b U

CFD bU e b U e    , (S186) 

This expression was selected due to its ability to capture the nonlinearity in the collection efficiency up to 10 m s-1 wind speed, 305 

as well as the nonlinear fall velocity dependence with collection efficiencies approaching 1 for higher fall velocities. Table 

S51 shows the best-fit coefficients (RMSE of 0.03) from a combined nonlinear regression for dry snow (0.5 m s-1 and 0.75 m 

s-1 fall velocities), wet snow (1.0 m s-1, 1.25 m s-1, … , 2.5 m s-1 fall velocities), and rain (5 and 10 m s-1 fall velocities). A 

single CFD curve was used for each fall velocity in the fit to ensure that the transfer function was unbiased over the entire 

range of fall velocities studied.  310 

Table S5. Non-linear regression fit parameters, standard errors (SE), and units for the Geonor unshielded gauge collection efficiency as a 
function of wind speed and hydrometeor fall velocity with RMSE = 0.0302 and R2 = 0.989.

Coefficient Value SE Units 

b1 0.908 0.048 s m-1

b2 1.387 0.037 s m-1
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b3 0.143 0.031 s2 m-2

b4 2.422 0.167 s m-1

Fig.  shows the comparison of tThe CFD transfer function is compared with the CFD results in Fig. 3. For hydrometeor fall 

velocities above 5.0 m s-1, the collection efficiency expression is within -0.13 and 0.10 of CFD results over all hydrometeor 315 

types. For fall velocities between 1.25 to 2.5 m s-1, the fit is within ±0.06 over all wind speeds. For fall velocities of 0.25 m s-

1 to 1.0 m s-1, the fit captures the rapid decrease in collection efficiency with wind speed well overall, with a maximum 

difference of 0.16 for dry snow at 5 m s-1 wind speed. The CFD transfer function captures well the collection efficiency trends 

for the different hydrometeor types, with RMSE values of 0.04 for rain, 0.02 for ice pellets, 0.02 for wet snow, and 0.05 for 

dry snow.  320 

Fig. S4 shows tThe CFD transfer function dependence with fall velocity is shown in Fig. 4. For a given wind speed, the 

collection efficiency increases nonlinearly with hydrometeor fall velocity. For fall velocities above 3 m s-1 the collection 

efficiency is close to 1. The collection efficiency rapidly decreases as the fall velocity is reduced, particularly below 2.5 m s-1

fall velocity. Increasing the wind speed decreases the collection efficiency.  

325 
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Figure S44. Geonor unshielded gauge collection efficiency for exponential fit model with hydrometeor fall velocity and wind speed. 

To extend the approach from monodispersed to polydispersed hydrometeors, integral forms of the collection efficiency 

expression with wind speed and fall velocity dependence were defined for rain and snow, as detailed in Section S1.3. Using 

these expressions, collection efficiencies were derived for specified hydrometeor types and precipitation intensities over wind 330 

speeds from 0 to 10 m s-1. Fig. 5 shows the integral collection efficiency as a function of hydrometeor fall velocity for 

precipitation type (thunderstorm rain, orographic rain, dendrites and aggregates of plates, rimed dendrites, and dendrites), 

precipitation intensity (0.1 to 20 mm h-1 for rainfall and 0.5 to 2.5 mm h-1 for snowfall), and wind speed (1 m s-1, 3 m s-1, and 

6 m s-1). Here, the fall velocity at the median volume diameter is used as an estimate for the fall velocity distribution. The 

results take a similar form to that of the CFD transfer function shown in Fig. 4, with collection efficiencies increasing 335 

nonlinearly with hydrometeor fall velocity for a given wind speed. Dendrites, with the lowest fall velocity, exhibit the lowest 

integral collection efficiency. Rimed dendrites and dendrites and aggregates of plates with higher fall velocity exhibit higher 

collection efficiency. In this fall velocity range below 1.5 m s-1, the collection efficiency rapidly increases approximately 

linearly with fall velocity. For orographic rain and thunderstorm rain, with even higher fall velocity, the integral collection 

efficiency nonlinearly approaches 1. As wind speeds increase from 1 m s-1 to 6 m s-1, collection efficiencies for all precipitation 340 

types are shifted down at the lower end of the fall velocity spectrum below 2 m s-1 and still converge to 1 at higher fall 

velocities, close to 5 m s-1.  
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Figure S85. Integral Geonor unshielded gauge collection efficiency with hydrometeor fall velocity at median volume diameter for rainfall 345 
and snowfall types at 1 m s-1, 3 m s-1, and 6 m s-1 wind speeds.

For snowfall, the integral collection efficiency difference across dendrites, rimed dendrites, and dendrites and aggregates of 

plates is less than 0.06 for 0.5 mm h-1, 1.5 mm h-1, and 2.5 mm h-1 precipitation intensities at 6 m s-1 wind speed, and within 

0.03 for the same precipitation intensities at 3 m s-1 wind speed. For rainfall, the integral collection efficiency difference is less 350 

than 0.01 at 3.8 m s-1 fall velocity, where orographic rain and thunderstorm rain overlap. Orographic rain exhibits median 

volume diameter fall velocities between 1.6 m s-1 to 3.9 m s-1 for precipitation intensities from 0.1 mm h-1 to 10 mm h-1. 

Thunderstorm rain exhibits median volume diameter fall velocities between 3.8 m s-1 to 5.6 m s-1 for precipitation intensities 

from 1 mm h-1 to 20 mm h-1.  

3.3.2 Experimental results 355 

Two additional transfer functions were formulated based on the apparent linear dependence of CE on wind speed for different 

hydrometeor fall velocity regimes observed in experimental results (Fig. 10d3d). These functions are applicable to all 

hydrometeor types, and have different fall velocity thresholds to describe the transition of precipitation phase from the lower 

fall velocities characteristic of snow to the higher fall velocities characteristic of rain and mixed precipitation.  

The first transfer function, referred to as HE1, is based on the assumption of a linear decrease in collection efficiency ( HE1CE360 

) with wind speed ( wU ) for hydrometeors with mean fall velocity ( f_meanU ) below 1.93 m s-1, generally corresponding to 

snowfall. This linear decrease is extrapolated up to a 5.75 m s-1 wind speed threshold (Eq. 24a7a), above which the collection 

efficiency for snowfall is 0.2 (Eq. 24b7b), following the general approach of Kochendorfer et al. (2017a). For hydrometeors 

with mean fall velocity greater than 1.93 m s-1, corresponding to mixed and liquid precipitation, the collection efficiency is 1 

(Eq. 24c7c). The fall velocity threshold was varied over the measurement fall velocity range in 0.01 m s-1 increments, with the 365 

threshold of 1.93 m s-1 found to provide the lowest overall RMSE.   

