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Abstract. Elevation in atmospheric carbon dioxide concentration (eCO2) affects vegetation water use,
with consequent impacts on terrestrial runoff (Q). However, the sign and magnitude of the eCO, effect
on Q are still contentious. This is partly due to eCO.-induced changes in vegetation water use being
opposing at the leaf-scale (i.e., water-saving caused by partially stomatal closure) and the canopy-scale
(i.e., water-consuming induced by foliage cover increase), leading to highly debated conclusions among
existing studies. In addition, none of the existing studies explicitly account for eCO2-induced changes to
plant rooting depth that is overwhelmingly found in experimental observations. Here we develop an
analytical eco-hydrological framework that includes the effects of eCO; on plant leaf, canopy density,
and rooting characteristics to attribute changes in Q and detect the eCO; signal on Q via vegetation
feedbacks over 1982-2010. Globally, we detect a very small decrease of Q induced by eCO. during 1982-
2010 (-1.7%). Locally, we find a small positive trend (p<0.01) in the Q-eCO> response along a resource
availability (5) gradient. Specifically, the Q-eCO> response is found to be negative (i.e., eCO> reduces Q)
in low f regions (typically dry and/or cold) and gradually changes to a small positive response (i.e., eCO>
increases Q) in high g areas (typically warm and humid). Our findings suggest a minor role of eCO2 on
changes in global Q over 1982-2010, yet highlight that negative Q-eCO> response in semi-arid and arid

regions may further reduce the limited water resource there.

1 Introduction

Runoff (Q) is the flow of water over the Earth’s surface, forming streamflow, and representing one of
the most important water resources for irrigation, hydropower and other human needs (Oki and Kanae,
2006). Anthropogenic climate change is expected to alter the global hydrological cycle, with
greenhouse gas-induced climate warming intensifying the hydrological cycle (Huntington, 2006).
Besides climate, terrestrial vegetation also affects the water cycle (Brown et al., 2005). It is well-
documented that elevated atmospheric CO> concentration (eCO2) reduces stomatal opening, which in
turn suppresses leaf-level transpiration (Field et al., 1995). If this were the only mechanism that eCO»
changed vegetation this would increase runoff (Q) (Gedney et al., 2006). However, eCO; increases
vegetation foliage cover (Donohue et al., 2013; Zhu et al., 2016), leading to enhanced canopy-level

transpiration and consequently reductions of Q (Piao et al., 2007). These two opposing responses of
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vegetation water use to eCO. complicate the landscape-scale net effect of eCO2 on Q, and existing
modeling results are highly debated since they focus on different aspects (i.e., physiological functioning
and/or structural change) of how eCO; affects the plants and thus the water cycle (Fatichi et al., 2016;
Gedney et al., 2006; Huntington, 2008; Piao et al., 2007; Yang et al., 2016a; Ukkola et al., 2016b).
Moreover, observational and evaluation studies of eCO> effects on Q remain limited, particularly at

regional to global scales.

In addition to stomatal and above-ground vegetation structure responding to eCO», the below-ground
vegetation structure (e.g., rooting depth) is also affected by eCO., with eCO; increasing rooting depth
overwhelmingly found in experimental observations (Nie et al., 2013) (Supplementary Tables S1 and
S2). Deeper rooting depth increases plant-available water storage capacity by allowing vegetation to
access deeper soil moisture, which potentially increases transpiration water loss and reduces Q,
especially during dry spells (Trancoso et al., 2017; Yang et al., 2016b). To date, no previous eCO2-Q
modeling attempts have explicitly considered the below-ground eCO2-induced feedback simultaneously

with the two previously mentioned above-ground feedbacks: this paper fills that niche.

