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Abstract. Crop yield is reduced by heat and water stress, and even more when these conditions co-occur. Yet, compound 

effects of air temperature and water availability on crop heat stress are poorly quantified: existing crop models, by relying at 

least partially on empirical functions, cannot account for the feedbacks of plant traits and response to heat and water stress 

on canopy temperature. We developed a fully mechanistic model coupling crop energy and water balances, to determine 10 

canopy temperature as a function of plant traits, stochastic environmental conditions; and irrigation applications. While 

general, the model was parameterized for wheat. Canopy temperature largely followed air temperature under well-watered 

conditions; but when soil water potential was more negative than -0.14 MPa, further reductions in soil water availability led 

to a rapid rise in canopy temperature — up to 10 °C warmer than air at soil water potential of -0.62 MPa. More intermittent 

precipitation led to higher canopy temperatures and longer periods of potentially damaging crop canopy temperatures. 15 

Irrigation applications aimed at keeping crops under well-watered conditions could reduce canopy temperature, but in most 

cases were unable to maintain it below the threshold temperature for potential heat damage; the benefits of irrigation in terms 

of reduction of canopy temperature decreased as average air temperature increased. Hence, irrigation is only a partial 

solution to adapt to warmer and drier climates. 

 20 
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1 Introduction 

High and stable crop yield requires suitable climatic conditions throughout the growing season. Abiotic stressors, like water 

scarcity and high temperatures, can adversely affect crop growth, development, and yield, as shown by controlled-condition 25 

and field experiments, large scale surveys, and crop model applications (e.g., Zampieri et al., 2017; Daryanto et al., 2017; 

Kimball et al., 2016; Ray et al., 2015; Asseng et al., 2015). Both water and heat stress impair photosynthesis (Way and 

Yamori, 2014; Lawlor and Tezara, 2009), undermine crop growth (Hsiao, 1973; Hatfield and Prueger, 2015) and 

reproduction (Prasad et al., 2011), and hasten crop development and leaf senescence (Lobell et al., 2012), although the 
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physiological mechanisms can differ (Fahad et al., 2017). Heat and water stress do not only act independently but also have 30 

compound effects on plant phenology and physiology, so that heat stress is more detrimental if co-occurring with water 

stress (Mahrookashani et al., 2017; Prasad et al., 2011; Suzuki et al., 2014; Cohen et al., in press). Yet, these compound 

effects of heat and water stress are seldom considered, experimentally and via models (Rötter et al., 2018). 

Climate change is projected to increase air temperature and, in many regions, decrease growing season precipitation or 

lengthen dry spells (IPCC, 2013). Hot and dry summers are becoming more common (Zscheischler and Seneviratne, 2017; 35 

Alizadeh et al., 2020) and changes in climate are already reducing and will likely further reduce crop yield and its stability, 

and ultimately global food security (e.g., Challinor et al., 2014; Masson-Delmotte et al., 2018; Moore and Lobell, 2015; 

Rosenzweig et al., 2014). The frequency and severity of crop heat and water stress are directly affected by air temperature 

and soil water availability, and indirectly driven by evapotranspiration, which is enhanced by warm temperatures. 

Nevertheless, how air temperature and precipitation, and their variability, interact in defining the occurrence, extent, and 40 

duration of crop heat and water stress has not been investigated in detail.  

Canopy temperature allows more accurate estimates of the consequences of heat stress on the crop and its yield than air 

temperature (Gabaldón-Leal et al., 2016; Siebert et al., 2014; Rezaei et al., 2015). Canopy temperature can deviate from air 

temperature under field conditions, because of the interplay among plant traits, plant water availability, air temperature and 

humidity, solar radiation, wind velocity, and the ensuing canopy microclimate (Michaletz et al., 2016; Schymanski et al., 45 

2013). Considering canopy instead of air temperature is particularly important when characterizing the effects of compound 

heat and water stress, and the mitigating potential of irrigation against heat stress, because canopy temperature can be 

substantially higher than air temperature under water stress (e.g., Siebert et al., 2014).  

Heat stress and damage are the result of complex and interacting plant physiological processes, depending on the 

temperature reached by the specific organ and the duration of the stress. Crop response to temperature is nonlinear (Porter 50 

and Gawith, 1999; Sanchez et al., 2014). Exceeding crop- and developmental stage-specific thresholds can lead to plant 

tissue damage and halted physiological processes, although the plant can still survive. Also, the duration of exposure to high 

temperatures affects the outcome. For example, the accumulation of high temperature days negatively affected yield in 

rainfed systems (Schlenker and Roberts, 2009). In the face of increasing variability in the climatic conditions, we need to 

determine how stochastic precipitation and air temperature combine in determining canopy temperature. Average canopy 55 

temperatures and duration of periods above the threshold for damage can provide indications on the exposure of crops to 

potential heat stress. 

Irrigation can buffer some aspects of climatic variability and extremes imposed on crop production (Tack et al., 2017; Zhang 

et al., 2015; Li and Troy, 2018; Vogel et al., 2019). Irrigation directly alleviates water stress by supplementing precipitation. 