 1 1
HE1 w f_mean 1 wCE 5.75m s , 1.93m s 1U U bU     , (24a7a) 

 1 1
HE1 w f_meanCE 5.75m s , 1.93m s 0.2U U    , (24b7b) 

 1
HE1 f_meanCE 1.93m s 1U   , (24c7c) 

The second transfer function, referred to as HE2, adds another dimension to describe the slope of the linear decrease in CE 370 

with increasing wind speed: the hydrometeor fall velocity. For mode fall velocity ( f_modeU ) below 2.81 m s-1 and wind speed 

wU  below the threshold value, which is also dependent on the fall velocity, the collection efficiency ( HE2CE ) is assumed to 

decrease linearly with decreasing wind speed for a given hydrometeor fall velocity (Eq. 25a8a). For mode fall velocity below 

2.81 m s-1 and wind speed above the threshold value, the collection efficiency is 0.2 (Eq. 25b8b). For mode fall velocity above 
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2.81 m s-1, the collection efficiency is equal to 1 (Eq. 25c8c). The fall velocity threshold was varied over the measurement fall 375 

velocity range in 0.01 m s-1 increments with the threshold of 2.81 m s-1 found to provide the lowest overall RMSE. 

 1
HE2 w f_mode 1 2 f_mode w

1 2 f_mode

0.8
, 2.81m s 1CE U U b b U U

b b U


 
       

, (25a8a) 

1
HE2 w f_mode

1 2 f_mode

0.8
, 2.81m s 0.2CE U U

b b U


 
     

, (25b8b) 

 1
HE2 f_mode 2.81m s 1CE U   , (25c8c) 

35.4 Assessment of transfer functions:380 

3.4.1 Ccollection efficiency 

Observed collection efficiencies were compared with adjusted values using both existing transfer functions from SPICE and 

those presented in this work. Results are presented in Fig. 116, with relevant transfer function parameters compiled in Tables 

1 S5 and 6, and resulting bias errors, root mean square errors, and correlation coefficients (r) presented in Table 83. To further 

contextualize the assessment of the different transfer functions, the RMSE results are presented for different precipitation 385 

classifications, temperature ranges, and fall velocity ranges in Table 94.  
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Figure 116. Collection efficiency of unshielded gauge as a function of wind speed for: (a) mean air temperature T categories for the KUniversal390 
and KCARE transfer functions; (b) mode fall velocity Uf_mode categories with the CFD transfer function; (c) mean fall velocity Uf_mean categories 
for the HE1 transfer function; and (d) mode fall velocity Uf_mode categories with the HE2 transfer function.

395 
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Table 83. Unshielded gauge 30-minute event bias error (BE), root mean square error (RMSE), correlation coefficient (r), and number of 
events (N) for collection efficiency and precipitation accumulation between the unshielded and reference DFAR shielded Geonor T-200B3 
gauge for: unadjusted comparison; KUniversal transfer function with wind speed and air temperature dependence; KCARE transfer function with 
wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall velocity dependence; HE1 
transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed and mode fall velocity 400 
dependence. Statistics are based on the comparison of experimental results from the CARE site between November 1 and April 30, 2013/14 
and 2014/15.

Collection efficiency Precip accum (mm) 
Description BE RMSE r BE RMSE r N 

Unadjusted - - - -0.13 0.24 0.900 514 
KUniversal 0.07 0.15 0.853 0.07 0.20 0.949 514 
KCARE -0.005 0.12 0.878 0.002 0.13 0.963 514 
CFD -0.02 0.08 0.949 0.011 0.08 0.986 514 
HE1 0.0004 0.10 0.928 0.006 0.09 0.983 514 
HE2 -0.009 0.08 0.950 0.006 0.07 0.988 514 

Table 94. Unshielded gauge 30-minute event collection efficiency RMSE results stratified by: (a) POSS precipitation type; (b) temperature; 
and (c) fall velocity. Results are shown for: KUniversal transfer function with wind speed and air temperature dependence; KCARE transfer 405 
function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall velocity 
dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed and 
mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 1 and 
April 30, 2013/14 and 2014/15. 

RMSE 

(a) Rain Mixed Undefined Snow 

Description (N = 196) (N = 45) (N = 40) (N = 233) 

KUniversal 0.17 0.27 0.09 0.09 

KCARE 0.12 0.20 0.13 0.11 

CFD 0.08 0.09 0.09 0.09 

HE1 0.07 0.16 0.08 0.10 

HE2 0.08 0.10 0.09 0.08 

(b) T > 2 °C -2 °C < T  2 °C -5 °C < T  -2 °C T  -5 °C 
Description (N = 150) (N = 89) (N = 134) (N = 141) 

KUniversal 0.08 0.19 0.21 0.11 
KCARE 0.07 0.13 0.17 0.10 
CFD 0.09 0.08 0.08 0.09 
HE1 0.07 0.10 0.11 0.10 
HE2 0.09 0.08 0.07 0.08 

(c) Uf > 2.5 m s-1 2 m s-1 < Uf  2.5 m s-1 1.5 m s-1 < Uf  2 m s-1 Uf  1.5 m s-1

Description (N = 212) (N = 15) (N = 40) (N = 247) 

KUniversal 0.19 0.23 0.16 0.09 
KCARE 0.13 0.17 0.12 0.11 
CFD 0.08 0.10 0.08 0.09 
HE1 0.08 0.13 0.15 0.10 
HE2 0.08 0.12 0.08 0.08 

410 
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Both KUniversal and the climate-specific KCARE transfer function have continuous temperature dependence and display similar 

profiles at -8 C, with the collection efficiency for the KCARE transfer function decreasing more gradually with wind speed 

compared to the KUniversal transfer function at -4 C and 0 C (Fig. 11a6a). Using the approach outlined in Section. 4.42.5, a 

temperature threshold ( tT ) of 1.33 C for the best-fit KCARE transfer function was found to minimize the precipitation 

accumulation RMSE. The overall collection efficiency root mean square error is reduced from 0.15 for the KUniversal transfer 415 

function to 0.12 for the KCARE transfer function (Table 83). The bias error is also reduced from 0.07 for the KUniversal transfer 

function to -0.005 for the best-fit KCARE transfer function. For KUniversal and KCARE, respectively, the RMSE is reduced from 

0.17 to 0.12 for rain and from 0.27 to 0.20 for mixed precipitation, with slightly elevated RMSE from 0.09 to 0.13 for undefined 

precipitation and 0.09 to 0.11 for snow (Table 9a4a). For mean event temperatures between -2 C and 2 C, and between -5 

C and -2 C, respectively, the RMSE values of 0.19 and 0.21 for the KUniversal transfer function are relatively large compared 420 

to the 0.13 and 0.17 values for the KCARE transfer function (Table 9b4b). This results from the more gradual decrease in the 

KCARE transfer function with wind speed over these temperature ranges (Fig. 11a6a).  

A comparison of the CFD transfer function with observed CE is shown in Fig. 11b6b. Overall, the measured data have less 

scatter when stratified by fall velocity than when stratified by temperature (Table 83, Figs. 11a 6a and b). The CFD transfer 

function provides a lower overall RMSE (0.08) and higher r (0.949) relative to the KUniversal and KCARE transfer functions based 425 

on temperature. Reductions in the collection efficiency RMSE using the CFD transfer function are most pronounced for rain 

and mixed precipitation (Table 9a4a) and for mean event temperatures between -2 C and 2 C and between -5 C and -2 C 

(Table 9b4b) compared with the KUniversal and KCARE functions. Collection efficiency RMSE values are between 0.08 and 0.10 

over all fall velocity classes, despite fewer numbers of events with fall velocities between 1.5 m s-1 and 2.5 m s-1 (Table 9c4c).  