Here we use a parsimonious, analytical eco-hydrological model based on the Budyko framework (i.e.,
the Budyko-Choudhury-Porporato, BCP model; Donohue et al., 2012), in combination with an
analytical rooting depth model based on ecosystem optimality theory (Guswa, 2008), an analytical CO>
fertilization model for steady-state vegetation (Donohue et al., 2017) and observed plant stomatal
response to eCO- (Ainsworth and Rogers, 2007), to detect the impact of eCO, on Q changes (dQ) via
vegetation feedbacks over global vegetated lands for 1982-2010. The Budyko framework describes the
steady-state (i.e., mean annual scale) hydrological partitioning as a functional balance between
atmospheric water supply (i.e., precipitation, P) and demand (i.e., potential evapotranspiration, Ep) and
a model parameter that modifies the climate-hydrology relationship (Choudhury, 1999; Donohue et al.,
2012). In this framework, both Ep and the model parameter are affected by the response of vegetation to
eCO- (see Methods). The ‘top-down’ (Sivapalan et al., 2003) developed framework allows analytical
and transparent attribution of dQ changes, which overcomes the uncertainty raised from non-linear

interactions among numerous processes when attributing dQ numerically by using ‘bottom-up’ earth
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system models (Yang et al., 2015). To examine the long-term eCO_ impact and to minimize year-to-
year “transient” effects (i.e., water storage changes), we performed our analyses using sequential 5-year
periods (Yang et al., 2016a; Han et al., 2020), resulting in six 5-year-means during 1982-2010, with the
first period containing 4 years. Additionally, since vegetation response to eCO; can be greatly mediated
by the availability of other resources (e.g., water, light and nutrients) (Donohue et al., 2013; Donohue et
al., 2017; Nenami et al., 2003; Yang et al., 2016a; Norby et al., 2010), we examine the impact of eCO-
on Q along a resource availability gradient (Donohue et al., 2017; Friedkubgstein et al., 1999) (see
Methods). Resource availability is typically low in dry (and/or cold) environments and increases as the
climate becomes more humid, which enables us to detect the signal of eCO2 on Q across a dry — wet

gradient.

2 Material and methods
2.1 Methods

The Budyko-Choudhury-Porporato (BCP) model was adopted here to simulate Q and to attribute
changes in Q (Yang et al., 2016b; Donohue et al., 2012). The BCP model uses the Choudhury’s (1999)
formulation of the Budyko curve to estimate Q (Eqg. 1 below), in which the model parameter is
estimated based on the relationship between the Choudhury’s model parameter and the Porporato’s
model parameter (Eq. 2 below). The required rooting depth (Z:) in estimating the Porporato’s parameter
is calculated using the Guswa’s (2008) rooting depth model (Egs. 3-5 below). To quantify the response
of Q to eCO> via vegetation feedbacks, the stomatal response of vegetation to eCO- is determined by
upscaling the observed response at the site level to the biome level (Section 2.1.4) and the Leaf area
index (L) response to eCO: is quantified based on the response of water use efficiency (WUE) to eCO>
adjusted by the local resource availability following Donohue et al. (2017) (Section 2.1.5). The effects
of eCO: on both stomatal and L also affect rooting depth in Guswa’s (2008) model. A flowchart of our
modeling approach is summarized in Figure 1 and detailed calculation procedures are described in
Sections 2.1.1to 2.1.5.
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2.1.1 Runoff simulation

The BCP model adopts Choudhury’s (1999) formulation of the Budyko curve, given as:

PE
E=—_"P 1
(P" +E,")" ()

where E is the annual average actual evapotranspiration (mm yr?). P is the annual average precipitation
(mm yrY). Ep is the annual average potential evapotranspiration (mm yr™t) here estimated using the
Shuttleworth-Wallace two-source evapotranspiration model (Shuttleworth and Wallace, 1985; see
Section 2.1.2). n is a unitless model parameter that encodes all factors other than mean climate
conditions and modifies the partitioning of P between E and Q. For assumed steady-state conditions, Q

is calculated by subtracting E from P as a result of catchment water balance.