Further, by sustaining the plant’s evaporative cooling, irrigation can reduce canopy temperature and hence the consequences 60 

of high air temperature (Vogel et al., 2019; Siebert et al., 2017). In other words, by removing water stress, irrigation can also 

diminish the occurrence of heat stress. Nevertheless, we lack a quantification of how much irrigation can reduce the effects 

of unfavorable air temperature and precipitation, and the occurrence of crop heat stress and compound heat and water stress. 
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Canopy temperature is difficult to measure directly, although it can be estimated indirectly based on thermal imagery (e.g., 

Still et al., 2019). Models are a powerful tool to explore how canopy temperature changes with growing conditions and plant 65 

traits, beyond what is feasible via direct observations in specific experiments. Existing crop canopy temperature models 

either link canopy to growing conditions via simple empirical relations (e.g., Shao et al., 2019; Neukam et al., 2016) or 

model explicitly the leaf or canopy energy balance (Webber et al., 2016; Fang et al., 2014; Webber et al., 2017). But, so far, 

the role of plant water availability has been included only via semi-empirical corrections even in mechanistic models. For 

example, actual canopy temperature was calculated based on canopy temperatures under maximum and zero stomatal 70 

conductances and a crop water stress index (for a review of approaches and their performance, see Webber et al., 2018; 

Webber et al., 2017). Mechanistic models fully representing plant physiology can estimate crop canopy temperature that 

better reflects soil water and weather dynamics, and how plants respond to environmental conditions. Such models are 

currently lacking, but are necessary to quantify the effects of joint changes in air temperature and precipitation patterns; and 

the benefits of irrigation.  75 

We developed a mechanistic model to estimate crop canopy temperature as a function of crop physiology, soil features, and 

(stochastic) climatic conditions, coupling the canopy energy balance and the water transport through the soil-plant-

atmosphere continuum (SPAC), with stomatal conductance based on an optimality principle. We used the model in a case 

study – wheat grown in a temperate climate – to answer the following questions:  

- What are the compound effects of soil water availability and air temperature on crop canopy temperature?  80 

- How does precipitation pattern influence canopy temperature and its variability, and the duration of potentially 

damaging canopy temperatures? 

- How effective is irrigation in reducing canopy temperature and the duration of potentially damaging canopy 

temperatures, depending on the climatic regime? 

2 Methods 85 

2.1 Model description 

To quantify the compound effects of air temperature and precipitation regimes on canopy temperature, and the potential of 

irrigation to reduce the occurrence of crop heat stress, we developed a mechanistic model describing the coupled canopy 

energy and water balances, and their interactions with the water balance of the rooting zone. See the model structure in Fig. 1 

and the Supplementary Information – SI – for details and symbols. The model allows exploring how plant traits and 90 

physiological responses to growing conditions interact with air temperature and soil water availability in defining canopy 

temperature, while relying on parameters with clear physiological meanings (Table S2). 

To limit parameter and computational requirements, a minimalist approach was used, lumping the canopy in a ‘big leaf’ 

(Amthor, 1994; Jarvis and McNaughton, 1986; Bonan, 2019) and the soil water dynamics in a ‘bucket-filling’ model, with 
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instantaneous losses via runoff and percolation below the rooting zone (e.g., Milly, 1994; Rodriguez-Iturbe et al., 1999). 95 

These simplifications are expected to have minor repercussions on our conclusions (see SI, Section S5). 

As detailed in the SI, combining the canopy water and energy balance, the canopy temperature, 𝑇, can be obtained as  

𝑇 ൌ 𝑇 
𝑄↓  𝐵,

↓ െ 𝜆𝑔௩,𝐷

𝑐𝑔ு,  𝜆𝑔௩,𝑠௦  4 𝜀𝜎𝑇
ଷൣ1 െ exp൫െ𝐾,ௗ  𝐿ூ൯൧ 

. (1) 

where 𝑇 is the air temperature; 𝑄↓ the net absorbed shortwave radiation; 𝐵,
↓  the net absorbed longwave radiation at 𝑇 

(isothermal radiation); 𝐷 the atmospheric vapor pressure deficit; 𝑔௩, and 𝑔ு, the total canopy conductances to water vapor 

and heat respectively, which include stomatal and aerodynamic conductances; 𝜆, 𝑐, 𝜀, 𝜎, and 𝐾,ௗ are constants (Table 100 

S1); 𝑠௦ the slope of the vapor pressure vs. temperature curve, dependent on 𝑇; and 𝐿ூ the leaf area index.  