The HE1 transfer function provides good agreement with observed data in the mean fall velocity regimes relevant to snow and 430 

rain (Fig. 11c6c), resulting in an overall RMSE of 0.10, BE of 0.0004, and r of 0.928 (Table 83). The RMSE for mixed 

precipitation is 0.16, which is lower than that of the KCARE transfer function with temperature (0.20) but higher that that of the 

CFD model (0.09), which varies continuously with fall velocity (Table 9a4a).   

The HE2 function better captures the observed collection efficiencies for mode fall velocities between the snow and rain 

regimes (Fig. 11d6d), improving the overall RMSE to 0.08 and r to 0.95, while increasing slightly the BE (-0.009) relative to 435 

HE1 (Table 83). Note the distinction between mean fall velocity for HE1 and mode fall velocity for HE2 (and CFD). In general, 

the Doppler frequency spectrum tends to be skewed such that mode fall velocities are slightly lower than the mean fall 

velocities, impacting the fits to observed data. The HE2 transfer function provides similar results to that of the CFD transfer 

function, with slightly higher RMSE values for mixed precipitation and slightly reduced RMSE values for snow (Table 9a4a) 

and temperatures below -2 C (Table 9b4b). For intermediate fall velocities between 2.0 m s-1 and 2.5 m s-1, the HE2 transfer 440 

function, with a linear change in collection efficiency with fall velocity, has a higher RMSE (0.12) than that for the CFD 

function (0.10), which exhibits a nonlinear change in collection efficiency with fall velocity (Table 9c4c). Only 15 events were 

recorded in this intermediate fall velocity range with higher uncertainty relative to the CFD function. In contrast, 212 events 
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were recorded at fall velocities above 2.5 m s-1 and 247 events at fall velocities below 1.5 m s-1, representing a greater 

proportion of the events with lower RMSE relative to the CFD function.  445 

35.5 4.2 Assessment of transfer functions: Pprecipitation accumulation 

The unadjusted and adjusted accumulated precipitation values are compared with reference DFAR accumulation 

measurements in Fig. 127. Bias, RMSE, and correlation coefficient results are shown in Table 83. Similar to the approach for 

assessing transfer functions based on collection efficiency results in Section. 5.43.4.1, the precipitation accumulation RMSE 

results for each transfer function are assessed by precipitation classification, temperature range, and fall velocity range in Table 450 

105. 
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Figure 127. Unshielded and reference DFAR 30-minute event precipitation accumulation comparison for: (a) unadjusted precipitation 
accumulation; (b) KUniversal continuous transfer function with wind speed and air temperature dependence;  (c) KCARE continuous transfer 455 
function with wind speed and air temperature dependence; (d) CFD transfer function with wind speed and fall velocity dependence; (e) HE1 
transfer function with wind speed and fall velocity dependence; and (f) HE2 transfer function with wind speed and fall velocity dependence.
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Table 105. Unshielded gauge 30-minute event RMSE (mm) results stratified by: (a) POSS precipitation type; (b) temperature; and (c) fall 
velocity. Results are shown for: unadjusted comparison; KUniversal transfer function with wind speed and air temperature dependence; KCARE

transfer function with wind speed and air temperature dependence; present study CFD transfer function with wind speed and mode fall 460 
velocity dependence; HE1 transfer function with wind speed and mean fall velocity dependence; and HE2 transfer function with wind speed 
and mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between November 
1 and April 30, 2013/14 and 2014/15. 

RMSE (mm) 

(a) Rain Mixed Undefined Snow 

Description (N = 196) (N = 45) (N = 40) (N = 233) 

Unadjusted 0.04 0.15 0.09 0.35 

KUniversal 0.25 0.33 0.05 0.10 

KCARE 0.14 0.22 0.06 0.11 

CFD 0.04 0.07 0.04 0.11 

HE1 0.04 0.17 0.04 0.10 

HE2 0.04 0.09 0.04 0.09 

(b) T > 2 °C -2 °C < T  2 °C -5 °C < T  -2 °C T  -5 °C 

Description (N = 150) (N = 89) (N = 134) (N = 141) 

Unadjusted 0.04 0.14 0.23 0.39 
KUniversal 0.05 0.25 0.29 0.12 
KCARE 0.04 0.11 0.20 0.12 
CFD 0.05 0.06 0.08 0.11 
HE1 0.04 0.12 0.09 0.10 
HE2 0.05 0.07 0.08 0.09 

(c) Uf > 2.5 m s-1 2 m s-1 < Uf  2.5 m s-1 1.5 m s-1 < Uf  2 m s-1 Uf  1.5 m s-1

Description (N = 212) (N = 15) (N = 40) (N = 247) 

Unadjusted 0.04 0.06 0.16 0.34 
KUniversal 0.26 0.22 0.22 0.10 
KCARE 0.15 0.14 0.15 0.11 
CFD 0.04 0.05 0.06 0.10 
HE1 0.04 0.06 0.16 0.10 
HE2 0.04 0.06 0.07 0.09 

465 

In the comparison of unadjusted accumulation measurements with reference values (Fig. 12a7a), some values fall along the 1-

to-1 line, while others are considerably lower. The values along the 1-to-1 line generally correspond to rain events with high 

precipitation fall velocity, or to events with low mean wind speeds. The RMSE for the unadjusted unshielded gauge 

measurements relative to the DFAR is 0.24 mm, with a bias error of -0.13 mm and correlation coefficient of 0.900 (Table 83).  

Using the KUniversal transfer function, with wind and temperature dependence, shifts the adjusted values up to and above the 1-470 

to-1 line (Fig. 12b7b). This yields a positive bias error of 0.07 mm, reduced RMSE of 0.20 mm, and correlation coefficient of 

0.949 (Table 83) relative to the unadjusted measurements (Fig. 12a7a). While the KUniversal transfer function greatly reduces 

the RMSE for snow from 0.35 mm to 0.10 mm compared with unadjusted values, the RMSE is increased from 0.04 mm to 

0.25 mm for rain, and from 0.15 mm to 0.33 mm for mixed precipitation (Table 10a5a). Compared with the unadjusted results, 
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RMSE increases for the KUniversal function are also apparent for temperatures between -2 C and 2 C and between -5 C and -475 

2 C (Table 10b5b), and for fall velocities greater than 1.5 m s-1 (Table 10c5c).  

Applying the site-specific KCARE transfer function, based on the best-fit results to the CARE SPICE dataset, results in a reduced 

bias error of 0.002 mm, lower RMSE of 0.13 mm, and higher correlation coefficient of 0.963 (Table 83) relative to the KUniversal 

results, with the scatter in adjusted accumulations more evenly balanced across the 1-to-1 line (Fig. 12c7c). The scatter in 

adjusted values using the KCARE transfer function results primarily from mixed precipitation (Table 10a5a) at temperatures 480 

between -5 C and -2 C (Table 10b5b). Compared to the KUniversal transfer function, the KCARE transfer function has lower 

RMSE values for rain (0.14 mm) and mixed precipitation (0.22 mm), with 0.01 mm higher RMSE for undefined precipitation 

and snow (Table 10a5a). The more rapid increase in collection efficiency with temperature for KCARE relative to KUniversal

reduces the overadjustment of some of the rain and mixed precipitation events at temperatures between -5 C and -2 C, at the 

expense of the underadjustment of some snow events in this temperature range. It is also worth noting that the adjusted 485 

precipitation accumulation RMSE for the KCARE transfer function is larger than that for unadjusted results for rain and mixed 

precipitation, similar to the results for KUniversal. Both the KUniversal and KCARE transfer functions with temperature show signs of 

heteroscedasticity, with an increased spread of values with increasing magnitude of event precipitation accumulation.       