The probabilistic steady-state solution of Porporato’s (2004) stochastic dynamic soil moisture model
shares a similar form with the Budyko curve (Porporato et al., 2004). Porporato’s parameter o is a
dimensionless parameter, which is a function of effective rooting depth (Z;, mm), mean rainfall intensity
(o, mm per event) and soil water holding capacity (WHC, mm® mm) and exhibits a close relationship
with the Choudhury’s parameter n (Yang et al., 2016b; Porporato et al., 2004). A relationship between
Porporato’s @ parameter and Choudhury’s n parameter was built following three steps. Firstly, we
obtained the numerical solution of the Porporato’s model of the corresponding E/P for every 0.1
increment in Ep/P for six separate w curves. Secondly, by numerically solving Choudhury’s formulation
of the Budyko curve, we determined the values of Choudhury’s parameter (n) that correspond to the E/P
values of each of the six w curves. Thirdly and finally, we pooled all n —  pairs together and deduced
the relationship between n and » (R?=0.96, p<0.001; Supplementary Figure S1) as:

n = 0.82In(w) +0.636 = 0.82In(2=VHC) L 0 636 @)
(04

Effective rooting depth (Zr) was determined using an analytical carbon cost-benefit model based on
ecosystem optimality theory proposed by Guswa (2008). The Zr model is given as:

o

Z :mln(X) ©)
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where W is the ratio of the multi-year growing season mean P over potential transpiration, Ep 7. yr is the
root respiration rate (g C g* roots day), which is quantified using the standard Q1o theory (Lloyd and
Taylor, 1994; Ryan, 1991) with a fixed Q1o coefficient of 2.0 (Zhao et al., 2011). The base respiration
rate at 20 °C for each biome type is determined following Heinsch (2003). RLD is the root length
density (cm roots cm soil) and SRL is the specific root length (cm roots g roots). We fixed RLD to be
0.1 cm roots cm™ soil and SRL to be 1500 cm roots g2, representing the median value of these two
parameters reported in the literature (Caldwell, 1994; Eissenstat, 1997; Fitter and Hay, 2002; Pregitzer
et al., 2002). fes is the fraction of the growing season within a year, with the growing season length
quantified according to Zhu et al. (2016). WUE is the photosynthetic water use efficiency (g C cm™
H>0), which is determined for the first period (i.e., 1982-1985) from the ensemble mean from eight
ecosystem models (see Data section) of annual gross primary production (GPP) and transpiration (Et)
estimates (i.e., WUE=GPP/ET). For the following periods, WUE was estimated by considering the
effects of changes in atmospheric CO, concentration (Ca) and vapor pressure deficit (v) on WUE
(Donohue et al., 2013; Wong et al., 1979; Farquhar et al., 1993) as:
C.. 1, -
2 v

t

WUE % ) (6)

t+1

_ Ca1,t+1 -
= WUE, +WUE, (=

at
where t is time in year. Note that the above equation implicitly assumes the same upscaling factor when
converting the leaf-level assimilation and transpiration to the canopy-level for a given location

(Donohue et al., 2017). The spatial pattern of mean annual Z; is shown in Supplementary Figure S2.
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2.1.2 The Shuttleworth-Wallace model

The Shuttleworth-Wallace two-source evapotranspiration model (the S-W model) was used to estimate
Ep and its two components (potential transpiration, Ep tand potential evaporation, Ep s) (Shuttleworth

and Wallace, 1985). The S-W model estimates evapotranspiration as:

AE, = AE, ; + AE, ¢ =C;PM, +C;PM, (7)
S
PM, AA+[pcv—Ars (A= A/ (r] +17) (9)
A+y[L+r2 1 (r} +10)]
Cr =[L+RR /R(R+R)I" (10)
C,=[1+RR /R (R +R)I" 1)
R, =(A+p)r? (12)
R =(A+y) +y15 (13)
R.=(A+p)r] +yrf (14)