We explicitly included the dependence of stomatal conductance on environmental conditions and plant physiology exploiting 

an optimality principle: plants are assumed to maximize carbon uptake over a given period, subject to limited water 

availability (Mäkelä et al., 1996; SI, Eq. S9-S11). We chose this approach because it is simple yet based on an evolutionary 

principle; and has led to promising results (Buckley et al., 2017; Eller et al., 2020). Many stomatal optimization models 105 

based on water use efficiency assume that photosynthesis is limited either by RuBisCO or electron transport rate. To avoid 

this a priori assumption, we approximated the original Farquhar et al. (1980) model for the photosynthetic rate with a 

hyperbolic function that includes both limitations while retaining the same physiological parameters (Vico et al., 2013). This 

model was further developed here to account for the effects of the leaf boundary layer conductance and day respiration, and 

the key stomatal and non-stomatal effects of limited water availability on marginal water use efficiency and metabolic 110 

activity (Zhou et al., 2013; Manzoni et al., 2011; Vico and Porporato, 2008; see SI Section S1.2.1 for details). The results 

obtained with an alternative, empirical model of canopy conductance parameterized with eddy covariance data (SI, Eq. S30-

S32; Novick et al., 2016) further support our mechanistic approach. But they also highlighted the need to explicitly represent 

canopy gas exchanges to capture the dependence of canopy temperature on air temperature, unless site- and crop-specific 

data are available to determine the canopy conductance empirically (SI, Fig. S9). Finally, aerodynamic conductances to heat 115 

and vapor were determined based on wind velocity,  𝑈 , and leaf width, via well-established semi-empirical relations 

describing heat and mass transport inside the leaf boundary layer and to the bulk atmosphere (SI, Sections S1.2.2 and 

S1.2.3). 

The canopy conductances affect and are affected by the soil water balance and water transport along the SPAC. On the one 

hand, soil water potential influences leaf water potential and hence leaf physiological activities (stomatal conductance, 120 

metabolic rates, and marginal water use efficiency). On the other hand, stomatal conductance and atmospheric water demand 

drive the rate of canopy water losses and hence the decline of soil water content. We represented the soil water content as 

soil saturation, 𝑠 (0  𝑠  1; soil moisture hereafter), linked to soil water potential, 𝜓௦, via texture-dependent soil water 

retention curves (SI, Eq. S24). A bucket-filling model was used to describe the soil moisture dynamics, with precipitation 

and irrigation as input and evapotranspiration, deep percolation below the rooting zone and surface runoff as losses, but 125 
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neglecting the root structure, the time needed for the water to be redistributed within the soil, and lateral soil water 

movements (SI Section S1.3.1; Vico and Porporato, 2010). The soil water balance was coupled to a minimalist description of 

water transport through the SPAC, to determine the leaf water potential. The SPAC was modeled as a series of conductances, 

from the soil, through the plant, to the atmosphere (SI, Section S1.3.2; Manzoni et al., 2013).  

These model components provide conductances and boundary conditions to apply Eq. (1) and quantify how canopy 130 

temperature, 𝑇 , changes with environmental conditions and management: air temperature and humidity, wind velocity, 

incoming solar radiation, and precipitation; and irrigation applications, if any. The model needs to be solved iteratively (Fig. 

1). At each time step (a day; see Section 2.3), the model considers the previous soil moisture and current atmospheric 

conditions; the previous canopy temperature and water potential are used as initial guesses for the numerical integration. 

First, the model determines the canopy boundary layer and aerodynamic bulk conductances and water supply and demand. 135 

Then, the canopy water potential 𝜓 is determined iteratively by equating water supply and demand. After convergence is 

reached on 𝜓, the canopy energy balance is used to determine iteratively 𝑇. Finally, the soil water balance is updated with 

inputs and losses cumulated over the time step. 

2.2 Metrics of potential heat stress damage 

Based on 𝑇 , we derived two metrics representing the potential for heat stress damage: i) 𝑇, , the mean canopy 140 

temperature during a specific period (anthesis; see Section 2.3); and ii) 𝑃ுௌ, the fraction of days during such period when 𝑇 

exceeded the crop-specific threshold 𝑇௧ , above which detrimental effects of crop heat stress are likely. 𝑃ுௌ  is thus a 

measure of the duration of the detrimental conditions, while 𝑇, quantifies the level of detrimental conditions. 

2.3 Case study 

While the model is of general applicability, we focused on the case of wheat (Triticum aestivum) – a staple crop with 145 

relatively low tolerance to high temperatures when compared with other crops (Sanchez et al., 2014) – grown at 45 ° latitude 

N. All the model parameters are summarized in the SI, Table S2. 

We restricted our analyses to anthesis, when wheat is most vulnerable to heat (Porter and Gawith, 1999) and water (Daryanto 

et al., 2017) stress. Anthesis was assumed to last 21 days (Mäkinen et al., 2018), starting at the 140th day of the year, i.e., 

May 20th (in line with observations and simulations at the latitude selected; Semenov et al., 2014; Bogard et al., 2011). For 150 

simplicity, the timing and length of anthesis were kept constant under all climatic scenarios and regardless of irrigation 

applications. 

The model is capable of simulating the diurnal course of the key variables, but, for simplicity, we focused on the central part 

of the day, when incoming shortwave radiation at the top of the canopy  𝑄
↓ and air temperature 𝑇 are at or near their daily 

maxima, and 𝑇 is expected to peak. Wind velocity 𝑈 was assumed to be at the lowest end of its realistic range and  𝑄
↓ that 155 
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of clear sky conditions, thus providing the maximum expected 𝑇 and a conservative estimate of the frequency of occurrence 

of potentially damaging temperatures. 