Applying the CFD transfer function results in a greatly reduced spread of values about the 1-to-1 line (Fig. 12d7d). The spread 

does not appear to increase with increasing precipitation accumulation. The overall RMSE is reduced to 0.08 mm, 2.5 times 490 

lower than that for the KUniversal transfer function, with a bias error of 0.011 mm and correlation coefficient of 0.986 (Table 83). 

The RMSE is reduced from 0.25 mm for the KUniversal transfer function to 0.04 mm using the CFD transfer function for rain, 

and from 0.33 mm to 0.07 mm (4.7 times lower) for mixed precipitation, while RMSE results for undefined precipitation and 

snow are within 0.01 mm (Table 10a5a). Reductions in the RMSE using the CFD transfer function compared with the KUniversal

transfer function are most pronounced for mean event temperatures between -5 C and 2 C (Table 10b5b). Over this 495 

temperature range, rain, mixed precipitation, and snow may be present, corresponding to a wide range of fall velocities and 

collection efficiencies. The CFD transfer function is better able to distinguish among these precipitation types – and their 

respective collection efficiencies – based on its dependence on hydrometeor fall velocity. Across the fall velocity 

classifications in Table 10c5c, the RMSE using the CFD transfer function increases from 0.04 mm for fall velocities greater 

than 2.5 m s-1 to 0.10 mm for fall velocities less than 1.5 m s-1. As shown in Table 10c5c, the RMSE for the CFD transfer 500 

function matches the value for unadjusted measurements at fall velocities greater than 2.5 m s-1, where collection efficiencies 

are close to 1. At lower fall velocities, where the bias due to gauge undercatch is more prevalent, the RMSE values for the 

CFD function are lower than those for the unadjusted measurements.  

Using the HE1 transfer function results in similar overall improvement in the agreement between adjusted and DFAR 

accumulation values as observed for the CFD function (Fig. 12e7e). The adjusted values appear to be distributed symmetrically 505 

about the 1-to-1 line. Furthermore, there is close agreement over the full range of accumulation values; that is, the spread in 

values does not increase with the magnitude of precipitation accumulation. This results in a lower RMSE of 0.09 mm and a 
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higher correlation coefficient of 0.983 relative to the KCARE transfer function results. While the RMSE for rain (0.04 mm) using 

the HE1 transfer function is improved compared with the KCARE transfer function results, the RMSE for mixed precipitation is 

only marginally better (0.17 mm).  510 

Applying the HE2 transfer function provides further improvement, with adjusted accumulation values more tightly clustered 

around the 1-to-1 line (Fig. 12f7f). The overall RMSE is 0.07 mm, which is 3.3 times lower than that for the unadjusted 

unshielded gauge measurements, and 1.8 times lower than the KCARE transfer function based on mean event temperature and 

wind speed. The HE2 transfer function exhibits the lowest overall RMSE for snow (0.09 mm), with a RMSE of 0.09 mm for 

mixed precipitation, which is slightly higher than that for the CFD function (0.07 mm), but much lower than that for the KCARE515 

(0.22 mm) and HE1 (0.17 mm) transfer functions. Further, the correlation coefficient of 0.988 is the highest among the transfer 

functions assessed. 

46 Discussion 

4.1 CFD model 

6.1 Modelling discussion 520 

6.1.1 Fall velocity impacts on collection efficiency 

The time-averaged numerical model describes the three-dimensional airflow around the unshielded Geonor gauge, including 

the updraft above the leading edge of the gauge orifice and downdraft at the back of the gauge orifice shown in previous studies 

(Thériault et al., 2012;Colli et al., 2016a;Baghapour et al., 2017). The updraft velocity increases sharply with height above the 

leading edge of the gauge orifice, which appears to play an important role in the horizontal spreading and capture of 525 

hydrometeors, particularly for lower fall velocity hydrometeors (Fig. 2). These velocities scale with the wind speed, as shown 

previously by Colli et al. (2016a), and the relative magnitudes of the wind speed and hydrometeor fall velocity influence the 

collection efficiency. The hydrometeor fall velocity influences both the free-stream approach angle of hydrometeors before 

they encounter the local airflow around the gauge and the degree of coupling between the hydrometeor trajectories and the 

local airflow. Hydrometeors with fall velocities above 2 m s-1 fall more vertically, and their paths show less deviation with the 530 

updraft and local airflow around the gauge orifice (Fig. 2). Hydrometeors with lower fall velocities have a smaller approach 

angle and are more closely coupled to the local airflow around the gauge orifice. 

The numerical results for this study are based on a 5 % inlet turbulence value that acts as a bulk turbulence in the atmosphere 

(Panofsky and Dutton, 1984) but may underestimate experimental results (Armitt and Counihan, 1968). A slip boundary 

condition was modelled at the surface following the approach of previous studies (Baghapour and Sullivan, 2017;Baghapour 535 

et al., 2017). Further study with a no-slip wall condition under different turbulence conditions could lead to further insights 

into the influence of turbulence intensity on precipitation gauge collection efficiency.       
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6.1.2 Collection efficiency based on wind speed and hydrometeor fall velocity 

The numerical model results for monodispersed hydrometeors capture the three-dimensional airflow and hydrometeor 

kinematics and illustrate the reductions in collection efficiency with increasing wind speed and decreasing hydrometeor fall 540 

velocity (Fig. 3). These results demonstrate that collection efficiencies are similar for different hydrometeor types with 

different sizes, densities, masses, and drag values (spherical drag model), but similar fall velocities. This enables the 

characterization of collection efficiency independent of hydrometeor characteristics other than fall velocity, allowing for the 

broad application of transfer functions with wind speed and fall velocity dependence to various hydrometeor types.  

A slight nonlinearity in the collection efficiency relationship with wind speed is apparent in Fig. 3, with the collection 545 

efficiency decreasing more rapidly at lower wind speeds and more gradually at higher wind speeds. This wind speed 

dependence has been demonstrated in previous studies (Nešpor and Sevruk, 1999;Thériault et al., 2012;Colli et al., 

2016a;Baghapour et al., 2017), and is generally attributed to the three-dimensional velocity profile around the gauge 

influencing the trajectories and catchment of incoming hydrometeors. A strong nonlinear dependence on the hydrometeor fall 

velocity is apparent in Figs. 3 and 4. Hydrometeors with fall velocities above 5 m/s exhibit collection efficiencies close to 1, 550 

while lower hydrometeor fall velocities influence the rate of decrease of collection efficiency with wind speed. Collection 

efficiency decreases are most pronounced below 2.0 m/s hydrometeor fall velocity, where a wide range of collection 

efficiencies are possible. This demonstrates the challenge in adjusting liquid, solid, and mixed precipitation accumulations in 

situations where different hydrometeor types and sizes – and with very different fall velocities – can occur. These findings 

support the conclusions of Thériault et al. (2012), who demonstrated large collection efficiency differences across dry snow 555 

and wet snow hydrometeors with different terminal velocities. The present findings also support those of Nešpor and Sevruk 

(1999), who showed that the wind-induced error increases rapidly for smaller raindrop sizes with lower terminal velocities.   