where /. is the latent heat for vaporization (MJ kg™2), A is the gradient of the saturation vapor pressure
with respect to temperature (kPa K1), p is the air density (kg m™), ¢, is the specific heat of air at
constant pressure (MJ kgt K1), y is the psychrometric constant (kPa K1), 72, . and ;$ are the
aerodynamic resistance (s m™) to heat and vapor transfer between the canopy-air space and the
atmosphere, between the leaf and the canopy-air space, and between the soil surface and the canopy-air
space, respectively. These three aerodynamic resistance terms are estimated following S&nchez et al.
(2008). r’ and r° are soil surface resistance and stomatal resistance (the reciprocal of stomatal
conductance), respectively. To estimate Ep using the S-W model, r is set to zero and € is set to its
non-water stressed value (Milly and Dunne, 2016). The non-water stressed values of r¢ for each biome
type are provided in Mu et al. (2007). A is the available energy (equals to net radiation minus ground
heat flux, W m) and A; is the available energy at the soil surface, which is estimated as a function of L

following Beer’s law (Campbell and Norman, 1998; Yang and Shang, 2013). As a result, A — As is the

7



170

175

180

185

available energy absorbed by the plant canopy. The impacts of eCO, on Ep and its two components are
obtained by allowing L and 7 to vary with Ca. Recently, Milly and Dunne (2016) showed that the S-W
model could most satisfactorily reproduce evapotranspiration estimates under non-water-limited
conditions from climate models under eCO..

2.1.3 Attribution of runoff changes

We used the BCP model to attribute changes in Q (dQ) due to different influencing factors following
Roderick and Farquhar (2011). To first order, change in Q (dQ) is:

dQ—anP Q e, +5Q

15

3E. (15)
where dQ /0P, 0Q /0Ep and 0Q /dn represent the sensitivity of Q to changes in P, Ep and n,
respectively, and can be expressed as:
o0Q o
X _1_= 16
oP P (P” +E; ") (16)
0 E P"
Q__E L an
o, E, P"+E,
0Q _ E|In(P"+E,") P"InP+EInE, (18)
on n n P"+E,

The physiological (stomatal conductance, gs) and structural (Leaf area index, L, and effective rooting
depth, Z;) parameters impact both Ep and n. More specifically, decreases in gs lower the transpiration
rate per leaf area, whereas increases in L and Z, enhance the canopy-level transpiration rate.
Additionally, increases in L also reduce soil evaporation by shading the soil surface (Shuttleworth and
Wallace, 1985). The impact of eCO2 on parameter n is expressed through its impact on Z;. On one hand,
increases in WUE induced by eCO> permit a larger vegetation carbon uptake per amount of water loss,
potentially leading to more carbon allocated to roots and thus a deeper Z.. Conversely, increases in plant

water demand (as quantified by potential transpiration) require vegetation to develop deeper roots to



190 access deeper soil moisture, and vice versa (Guswa, 2008). As a result, we write the functional

dependencies of Ep and Z; as:
E. = f(C,,Ep ) (19)
=¢(C,,0) (20)

where Ep v is the meteorological component of Ep (without considering the increases in Ca). O
195 represents factors other than eCO- that affect Z;, which effectively encode the climate change-induced

vegetation change. With f and g are the functions to describe these relationships. Changes in Ep and Z;

are given by:

dE, = _%& dC, + s dE, ,, (21)
oC, OBy -

dz, = o, dc, + % 4o (22)
oC 00

a

200 Combining Egs. (2), (15), (21) and (22), we have:

dQ =

Qyp,[2QE, 082072, |,  Q E
0E, 6C, Z, on oC,

g, 08200, 0RRQL, ()
oP oE, 0E, |, a on Z, on 00

The first term on the right hand of Eq. (23) represents dQ caused by P change and the second term

represents dQ caused by eCO». The third term calculates dQ induced by changes in Ep m and is

calculated as —dEp :b? gip dC,. The fourth and fifth terms on the right hand of Eq. (23) represent
P

205 dQ caused by changes in rainfall intensity and climate change-induced vegetation change, respectively,
and we group them as one factor in the attribution of dQ. Since our primary focus was to examine how
eCO; affects vegetation and the consequent impact on Q, and its relative importance to changes in P

and Ep_wm, the other factors driving dQ were estimated as the residual of Eq. (23) (i.e., total dQ minus the
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sum of dQ induced by dP, dEr m and eCO>). By introducing Egs. (17) and (18) into Eq. (23), the

sensitivity of Q to eCO2 (Sq_to_ecoz, mm yrt ppm™) is written as:

E, P aEP_EO.82{In(P"+EP”)_P”InP+EP”InEP}6Z, (24)

S -
R = (P”+E”)8Ca n Z n P"+E, oc,

P P

The sensitivities of Ep and Z; to eCO:z (i.e., ‘Z% and %) are quantified by numerically running the Ep
model and Zr model with and without changes in C,, respectively. The difference between the two
simulations under the two Ca scenarios is considered the net effect of eCO2 on Q.