Measured environmental conditions relative to a specific location could be used to force the model. Yet, here we employed 

synthetically generated environmental conditions, varying their parameters to systematically explore several climate 

scenarios. Daily precipitation was idealized as a marked Poisson process (Rodriguez-Iturbe et al., 1999), i.e., exponentially 160 

distributed interarrival times, with average frequency 𝜆. Event depth was also assumed to be exponentially distributed, with 

average 𝛼  (SI, Section S1.4.2). The variability of  𝑇  around its long-term average 𝜇்ೌ  was described via an Ornstein-

Uhlenbeck process (SI, Section S1.4.3; Benth and Benth, 2007). In line with the focus on the warmest part of the day, 𝑇 is 

to be interpreted as the maximum daily air temperature. Finally, 𝑈,  𝑄
↓, and 𝑅𝐻 were assumed to be constant during the 

simulations (SI, Table S2), whereas air water vapor pressure, 𝑒, and vapor pressure deficit, 𝐷, were calculated based on 𝑇 165 

(Campbell and Norman, 1998).  

As baseline pedoclimatic conditions, we considered a sandy loam soil, average precipitation frequency 𝜆 of 0.2 d-1, average 

event depth 𝛼  of 8.2 mm (corresponding to an average annual precipitation total of 600 mm), long-term average air 

temperature 𝜇்ೌ  of 25 °C, air temperature standard deviation of 3.6 °C, air relative humidity 𝑅𝐻 of 40%, wind velocity 𝑈 of 

4 m s-1, and net incoming shortwave radiation  𝑄
↓  of 800 W m-2. We also explored additional pedoclimatic conditions. 170 

Specifically, we considered more extreme precipitation scenarios, comprising increasing precipitation from increasing 

precipitation frequency; and a constant average annual precipitation total, but more intermittent precipitation, with reduced 

average precipitation frequency (𝜆=0.07 d-1) and increased average event depth (𝛼=23.5 mm). Long-term average air 

temperature 𝜇்ೌ  also of 20 and 30 °C were explored. Separate sensitivity analyses were run for the standard deviation of air 

temperature (SI, Fig. S6), soil texture (SI, Fig. S7), and 𝑈,  𝑄
↓, and 𝑅𝐻 (SI, Fig. S8).  175 

For the irrigated case, a demand-based (water) stress-avoidance irrigation was considered, whereby an irrigation application 

is triggered whenever soil water potential reached the intervention point, 𝜓෨௦ (Vico and Porporato, 2011). To ensure well-

watered conditions, 𝜓෨௦ was set to -0.07 MPa, i.e., just above the incipient water stress for wheat (-0.1 MPa; Kalapos et al., 

1996). Each irrigation application restored a pre-set target soil water potential, 𝜓௦, set at -0.01 MPa. The difference between 

the intervention point and the target soil water potential is large enough to allow the use of a traditional irrigation technology 180 

(e.g., sprinkler systems or surface irrigation; see Vico and Porporato, 2011 and references therein). 

Finally, the crop- and developmental-stage specific temperature threshold above which detrimental effects of crop heat stress 

are likely, 𝑇௧, was set equal to the maximum baseline temperature during anthesis. 𝑇௧ is a large source of large uncertainty, 

when aiming at defining the occurrence of crop heat stress and its consequences on the crop and final yield (Siebert et al., 

2017; Wanjura et al., 1992). Even within a specific developmental stage, there is a large variability of reported baseline and 185 

optimal temperatures, because of differences in variety, growing conditions, and experimental approach. Further, crop’s 

baseline and optimal temperatures are often defined based on air temperature, although plants respond to canopy or even 

organ temperature. As showed below, the differences between air and canopy temperatures can be large, in particular under 
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limited plant water availability. To make the comparison between 𝑇  and 𝑇௧  meaningful, we considered a maximum 

baseline temperature obtained under well-watered conditions and low D; and set 𝑇௧ equal to 30 °C (Saini and Aspinall, 190 

1982). This value is similar to those obtained in other experiments focusing on wheat (Porter and Gawith, 1999).  

2.4 Statistical tests 

The simulated canopy temperatures were not normally distributed, according to the Anderson-Daring test (p<0.05). Hence, 

to test if median 𝑇, and 𝑃ுௌ differed across scenarios, we employed the Mood test; and to test the difference in their 

variances, we used the Brown-Forsythe test. The test results are summarized in SI Tables S3-S8. Differences are commented 195 

on when p<0.05. 