Elevated collection efficiencies for rain compared with wet snow above 4 m s-1 wind speed in Fig. 3 may be due to the higher 

density of rain relative to wet snow, with hydrometeor inertia playing a role at higher wind speeds. For dry snow with 1.0 m 

s-1 fall velocity, the collection efficiency decreases more rapidly relative to that for wet snow and rain hydrometeors with 560 

identical fall velocities above 3 m s-1 wind speed. A similar rapid decrease in collection efficiency for dry snow has been 

demonstrated by Colli (2016b). This decrease may be due to the limitations of the spherical hydrometeor model, which can 

overestimate hydrometeor volumes and buoyancies, particularly for non-spherical hydrometeors. Further investigation with 

non-spherical drag models is recommended as an area for future work. 

565 

6.1.3 Development of CFD transfer function 

The CFD transfer function presented in Eq. 18 (coefficients in Table 5) is based on the computational fluid dynamics results 

for an unshielded Geonor T-200B3 600 mm capacity precipitation gauge for wind speeds up to 10 m s-1. This transfer function 

provides a straightforward means of estimating the collection efficiency based on the wind speed and hydrometeor fall velocity. 
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In operational monitoring networks, the hydrometeor fall velocity can be provided by disdrometers (Loffler-Mang and Joss, 570 

2000;Sheppard and Joe, 2000;Bloemink and Lanzinger, 2005;Nitu et al., 2018), vertically pointing Doppler radars (Biral, 

2019), or multi-frequency radar techniques (Kneifel et al., 2015). Assessment of these techniques for the measurement of 

hydrometeor fall velocity is an area for future work.  

The CFD transfer function captures well the nonlinear change in collection efficiency with wind speed and hydrometeor fall 

velocity observed in the numerical model results across rain, ice pellet, wet snow, and dry snow hydrometeor types (Fig. 3). 575 

This expression was derived from simulation results up to 10 m s-1 wind speed and should be used with caution at higher wind 

speeds. Further, this transfer function has not been assessed experimentally for snow above 6 m s-1 wind speed in the present 

study for the CARE dataset. Adjusted precipitation accumulation estimates in this regime, where fall velocities are low and 

wind speeds are high, can be highly uncertain and should be treated with caution (Smith et al., 2020). Assessment of the 

transfer function at other sites under such conditions is an area for future work. Application to other gauge or shield 580 

combinations should also be investigated, as the flow dynamics around the gauge orifice are dependent on the specific gauge 

and shield geometry.    

The fall velocity cutoff, shown in Fig. 4, corresponds to the fall velocity below which no hydrometeors are captured by the 

gauge for a given wind speed. In this case, the hydrometeors are unable to pass through the updraft region and local airflow 

around the gauge orifice to be captured by the gauge. As the wind speed increases, the fall velocity cutoff increases, and it 585 

becomes more difficult for hydrometeors to overcome the updraft velocity and local airflow and be captured. This has 

important consequences for the integral gauge collection efficiency, as hydrometeors below the fall velocity cutoff in the drop 

size distribution do not contribute to the total catchment. Previous studies have shown similar results with collection 

efficiencies decreasing to zero below a given hydrometeor size for liquid (Nešpor and Sevruk, 1999) and solid hydrometeor 

types (Thériault et al., 2012;Colli et al., 2016).  590 

The present formulation based on the fall velocity can be applied broadly across rain and snow types for the unshielded Geonor 

gauge configuration. These results are based on time-averaged simulations, which provide an estimate of the mean velocities 

through the domain and have been shown to provide good overall agreement with experimental results (Baghapour et al., 

2017). Further study using LES models, which can better resolve the eddy dynamics and temporal variations in the flow, and 

under different boundary conditions and turbulence scales representing different site conditions is recommended to better 595 

understand the collection efficiency under conditions with high wind speeds and low hydrometeor fall velocities. 

6.1.4 Application of CFD transfer function to hydrometeor size distributions 

6.1.4.1 Wind speed dependence of integral collection efficiency 

The integral collection efficiency decreases nonlinearly with wind speed depending on the hydrometeor type and fall velocity. 

Large differences in the integral collection efficiency dependence with wind speed are apparent across different hydrometeor 600 

types and intensities. Previous studies have shown similar differences across liquid (Nešpor and Sevruk, 1999;Jarraud, 2008) 
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and solid hydrometeor types (Colli et al., 2016b;Colli et al., 2020;Thériault et al., 2012). The fall velocities of snowflakes are 

generally smaller than those of raindrops; accordingly, the collection efficiency for snowfall at a given wind speed is lower 

than that for rainfall (Fig. 6). Similarly, dendrites have lower fall velocities than rimed dendrites and columns and plates, and 

lower collection efficiency.  605 

The integral collection efficiency results decrease continuously with increasing wind speed as the magnitude of the updraft at 

the leading edge of the gauge increases, free-stream hydrometeor trajectories decrease, and hydrometeors trajectories become 

more closely coupled with the local airflow around the gauge. For dendrites, the nonlinearity in the integral collection 

efficiency is more pronounced, as collection efficiencies decrease to small but finite values at higher wind speeds. This is due 

to the smaller number of hydrometeors with sufficient fall velocity to be captured by the gauge at higher wind speeds.  610 

The differences in collection efficiency for different precipitation characteristics (type, habit, precipitation intensity) illustrate 

the large variability that can be expected when the characteristics or fall velocity are not considered. This variability presents 

a particular challenge for mixed precipitation conditions, in which the precipitation type may not be well defined and can 

change rapidly over time. The proposed expression for the collection efficiency as a function of the wind speed and 

hydrometeor fall velocity (Eq. 18) provides a means of estimating the collection efficiency over different hydrometeor types 615 

and intensities, even if the precipitation type is not well defined. 

The integral collection efficiency results using the CFD transfer function developed in the present study show good overall 

agreement with the results of Colli et al. (2016b) for wet snow and dry snow, as shown in Fig. 6. Integral collection efficiency 

values in the present study are slightly higher than those of Colli et al. (2016b), attributed in part to the differences in the gauge 

geometry and hydrometeor drag model as discussed by Baghapour et al. (2017). The gauge geometry in the present study 620 

includes a refined orifice wall thickness and full-length orifice extending down into the gauge housing (Fig. 1). The peak 

velocities above the gauge in the present study are similar to those observed by Baghapour et al. (2017), who also used a 

refined orifice wall thickness and observed reduced peak velocities compared to the results of Colli et al. (2016b). Increases 

in the velocity magnitude over the gauge would be expected to decrease the collection efficiency in a manner similar to that 

for increased wind speed; hence, the higher peak velocities above the gauge in the results of Colli et al. (2016b) provide one 625 

explanation for the lower collection efficiency values observed.  