2.1.4 Stomatal conductance response to eCO:2

The response of leaf-level stomatal conductance (gs) response to eCO, was determined using 244 field
experiments with artificially elevated CO> across a broad range of bioclimates (Ainsworth and Rogers,
2007). We linearly rescaled the reported change in gs for the magnitude of eCO> in each of the 244
studies to obtain the sensitivity of gs to eCO>: that is, the percentage change in gs per 1% increase in Ca.
We then classified the 244 observations based on their biome type to construct a biome type-based

look-up table of gs sensitivity to eCOo.

2.1.5 Resource availability index and L response to eCO:2

The response of L to eCO> was predicted based on the response of WUE to eCO: adjusted by the local
resource availability. We define a site resource availability index () based on growing season mean L
following Donohue et al. (2017). This is because observed L at a site is the net response to the local
growing conditions and provides an effective proxy of the growing conditions experienced by
vegetation (Donohue et al., 2017). Another advantage of this approach is that L can be readily measured

directly or remotely. We calculated /5 as:

p=1-e"" (25)

10
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where 7 is an exponential extinction coefficient, which typically varies from 0.3 to 1.2 (Campbell and
Norman, 1998) and is set to be 0.7 herein. Broadly across the globe, f also corresponds well with
climate aridity. The calculated g increases from 0.0 with low resource availability (typically dry and/or
cold) to 1.0 with high resource availability (typically warm and humid) (Figure 2). This suggests a
predominant role of the climate in shaping the global vegetation pattern (Budyko, 1974; Nemani et al.,
2003; Yang et al., 2015). This also implies that the resource limitations on plant growth are mainly
exerted by climate, consistent with the framework of climate limitation on vegetation proposed in
previous studies (Nemani et al., 2003; Budyko, 1974; Yang et al., 2015). Then following Norby and
Zak (2011), who showed that the observed response of L to eCO, was a non-linear function of L, we

estimated the relative change in L induced by eCO- per Donohue et al., (2017):

dL dWUE dC, 1dv

o= 1_ 2 —(—Za _ Y e—ZTL 26
L WUE =) (Ca 2 V) (26)

2.2 Data

The BCP model is validated against observed Q in 2,268 strictly selected unimpaired catchments
located across the globe that cover a broad range of bio-climates (Figure 3). Originally, daily and/or
monthly Q observations were collected from more than 22,000 catchments globally (Beck et al., 2019).
Three selection criteria were implemented to ensure that only catchments with continuous Q records
that are negligibly affected by human were used. First, catchments with >5% missing data during the
entire study period (1982-2010) were removed. Linear interpolation was applied to fill the gaps in the
remaining Q series. Second, catchments smaller than 100 km? were excluded. This is to ensure that at
least one precipitation pixel (i.e., 0.1°x0.1< or ~100 km?) is included for a catchment. Third, we
excluded catchments where observed Q is likely to be affected by human interventions, including
catchments with: (i) significant forest gain or loss (> 2% of the total catchment area) (Hansen et al.,
2013); (ii) irrigated areas larger than 2% (Siebert et al., 2005); (iii) urban areas (http://ionia.esrin.esa.int)
larger than 2%; and (iv) the presence of large dams (Lehner et al., 2011) (i.e., where the reservoir's
capacity in a catchment is larger than 10% of the catchment mean annual Q). Exactly 2,268 catchments

pass these selection criteria (Figure 3).