3 Results 

The stochasticity of air temperature, 𝑇, and precipitation occurrence was mirrored by the erratic variations of soil moisture, 

𝑠, and canopy temperature, 𝑇, in the numerically simulated trajectories (exemplified in Fig. 2). 𝑇 largely followed 𝑇, but 𝑠 

determined whether 𝑇 was near or above 𝑇. Under well-watered conditions, when 𝑠 ensured unconstrained transpiration, 𝑇 200 

was similar to or even occasionally lower than 𝑇 ; whereas when 𝑠  decreased, 𝑇 became warmer than 𝑇  (after 

approximately day 12 in Fig. 2). The evolution of 𝑇  and other key physiological state variables, including stomatal 

conductance, photosynthesis and canopy water potential, during a dry down is reported in the SI, Fig. S1. 

Despite the complex mechanisms linking 𝑇 and plant water availability to 𝑇, the resulting temperature difference 𝑇 െ 𝑇 

followed a relatively simple pattern (Fig. 3). When 𝑠 was above 0.34 (corresponding to 𝜓௦=-0.14 MPa for the soil chosen), 205 

𝑇  was within 1 to 2 °C of 𝑇 , with 𝑇 ൏ 𝑇  for 𝑇>25 °C. Conversely, for 𝑠<0.34, 𝑇 െ 𝑇  increased as 𝑠 declined, with 

increasing slope, from 1 °C at 𝑠=0.34 to 10 °C at 𝑠=0.25 (corresponding to 𝜓௦=-0.62 MPa); and 𝑇 െ 𝑇 was independent of 

𝑇  (i.e., under water stress 𝑇 െ 𝑇  is driven by soil water availability for evaporative cooling). Hence, high 𝑇  could be 

caused by high 𝑇  or low 𝑠 or their combination. The dependence of the plant’s physiological state variable on 𝑠 is reported 

in the SI, Fig. S2, for set 𝑇. 210 

Temperature and precipitation patterns interacted in defining the mean canopy temperature during anthesis, 𝑇, . 

Increasing average precipitation totals decreased median 𝑇, (colors in Fig. 4, SI Table S3, S4), in particular at lower 

precipitation totals (red in Fig. 4) and higher long-term average air temperature 𝜇்ೌ  (right in Fig. 4). 𝑇,  was less 

affected by annual average precipitation totals larger than 900 mm and 𝜇்ೌ  at 20 °C. 𝑇, variability increased with 𝜇்ೌ  

and, to a lesser extent, with decreasing average precipitation totals (SI, Table S3, S4).  215 

Precipitation regime affected median of 𝑇, and its variability even when considering the same precipitation total but 

different average precipitation frequencies, 𝜆 (and hence event depths, 𝛼; Fig. 5, top). When compared with the baseline 

precipitation scenario (red bars), larger but more intermittent events (i.e., lower 𝜆 and higher 𝛼; violet bars) resulted in 
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higher 𝑇.  median and variability in rainfed cropping (SI, Table S5). The median of 𝑇,  increased with 𝜇்ೌ  

regardless of rainfall pattern, whereas the variance was not significantly affected (Table S6). 220 

Irrigation reduced median and variance of  𝑇 with respect to rainfed cropping under the same climatic scenario (red vs. blue 

hues in Fig. 5, top). Also, the dependence of 𝑇 on precipitation pattern was reduced with irrigation (SI, Table S5). Yet, 

despite the irrigation, median and variability of 𝑇 increased with 𝜇்ೌ  (SI, Table S6), although the increase in median 𝑇 was 

less marked than that under rainfed cropping.  

Irrigation applications reduced the fraction of days during which 𝑇 was above the threshold temperature for potential heat 225 

damage, 𝑇௧, i.e., of likely crop heat stress (𝑃ுௌ; Fig. 5 bottom). But it could not completely prevent this occurrence (i.e., 

median 𝑃ுௌ  0), except for 𝜇்ೌ =20 °C. Among the climatic scenarios considered, the largest median reduction in 𝑃ுௌ 

(100%) occurred at 𝜇்ೌ = 20 °C, and the smallest (between 53% and 58%) at 𝜇்ೌ =30 °C (Table 1).  

Increasing air temperature variability left median and variance of 𝑇, unaltered in rainfed cropping, but increased them 

in irrigated cropping (SI, Fig. S6 top and Table S7). There, the removal of water stress via irrigation made the resulting 230 

canopy temperature more sensitive to the air temperature regime. The median and variance of Pுௌ  increased with 

temperature variability in the irrigated cropping (Fig. S6 bottom, Table S7). Also incoming shortwave radiation  𝑄
↓, wind 

velocity 𝑈, and air relative humidity RH affected 𝑇  (Fig. S8). An increase of  𝑄
↓  increased 𝑇 , in particular at 𝑠<0.35. 

Decreasing 𝑈 enhanced 𝑇  for 𝑠<0.35, but did not affect it when 𝑠>0.35. In contrast, 𝑇  slightly increased with 𝑅𝐻  for 

𝑠>0.35, but showed no response to it when 𝑠<0.35. Finer soil texture did not affect 𝑇, and Pுௌ, although the difference 235 

between rainfall scenarios remained (SI, Fig. S7 and Table S8). Also rooting depth 𝒁𝒓 could affect 𝑇, and Pுௌ. Yet, 

when considering a range of 𝑍 compatible with observations for wheat (and annual crops in general; Jackson et al., 1996), 

the effects on 𝑇, of reduced losses via deep percolation and runoff and stabilized soil moisture with deepening roots 

(Laio et al., 2001) are negligible (not shown).  