The use of a continuous collection efficiency expression with wind speed and fall velocity dependence enables the derivation 

of integral collection efficiencies over intermediate sizes and fall velocities in the hydrometeor size distribution. Collection 

efficiencies can be computed at intermediate wind speed values using this approach as well, providing the smooth integral 

collection efficiency curves shown in Fig. 6. Nešpor and Sevruk (1999) used a similar empirical approach for rain by 630 

developing an expression for the partial wind-induced error based on free-stream velocity and drop diameter applicable to 

Mk2, Hellman and ASTA gauges. The integral collection efficiency results of Colli et al. (2016b) were derived directly from 

numerical CE results for dry snow and wet snow at discrete sizes and wind speeds. 
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6.1.4.2 Precipitation intensity dependence of integral collection efficiency 

Knowledge of the precipitation type, intensity, and wind speed can provide a means for adjusting gauge catchment totals. For 635 

rainfall, the precipitation intensity has been shown to be an important parameter for the estimation of integral collection 

efficiency (Nešpor and Sevruk, 1999;Jarraud, 2008). A gradual increase in integral collection efficiency with precipitation 

intensity is observed for intensity values above 1 mm h-1 in Fig. 7. Below this intensity, the integral collection efficiency 

decreases more rapidly, with the rate of decrease depending on the rainfall type and wind speed. This is in general agreement 

with the results of Nešpor and Sevruk as presented in Jarraud (2008), who showed a sharper increase in the conversion factor 640 

(inverse of integral collection efficiency) below 1 mm h-1.  

Integral collection efficiencies for snowfall also increase with precipitation intensity, as higher intensities correspond with 

larger numbers of hydrometeors with higher fall velocities and increased collection efficiencies, as shown by Colli et al. (2020). 

Integral collection efficiencies for snowfall can be much lower than for rain, depending on the wind speed. Differences are 

apparent across different snowfall crystal habits (e.g. dendrites vs. dendrites and aggregates of plates), with the magnitude of 645 

differences increasing with wind speed. This illustrates the difficulty of adjusting snowfall measurements if the crystal habit 

is not known. The range of possible integral collection efficiency values is even larger under conditions when solid, liquid, 

and mixed precipitation can all be present. An additional challenge is presented by the measurement of low precipitation 

intensities for snowfall, where accumulations can be small relative to gauge uncertainties due to environmental factors (e.g. 

wind, temperature).  650 

6.1.4.3 Hydrometeor fall velocity dependence of integral collection efficiency 

Integral collection efficiency differences across precipitation types are much smaller when stratified by wind speed and 

hydrometeor fall velocity (Fig. 8) than when stratified by wind speed and precipitation intensity (Fig. 7) or by wind speed 

alone (Fig. 6). This results from the ability of the hydrometeor fall velocity to capture differences in the integral collection 

efficiency across different hydrometeor types and precipitation intensities. The small differences in collection efficiency across 655 

different hydrometeor types with the same fall velocity are attributed to the varying contribution from higher fall velocity 

hydrometeors, with collection efficiencies approaching 1, in the mass-weighted distribution of hydrometeor fall velocities. The 

results in Fig. 8 follow the general nonlinear profile of the CFD transfer function (Eq. 18, Fig. 4), with the hydrometeor fall 

velocity defining the integral collection efficiency magnitude for a given wind speed.  

Measurements of fall velocity can be obtained using a number of methods (Sect. 6.1.3), and are increasingly available through 660 

the deployment of disdrometers in operational networks. These measurements provide an independent assessment of the 

hydrometeor fall velocity, and together with gauge height wind speed estimates, can enable the adjustment of gauge 

precipitation accumulation measurements using Eq. (18). Adjustments using this approach can be applied over a range of 

hydrometeor types and even when the hydrometeor type may be unknown or uncertain.  
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The numerical model results for monodispersed hydrometeors capture the three-dimensional airflow and hydrometeor 665 

kinematics and illustrate the reductions in collection efficiency with increasing wind speed and decreasing hydrometeor fall 

velocity (Fig. 2). These results demonstrate that collection efficiencies are similar for different hydrometeor types with 

different sizes, densities, masses, and drag values (spherical drag model), but similar fall velocities. This enables the 

characterization of collection efficiency independent of hydrometeor characteristics other than fall velocity, allowing for the 

broad application of transfer functions with wind speed and fall velocity dependence to various hydrometeor types.  670 

A slight nonlinearity in the collection efficiency relationship with wind speed is apparent in Fig. 2, with the collection 

efficiency decreasing more rapidly at lower wind speeds and more gradually at higher wind speeds. This wind speed 

dependence has been demonstrated in previous studies (Nešpor and Sevruk, 1999;Thériault et al., 2012;Colli et al., 

2016a;Baghapour et al., 2017), and is generally attributed to the three-dimensional velocity profile around the gauge 

influencing the trajectories and catchment of incoming hydrometeors. A strong nonlinear dependence on the hydrometeor fall 675 

velocity is apparent in Figs. 3 and 5. Hydrometeors with fall velocities above 5 m/s exhibit collection efficiencies close to 1, 

while lower hydrometeor fall velocities influence the rate of decrease of collection efficiency with wind speed. Collection 

efficiency decreases are most pronounced below 2.0 m/s hydrometeor fall velocity, where a wide range of collection 

efficiencies are possible. This demonstrates the challenge in adjusting liquid, solid, and mixed precipitation accumulations in 

situations where different hydrometeor types and sizes – and with very different fall velocities – can occur. These findings 680 

support the conclusions of Thériault et al. (2012), who demonstrated large collection efficiency differences across dry snow 

and wet snow hydrometeors with different terminal velocities. The present findings also support those of Nešpor and Sevruk 

(1999), who showed that the wind-induced error increases rapidly for smaller raindrop sizes with lower terminal velocities.   

Elevated collection efficiencies for rain compared with wet snow above 4 m s-1 wind speed in Fig.  may be due to the higher 

density of rain relative to wet snow, with hydrometeor inertia playing a role at higher wind speeds. For dry snow with 1.0 m 685 

s-1 fall velocity, the collection efficiency decreases more rapidly relative to that for wet snow and rain hydrometeors with 

identical fall velocities above 3 m s-1 wind speed. A similar rapid decrease in collection efficiency for dry snow has been 

demonstrated by Colli (2016b). This decrease may be due to the limitations of the spherical hydrometeor model, which can 

overestimate hydrometeor volumes and buoyancies, particularly for non-spherical hydrometeors. Further investigation with 

non-spherical drag models is recommended as an area for future work. 690 

The CFD transfer function presented in Eq. 6 (coefficients in Table 1) is based on the computational fluid dynamics results for 

an unshielded Geonor T-200B3 600 mm capacity precipitation gauge for wind speeds up to 10 m s-1. The CFD transfer function 

captures well the nonlinear change in collection efficiency with wind speed and hydrometeor fall velocity observed in the 

numerical model results across rain, ice pellet, wet snow, and dry snow hydrometeor types (Fig. 2). This expression was 

derived from simulation results up to 10 m s-1 wind speed and should be used with caution at higher wind speeds. Further, this 695 

transfer function has not been assessed experimentally for snow above 6 m s-1 wind speed in the present study for the CARE 

dataset. Adjusted precipitation accumulation estimates in this regime, where fall velocities are low and wind speeds are high, 

can be highly uncertain and should be treated with caution (Smith et al., 2020). Assessment of the transfer function at other 
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sites under such conditions is an area for future work. Application to other gauge or shield combinations should also be 

investigated, as the flow dynamics around the gauge orifice are dependent on the specific gauge and shield geometry.   The 700 

fall velocity cutoff, shown in Fig. , corresponds to the fall velocity below which no hydrometeors are captured by the gauge 

for a given wind speed. In this case, the hydrometeors are unable to pass through the updraft region and local airflow around 

the gauge orifice to be captured by the gauge. As the wind speed increases, the fall velocity cutoff increases, and it becomes 

more difficult for hydrometeors to overcome the updraft velocity and local airflow and be captured. This has important 

consequences for the integral gauge collection efficiency, as hydrometeors below the fall velocity cutoff in the drop size 705 

distribution do not contribute to the total catchment. Previous studies have shown similar results with collection efficiencies 

decreasing to zero below a given hydrometeor size for liquid (Nešpor and Sevruk, 1999) and solid hydrometeor types (Thériault 

et al., 2012;Colli et al., 2016).  