11
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Precipitation from 1981 through 2010 was sourced from the Multi-Source Weighted-Ensemble
Precipitation (MSWEP) version 2 dataset, which has a three-hour temporal resolution and 0.1° spatial
resolution (Beck et al., 2019). The mean rainfall intensity was calculated as the ratio of annual total
precipitation over the number of wet days (with daily precipitation higher than 1 mm; Hartmann et al.,
2013). Other climate variables, including net radiation, air temperature, relative humidity, air pressure
and wind speed were obtained from the Multi-scale Synthesis and Terrestrial Model Intercomparison
Project (MsTMIP; Wei et al., 2014). To obtain a spatial pattern of WUE, global monthly GPP and E+
estimates over 1982-1985 were obtained from eight ecosystem models from MsTMIP (Huntzinger et
al., 2013), including: (i) CLM (Mao et al., 2012); (ii) CLM4-VIC (Li et al., 2011); (iii) ISAM (Jain et
al., 1996); (iv) TRIPLEX (Peng et al., 2002); (v) LPJ-wsl (Sitch et al., 2003); (vi) ORCHIDEE-LSCE
(Krinner et al., 2005); (vii) SIBCASA (Schaefer et al., 2008); and (viii) VISIT (Ito, 2010). Monthly Ca
from 1982-2010 was obtained from the Hawaiian Mauna Loa Observatory
(http://www.esrl.noaa.gov/gmd/obop/mlo/) and we assume a uniform C, concentration across the globe
at the mean annual scale (i.e., five years). Monthly L for 1982-2010 was derived from Zhu et al. (2013)
based on AVHRR GIMMS-3g NDVI data (Pinzon and Tucker, 2014). Land cover classification in the
year 2001 was acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) land use
map (MOD12Q1) available from the NASA Data Center (Friedl et al., 2010). The global C4 vegetation
fraction was obtained from the International Satellite Land Surface Climatology Project (ISLSCP)
Initiative 11 C4 vegetation percentage dataset (Still et al., 2009;
http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=932). Soil texture data at 30 "’ spatial resolution was
acquired from the Harmonized World Soil Database (HWSD) (Nachtergaele, 2009), which was used to

determine WHC according to the US Department of Agriculture (USDA) soil classification (Saxton and
Rawls, 2006). For catchment scale calculations, these gridded data were further aggregated for
individual catchments at a mean annual scale (i.e., five years). For grid-cell analyses, all gridded

datasets were resampled to a 0.5° resolution.
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3 Results
3.1 Validation of the BCP model in runoff estimation

The validity of the BCP model is tested by comparing the estimated Q with observed Q, in terms of
both spatial and temporal variability, at the 2,268 unimpaired catchments (Figure 4). Spatially, the BCP
model well captures the observed spatial variability in Q at the mean annual scale, with a coefficient of
determination (R?) of 0.93, root-mean-squared error (RMSE) of 87.9 mm yr! and mean bias (estimated
Q minus observed Q) of -11.4 mm yr?* (Figure 4a). Temporally, trends in mean annual Q are also
reasonably reproduced by the BCP model, having an R? of 0.71, RMSE of 0.71 mm yr? and mean bias
of -0.05 mm yr (Figure 4b). Additionally, we also perform a sensitivity analysis by comparing the
simulated Q using the BCP model with and without considering eCO.. Results show that the BCP
model, when considering eCO., performed better in estimating Q trends than the BCP model without
considering eCO,, as evidenced by an improvement of R? by 0.02, a reduction of RMSE by 0.03 mm yr-
2 and a decrease of mean bias by 0.11 mm yr, averaged over all 2,268 catchments (Figure 4d). More
apparent improvements of the BCP model performance with the consideration of eCO; are found in
regions having a relatively higher resource availability index. For 4 of 0.4-0.6, 0.6-0.8 and 0.8-1.0, the
mean bias of simulated Q trends with eCO; is -0.02 mm yr2, 0.06 mm yr?, -0.36 mm yr? but increased
to 0.24 mm yr2, 0.20 mm yr2 and -0.53 mm yr2, respectively, when eCO is not considered (Figure
4d). These results suggest that the analytical framework developed herein captures the eCO3 signal on

the observed Q changes.