4 Discussion 240 

4.1 Soil water availability and air temperature jointly affect canopy temperature 

We quantified the compound effect on canopy temperature of environmental conditions: air temperature, soil water 

availability, incoming shortwave radiation, wind velocity, relative humidity, soil texture, and irrigation. Our model is an 

improvement with respect to existing approaches to simulate canopy temperature in agricultural systems, which rely on 

empirical corrections of values determined by means of the energy balance under extreme conditions (Fang et al., 2014; 245 

Webber et al., 2016). Lacking adequate modeling tools has limited our ability to effectively quantify the likelihood and 

extent of potential heat damage to crops; and the potential improvements by irrigation.  

The role of environmental conditions is mediated by plant physiology and its response to conditions. Indeed losses via 

evapotranspiration dominated the soil water balance in all the climatic scenarios explored (see SI, Section S3.1). But, despite 
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the complex mechanisms behind canopy temperature, the resulting pattern was relatively simple. Canopy temperature 250 

increased from cooler temperatures and wetter soils to warmer and drier conditions (Fig. 3). Under well-watered conditions, 

some thermoregulation occurred, cooling down or warming up the canopy depending on air temperature, to ensure the 

canopy was near optimal temperature for photosynthesis (Michaletz et al., 2016). This thermoregulation capability was lost 

when low water availability limited evaporative cooling. The differences of canopy and air temperatures provided by the 

model are in line with experimental observations and other model results, thus lending support to our approach. In wheat, for 255 

example, daily maximum or mid-day canopy temperature was 2 to 10 °C warmer than air under water stress, and from 1-to-2 

°C warmer to up to 6 °C cooler than air temperature under well-watered condition, among field observations and model 

results (Pinter et al., 1990; Rashid et al., 1999; Jensen et al., 1990; Howell et al., 1986; Ehrler et al., 1978; Balota et al., 2008; 

Neukam et al., 2016; Webber et al., 2016; Schittenhelm et al., 2014; Webber et al., 2018; Mon et al., 2016). Our simulations 

led to canopies being 2 to 10 °C warmer than air under water stress, and to a cooling effect of 1 to 2 °C under warm but well-260 

watered conditions. Differences between model results and observations can be ascribed to cultivar-specific traits, approach 

to measuring canopy temperature, measurement timing and position (within or just above the canopy), and environmental 

conditions (e.g., solar radiation, soil texture). Some of these aspects can be accounted for by the model, by adjusting the 

parameters to the specific crop and variety, and environmental conditions.  

The difference between canopy and air temperature was higher than, and independent of, air temperature when soil water 265 

potential was below a critical value (Fig. 3). This threshold-like response mirrors that of stomatal closure and plant 

transpiration reduction with water stress (for wheat, e.g., Sadras and Milroy, 1996; Shen et al., 2002; Wang et al., 2008; Wu 

et al., 2011; Kalapos et al., 1996). Yet, no threshold for stomatal closure was imposed a priori in the model. The emerging 

threshold of soil water potential (-0.14 MPa) is comparable with the soil water potential corresponding to incipient stomatal 

closure in some experiments (-0.1 MPa; Kalapos et al., 1996), but higher than those of others (between -0.27 and -0.35 MPa 270 

depending on the cultivar; Wang et al., 2008) and lower than the value often assumed to correspond to well-watered 

conditions (-0.03 MPa; Ali et al., 1999; Laio et al., 2001). 

4.2 More intermittent precipitation and higher air temperature increase canopy temperature 

Climate change is expected to alter both air temperature and precipitation regimes, with further increases in average and 

extremely high air temperatures, and, in some regions, scarcer or more intermittent precipitation, i.e., longer dry spells 275 

(IPCC, 2013). Co-occurring dry and hot extremes are becoming increasingly frequent (Alizadeh et al., 2020; Zscheischler 

and Seneviratne, 2017). We showed that these compound changes can increase canopy temperature and its variability (Fig. 4 

and 5).  

For set air temperature conditions, even with same average precipitation totals, less frequent but larger precipitation events 

increased median and variance of canopy temperature, as well as the fraction of days during which the temperature threshold 280 

for potential heat damage was exceeded (Fig. 5). Larger, less frequent precipitation events result in enhanced losses via 

runoff and percolation below the rooting zone, thus reducing plant water availability; the ensuing (longer) dry down can thus 
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lead to lower soil moisture levels, potentially enhancing canopy temperature. This result points to the importance of 

considering not only seasonal precipitation totals but also their timing. Indeed, reductions in the number of rainy days have 

already reduced crop yield, and could even override the benefits of increased total precipitation (Ram, 2016). For set 285 

precipitation regime, an increase in long-term average air temperature resulted not only in a higher mean canopy temperature 

during anthesis, as expected (Eq. 1), but also in a larger variability of such mean (Fig. 4 and 5). These complex, compound 

effects show that it is necessary to explicitly consider not just the means but also the timing and variability of air temperature 

and precipitation, and their joint effects, when quantifying the potential of climate change to cause crop heat stress. Hence, 

models accounting in full for the stochasticity of environmental conditions are needed. 290 