The presentCFD transfer function formulation based on the fall velocity can be applied broadly across rain and snow types for 

the unshielded Geonor gauge configuration. These results are based on time-averaged simulations, which provide an estimate 710 

of the mean velocities through the domain and have been shown to provide good overall agreement with experimental results 

(Baghapour et al., 2017). Further study using LES models, which can better resolve the eddy dynamics and temporal variations 

in the flow, and under different boundary conditions and turbulence scales representing different site conditions is 

recommended to better understand the collection efficiency under conditions with high wind speeds and low hydrometeor fall 

velocities. 715 

Integral collection efficiency differences across precipitation types are small when stratified by wind speed and hydrometeor 

fall velocity (Fig. 5). This results from the ability of the hydrometeor fall velocity to capture differences in the integral 

collection efficiency across different hydrometeor types and precipitation intensities. The small differences in collection 

efficiency across different hydrometeor types with the same fall velocity are attributed to the varying contribution from higher 

fall velocity hydrometeors, with collection efficiencies approaching 1, in the mass-weighted distribution of hydrometeor fall 720 

velocities. The results in Fig. 5 follow the general nonlinear profile of the CFD transfer function (Eq. 6, Fig. 4), with the 

hydrometeor fall velocity defining the integral collection efficiency magnitude for a given wind speed. Results for the same 

wind speed range and precipitation types that are stratified by wind speed and precipitation intensity, and by wind speed alone, 

are provided in Section S2.2 and discussed in Section S3.2; these results show much larger variability across hydrometeor 

types relative to those in Fig. 5.  725 

6.2 Experimental discussion4.2. Assessment of transfer functions 

Transfer functions were derived using accumulated precipitation amounts reported by automatic weighing precipitation gauges 

over 30 minute periods. This approach is consistent with that used in SPICE (Nitu et al., 2018) and the related derivation of 

transfer functions (Kochendorfer et al., 2017a). While automatic precipitation gauges can report at a temporal resolution of 730 
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one minute, or even higher, the extension of the transfer function derivation and evaluation to other temporal periods, or 

different accumulation thresholds, is beyond the scope of this work.  

The Kochendorfer et al. (2017a) universal transfer function with wind speed and air temperature dependence, KUniversal, was 

derived from measurements at eight SPICE sites in the interest of making the transfer function broadly applicable across 

different climates. This broad applicability is furthered by the widespread availability of air temperature and wind speed 735 

measurements at meteorological stations. Recent studies have demonstrated that the performance of KUniversal can vary 

substantially by site (Smith et al., 2020). Therefore, climate-specific KCARE transfer function coefficients were also derived for 

comparison in the present study.  

The KCARE transfer function has a lower temperature threshold and exhibits larger increases in collection efficiency with 

increasing temperature relative to KUniversal (Fig. 11a6a). These differences improved the overall RMSE for KCARE by reducing 740 

the over-adjustment of some rain and mixed precipitation events; however, this improvement came at the expense of under-

adjusting some snow events at warmer temperatures. The use of this approach warrants further study over longer periods to 

better understand the performance impacts of seasonal variability and assessment at other sites and climate regions with 

different precipitation characteristics and proportions.  

Both the KUniversal and KCARE transfer functions performed well for snow, but were limited by their ability to distinguish among 745 

snow, rain, and mixed precipitation at temperatures between -5 C and 2 C. The largest uncertainties in collection efficiency 

and adjusted accumulation estimates were observed over this temperature range. Adjustments using wind speed and 

hydrometeor fall velocity, however, addressed this shortcoming and provided improved collection efficiency and adjusted 

accumulation estimates. The CFD transfer function, derived from time-averaged numerical simulation results over a wide 

range of wind speeds and hydrometeor fall velocities, resulted in low RMSE values overall and across rain, snow, mixed, and 750 

undefined precipitation types. These results reinforce the fundamental importance of both wind speed and hydrometeor fall 

velocity on gauge collection efficiency demonstrated by the CFD model results and results from earlier studies (Nešpor and 

Sevruk, 1999;Thériault et al., 2012).  

The CFD transfer function exhibited the lowest RMSE of all transfer functions for mixed precipitation and for intermediate 

fall velocities between 1.5 m s-1 to 2.5 m s-1 (Table 9c4c), which is attributed to its nonlinear increase in collection efficiency 755 

with fall velocity. As this transfer function was derived theoretically, it is applicable across different sites and climate regimes 

with different types and relative proportions of hydrometeors. The present results also support the methodology for the CFD 

model, which can be extended to other shield and gauge combinations. For larger shields, it may be important to employ a 

more realistic vertical wind profile, with a zero-slip boundary condition at the earth’s surface.  

The HE1 transfer function showed good results for snow, supporting its use for the unshielded gauge. This approach is 760 

straightforward to implement based on its simplicity, and is less reliant on the accuracy of fall velocity estimates beyond the 

fall velocity threshold. The collection efficiency for the HE1 transfer function decreases to 0.2 at a wind speed of 5.75 m s-1. 

This demonstrates the challenge of adjusting unshielded gauge snow measurements at windy sites, where the captured 

accumulations may be small relative to gauge uncertainties. This can lead to large uncertainty in adjusted measurements, as 
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demonstrated by other studies applying transfer functions to unshielded gauge measurements at windy sites (Smith et al., 765 

2020). The CFD transfer function results suggest a gradual decrease in collection efficiency at higher wind speeds compared 

with the HE1 transfer function, as some hydrometeors with higher fall velocities are still able to be captured by the gauge; 

however, these accumulations remain small relative to gauge uncertainties, particularly in windy conditions, making them 

difficult to assess experimentally. Further testing at other sites is recommended to better understand the collection efficiency 

for low fall velocity hydrometeors (light snow) under windy conditions above 6 m s-1, which were not available in the CARE 770 

dataset.  

A limitation of the HE1 transfer function is the minimal improvement in the RMSE for mixed precipitation and fall velocities 

between 1.5 m s-1 to 2.0 m s-1 relative to the KCARE function. This is due to the over-adjustment of mixed precipitation events 

with fall velocities slightly below the cutoff value, and the under-adjustment of mixed precipitation events with fall velocities 

slightly above the cutoff. While the RMSE for mixed precipitation is still lower than that for adjustments based on temperature 775 

and wind speed (KUniversal, KCARE), further improvements are obtained by using transfer functions with continuous fall velocity 

dependence; specifically, the CFD and HE2 transfer functions.   