Crops are also faced by increasing air carbon dioxide (CO2) concentration. While this further global change was not explored 

here, we speculate that an increase in air CO2 concentration could reduce stomatal conductance and thus enhance canopy 

temperature, all the other conditions being the same. But reduced stomatal conductance can also reduce the rate of soil water 

storage depletion and thus the maximum canopy temperature reached during a dry down. The net result of an increase in air 

CO2 concentration is hence expected to be small. Indeed, air CO2 concentration of 200 to 220 ppm above ambient increased 295 

canopy temperature only up to 1 °C in Free Air CO2 Enrichment experiments and in model simulations (Webber et al., 

2018); and a weak reduction of yield loss to heat with enhanced CO2 is expected (Schauberger et al., 2017). 

4.3 Irrigation reduces but does not cancel the risk of heat stress 

By reducing the occurrence and extent of water stress, irrigation could lower canopy temperature, and its variability, as well 

as the frequency of it exceeding the threshold for potential heat damage (Fig. 5). Irrigation can have positive effects on 300 

yields, not only by reducing water stress but also heat stress. Indeed, canopy-to-air temperature difference is well correlated 

with final yield (e.g., Blum, 1996; Reynolds et al., 1994; Thapa et al., 2018), except under extremely dry conditions 

(Schittenhelm et al., 2014); and often used for cultivar selection (Graß et al., 2020; Munns et al., 2010).  

The extent of the reduction in canopy temperature and hence of the occurrence of potential heat stress even under stress-

avoidance irrigation depended on precipitation regime and long-term average air temperature. Irrigation was particularly 305 

effective in reducing canopy temperature and the duration of potentially damaging conditions at lower long-term average air 

temperature; for set long-term average air temperature, irrigation was slightly more effective under more intermittent 

precipitation (Table 1). Yet, irrigation aiming at maintaining the plants under well-watered conditions could not completely 

remove the possibility that canopy temperature exceeded the temperature threshold for potential heat damage, except under 

the coolest air temperature scenario. Further, the benefits of irrigation became smaller as air temperature increased. Irrigation 310 

could also have indirect effects on canopy temperature. At the regional scale, irrigation, by enhancing evaporation, can 

further reduce air temperature (e.g., Sacks et al., 2009; Lobell et al., 2008a) and canopy temperature, while lengthening 

developmental stages. These effects could be included by altering the air temperature regime (see Fig. 3 and 4 and Table 1 

for the effects of average air temperature) and the duration of the anthesis.  
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The risk of canopy temperature exceeding the temperature threshold for potential heat damage under (water) stress 315 

avoidance irrigation can be interpreted as the potential heat stress attributable only to air temperature. This is because no 

limitation to evaporative cooling is expected under the imposed irrigation scenario, where the soil water potential triggering 

an irrigation application was less negative than the critical soil water potential emerging from Fig. 3. The reduction of the 

fraction of time when canopy temperature is above the threshold for potential heat damage obtained via irrigation (Table 1) 

is a measure of the relative importance of air temperature and water stress in defining high canopy temperatures. In addition, 320 

for the most effective use of the available water resources against heat stress, the emerging threshold of soil water potential 

that limits water-stress induced high canopy temperatures (Fig. 3) could be used to define a crop-specific irrigation 

intervention point for irrigation. Maintaining the soil water potential above that threshold would require additional water 

resources while leading to marginal further cooling effects, i.e., little advantage in staving off heat stress. 

Irrigation could not fully eliminate the negative effects of heatwaves and the warmer conditions expected in the future. But a 325 

wide-spread use of irrigation could directly or indirectly mitigate the effects of heatwaves (van der Velde et al., 2010). 

Nevertheless, even for air temperatures for which irrigation can reduce the potential for heat stress damage and considering 

these regional effects, expanding irrigation to mitigate the effects of high canopy temperatures can be unadvisable or 

impossible, due to physical or economic water scarcity (Rosa et al., 2020), already unsustainable exploitation of water 

resources (Wada et al., 2010), or negative impacts of irrigation on soil salt content and nearby water bodies (Daliakopoulos 330 

et al., 2016; Scanlon et al., 2007). Other management approaches are thus needed to limit the potential for crop heat stress, in 

particular under high average air temperatures (Deryng et al., 2011; Lobell et al., 2008b). Examples are shifting to more 

heat-tolerant cultivars and species (Tack et al., 2016); altering the sowing date (Lobell et al., 2014; Mourtzinis et al., 2019); 

or migrating crops (Sloat et al., 2020) so that anthesis occurs when air temperature is, on average, lower.  

5 Conclusions 335 

Longer dry spells and high air temperatures are expected to become even more frequent in the future, with potential negative 

and compound effects on crop development and yield. Exploring the occurrence and severity of crop heat stress requires 

quantifying canopy temperature and considering under which conditions it exceeds the temperature threshold known to 

create appreciable damage. We developed a mechanistic model to determine canopy temperature, based on the explicit 

coupling of the soil water dynamics with the canopy energy balance, and an optimality principle for stomatal functioning, 340 

mechanistically accounting for plant physiology and its response to (stochastic) environmental conditions.  

Using wheat as a case study, we explored how canopy temperature and its variability changed with stochastic air 

temperatures and precipitation, in rainfed and irrigated cropping. When soil water potential was less negative than -0.14 

MPa, the additional benefit of an increase in soil water availability and hence potential evaporative cooling became 

marginal; and thermoregulation ensured semi-optimal leaf temperature. However, canopy temperature rose rapidly above air 345 

temperature when soil water potential was less than -0.14 MPa, due to lowered evaporative cooling. 
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Less frequent and more intense precipitation caused more variable soil water contents, leading to higher and more variable 

canopy temperatures, and a higher fraction of days when the temperature threshold for potential heat stress damage was 

exceeded. Larger precipitation totals and irrigation applications could reduce the occurrence of high canopy temperature and 

the potential for heat damage. Yet, irrigation could not completely remove the risk of crop heat stress when long-term 350 

average air temperature was 25 °C or higher, calling for alternative management solutions. 

Accurate estimates of canopy temperature are necessary to assess the role of precipitation and air temperature patterns in 

defining the risk of crop heat stress, and evaluate the mitigation potential of irrigation. Mechanistic models explicitly linking 

plant physiology to environmental conditions also allow exploring the effects of plant traits on the occurrence and extent of 

water and heat stress. As such, these models can support management decisions, from irrigation applications to identifying 355 

crops able to avoid heat stress.  
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Table 1: Reduction in the potential for heat stress by irrigation, as summarized by the median reductions of 𝑷𝑪𝑯𝑺 from rainfed 
cropping to stress avoidance irrigation, using rainfed as reference.  

𝜇்ೌ  

(°C) 

Baseline precipitation 

regime  

(𝛼=8.2 mm; 

𝜆=0.2 d-1) 

More intermittent 

precipitation  

(𝛼=23.5 mm; 

𝜆=0.07 d-1) 

20 100% 100% 

25 78% 80% 

30 53% 58% 

 

 

 640 
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Figure 1: Flow diagram of the determination of canopy temperature and soil moisture dynamics. 
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Figure 2: Example of numerically generated time series of soil moisture (𝒔; dot-dashed burgundy line), air temperature (𝑻𝒂; dotted 
red line), and canopy temperature (𝑻𝒄; solid green line), for rainfed cropping. The left axis represents soil moisture, the right axis 
temperature. The model was run for 21 days with the baseline environmental conditions. Parameter values are listed in Table S2. 

Figure 3: Canopy-air temperature difference, 𝑻𝒄 െ 𝑻𝒂 (colors and contour lines), as a function of soil moisture (𝒔; x-axis) and air 
temperature (𝑻𝒂; y-axis) for a sandy loam. All other parameters are summarized in Table S2. 650 
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Figure 4: Distribution of mean canopy temperatures during anthesis, 𝑻𝒄,𝒎𝒆𝒂𝒏, for four average annual precipitation totals (500, 
700, 900, 1110 mm; colors) and three long-term average air temperatures 𝝁𝑻𝒂

 (20, 25 and 30 °C; x-axis). Average precipitation 
depth 𝜶𝒑 was kept at 15 mm, while average precipitation frequency 𝝀𝒑 changed within each group of 4 boxes, from 0.091 to 0.137, 
0.183, and 0.228 d-1 (left to right), leading to increasing average annual precipitation totals (subscripts in the legend). For each 655 
climatic scenario, 500 21-day simulations were run. The horizontal black lines are the median values; the boxes extend from the 
first to the third quartile; whiskers cover the whole range. 
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Figure 5: Distribution of mean canopy temperature during anthesis (𝑻𝒄,𝒎𝒆𝒂𝒏; top) and percentage of days during which 𝑻𝒄 is 660 
above the threshold temperature for potential heat damage, 𝑻𝒕𝒉 (𝑷𝑪𝑯𝑺; bottom), under three long-term average air temperatures 
𝝁𝑻𝒂

 (x-axis) and different precipitation and irrigation scenarios (colors). In each group of 4 boxes, from left to right, Rbaseline and 

Rintermittent represent rainfed cropping, respectively under baseline precipitation (𝜶𝒑=8.2 mm; 𝝀𝒑=0.2 d-1) and more intermittent 

precipitation (𝜶𝒑=23.5 mm; 𝝀𝒑=0.07 d-1); Ibaseline and Iintermittent refer to stress avoidance irrigation, under the same precipitation 
regimes of the corresponding rainfed cases. For each climatic scenario, 500 21-day simulations were run. The horizontal black 665 
lines are the median values; the boxes extend from the first to the third quartile; whiskers cover the whole range. 

 

 

 