The HE2 transfer function, with a linear increase in collection efficiency with fall velocity, yields a greater reduction in the 

RMSE for mixed precipitation relative to the HE1 transfer function. The HE2 transfer function results show a higher RMSE 

for mixed precipitation than those for the CFD function, possibly due to the nonlinearity in the latter with fall velocity. The 780 

HE2 transfer function, however, yields the best RMSE results for snow, temperatures below -5 C, and fall velocities below 

1.5 m s-1. Adjusted uncertainties for snow are approximately two times higher than those for rain, and show similar trends with 

increasing temperature and decreasing fall velocity. The former may be due to the lower event accumulations and greater 

adjustments for snow relative to rain, with measured values in closer proximity to the gauge uncertainty. The present approach 

of estimating the fall velocity using the POSS appears to perform well, overall; however, further study to better characterize 785 

the fall velocity distribution and changes over 30-minute time periods could lead to further improvements in the model under 

specific conditions such as mixed precipitation. While this transfer function was derived using the CARE dataset, it is more 

universally applicable than adjustments based on temperature, for which the relative proportions of rain, snow, and mixed 

precipitation at warmer temperatures can influence fit results. Further testing at other sites is recommended to assess this in 

different climate regions, with different hydrometeor types and associated fall velocities.   790 

6.34.13 Application to operational networks  

It is evident that the performance of catchment-type precipitation gauges is dependent on wind speed and the aerodynamic 

properties of both the gauge and incident hydrometeors (Nešpor and Sevruk, 1999;Thériault et al., 2012;Colli et al., 2016b). 

The modelling results of this study demonstrated this dependence from a theoretical perspective, resulting in a transfer function 

that incorporates hydrometeor fall velocity. The experimental results validated this approach, which resulted in improved 795 

precipitation estimates from an unshielded gauge relative to those using surface temperature as a proxy for precipitation phase 
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or type. Indeed, the use of surface temperature in this manner can be instructive (Kienzle, 2008;Harder and Pomeroy, 2013), 

but does not capture the conditions defining hydrometeor initiation and growth aloft (Stewart et al., 2015).   

In this study, the fall velocity of hydrometeors reported by the POSS provided direct measurement of a key parameter related 

to the aerodynamics of the catchment process. In Canada, the POSS was deployed operationally to report present weather as 800 

part of an automatic weather station. In operational monitoring networks, the hydrometeor fall velocity can be provided by 

disdrometers (Loffler-Mang and Joss, 2000;Sheppard and Joe, 2000;Bloemink and Lanzinger, 2005;Nitu et al., 2018), 

vertically pointing Doppler radars (Biral, 2019), or multi-frequency radar techniques (Kneifel et al., 2015). Globally, other 

types of disdrometers (e.g. OTT Parsivel2, Thies Laser Precipitation Monitor) have been deployed operationally and can also 

provide hydrometeor fall velocities. The uncertainty in fall velocity estimates for different technologies, hydrometeor types, 805 

sizes, fall velocities, wind speeds, and wind directions remains to be assessed. These sensors can also be useful for reporting 

present weather and verifying the occurrence of precipitation based on their high sensitivity (Nitu et al., 2018;Sheppard and 

Joe, 2000).  

The results from this study demonstrate that the combined use of accumulation reports from an unshielded weighing gauge 

with fall velocities reported by a disdrometer, wind speed measurements, and an appropriate transfer function can greatly 810 

reduce the uncertainty of precipitation accumulation measurements. The extension of the approach in the present study to 

shielded precipitation gauges or gauge designs with higher sensitivity may provide a means of further reducing the 

measurement uncertainty for automatic gauges in windy environments. Application to light snow events and different event 

durations are other areas for future study. 

7 5 Conclusions 815 

Hydrometeors exhibit a wide variety of habits, sizes, shapes, and densities, influencing their aerodynamics and, in turn, their 

ability to be captured by the gauge. Numerical modelling analysis for an unshielded Geonor T-200B3 600 mm precipitation 

gauge demonstrated that collection efficiencies are similar for different hydrometeor types with different sizes, densities, 

masses, and drag values, but similar fall velocities. The model results illustrated that wind speed influences the updraft 

magnitude and local airflow around the gauge orifice, while fall velocity affects the approach angle and degree of coupling 820 

between the hydrometeor trajectories and the local airflow. An empirical collection efficiency transfer function with wind 

speed and fall velocity dependence was developed from the model results. Two additional transfer functions with similar 

dependence were derived experimentally for unshielded Geonor T-200B3 precipitation gauges. 

These three collection efficiency transfer functions with gauge height wind speed and precipitation fall velocity dependence 

were assessed experimentally and compared to universal and climate-specific transfer functions with wind speed and 825 

temperature dependence. These functions employ different models to adjust precipitation accumulation measurements for 

wind-induced undercatch, including:  
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 (1) The nonlinear CFD transfer function model presented in Sect. 3S1, with collection efficiency decreasing nonlinearly with 

wind speed and increasing nonlinearly with precipitation fall velocity; 

(2) The HE1 transfer function, with a linear decrease in collection efficiency down to 0.2 with wind speed for 30-minute mean 830 

fall velocity below 1.93 m s-1, and a collection efficiency of 1 above this fall velocity threshold; 

(3) The HE2 transfer function, with the linear wind speed dependence down to 0.2 collection efficiency, transitioning with 

increasing mode fall velocity to provide a collection efficiency of 1 when the mode fall velocity reaches 2.81 m s-1.  

These transfer functions were assessed using accumulation measurements from an unshielded precipitation gauge and DFAR 

gauge over 30-minute precipitation events during two winter seasons at the CARE test site in Egbert, ON, Canada. Estimates 835 

of fall velocity were provided by the POSS upward-facing Doppler radar.  

The transfer functions with mean wind speed and fall velocity dependence improved the agreement between the 30-minute 

adjusted precipitation accumulation values and DFAR reference values relative to the KUniversal and KCARE transfer functions 

with mean wind speed and air temperature dependence. The CFD transfer function agreed well with experimental results over 

all observed fall velocities, supporting the use of the numerical modelling approach and providing the lowest RMSE for mixed 840 

precipitation. The HE1 transfer function captured the collection efficiency trends for rain and snow well, with the collection 

efficiency for rain close to 1 and the collection efficiency for snow decreasing with wind speed. The HE2 transfer function 

better captured the collection efficiency for mixed precipitation with fall velocities between 1.2 m s-1 to 4.6 m s-1.   

The results of this study reinforce the important role of fall velocity on collection efficiency shown in previous studies (Nešpor 

and Sevruk, 1999;Thériault et al., 2012). Adjustment approaches incorporating fall velocity show tremendous value and 845 

potential, particularly where DFAR measurements are not feasible, and can be applied where the precipitation type is complex 

(e.g. snow transitioning to rain), uncertain, or even unknown. These approaches warrant further investigation at different sites 

with different precipitation characteristics, fall velocities, and wind speeds. Further study to assess the collection efficiency 

relationships with wind speed and precipitation fall velocity for different shield configurations, as well as assessing the fall 

velocity using other means, including disdrometers or remote sensing, is also recommended.  850 
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