3.2 Plant physiological and structural responses to eCO:2

The physiological response of plants to eCOy, that is, the response of gs to eCOz is directly compiled
from field experiments and summarized for each plant functional type in Ainsworth and Rogers (2007)
(also see Supplementary Figure S3). All those field experiments report a reduction of gs in response to
eCO., with the largest gs reduction found in C4 crops and lowest in shrubs for the same level of eCO..
On average, for a 1% increase in C,, gs decreases by 0.47% £0.12% (mean *one standard deviation),
which means that gs decreases by 5.67% #1.47% under a 12.1% increase in Ca over 1982-2010 (i.e.,
from ~343.7 ppm in 1982-1985 to 385.2 ppm in 2006-2010; Keeling et al., 2011). This result is

13
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consistent with a recent isotope-based study (i.e., ~5% reduction of gs during the past three decades,
Frank et al. 2015).

For structural response, averaged across global vegetated lands, our model reveals that elevated Ca has
caused an increase of L by 2.12% (0.14% ~ 3.88% for 5% ~ 95% percentile) over 1982-2010 (Figure 5a
and b). Despite this relatively small fertilization effect of eCO, on L at the global scale, an evident
gradient is found in the L - eCO- response that a larger eCO»-induced relative L increase is found in low
resource availability regions (smaller g value in Figure 2a), and vice versa (Figure 5b). This modeled
pattern of L - eCO> response agrees very well observations at the Free-Air CO2 Enrichment (FACE)
observations (R?=0.96, p<0.01; Figure 5¢) and is also consistent with large-scale satellite-based
observations (Donohue et al., 2013; Zhu et al., 2016; Yang et al., 2016a).

In terms of Z, our modeling results show that elevated Ca over 1982-2010 has resulted in a very minor
(0.93%, -0.12% ~ 1.85% for 5% ~ 95% percentile) overall increase of Z; averaged across the globe
(Figure 5e). Since large-scale observations of Z; in response to eCO; are not available, we are not able
to quantitatively validate the estimated response of Z; to eCOz. Nevertheless, the modeled result that
eCO increases Z; is overwhelmingly found in site- and/or plant-level experiments (Nie et al., 2013)
(Supplementary Tables S1 and S2). Moreover, similar to L, the response of Z, to eCO- also exhibits a
notable difference along the resource availability gradient (Figure 5d and 5e). The positive response of
Z:to eCO is larger in low p regions and gradually decreases as the resource availability becomes
higher. In high £ regions (e.g., tropical rainforest and southeast Asia), Zr even shows a slight decrease in
response to eCO», suggesting a reduced plant water need given the range of C, over 1982-2010 in those

regions.

3.3 Attribution of runoff changes over 1982-2010

Over 1982-2010, Ca increased by ~12.1%. For the same period, the BCP model detected a very small
reduction in Q of ~1.7% (or 2.2 mm yrt) induced by eCO; via vegetation feedbacks across the entire
global vegetated lands (Figures 6b and 7d). This 1.7% reduction in Q, under the context of 12.1%

increases in C,, demonstrates a muted response of Q to eCO.. In addition, the overall negative effect of
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eCO2 on Q suggests that the structural forcing of eCO> on vegetation water consumption (both above-
and below-ground) outweighs the physiological effect of eCO; driving leaf-level water saving. Across
the global vegetated lands and for the same period, the physiological response of vegetation to eCO> has
led to an increased Q by 0.7% (or 0.9 mm yrY), with the simulated Q increases being increasingly larger
as S increases (Figure 6d). By contrast, the structural response of vegetation to eCO; has resulted in an
overall Q reduction by 2.4% (or 3.1 mm yrt), with the decreases in Q being increasingly smaller as 8
increases (Figure 6e). These two opposite responses of vegetation water use to eCO> along the resource
availability gradient have led to a significant positive trend (p<0.01) in the Q-eCO2 response along the
resource availability gradient, from a negative response in low £ landscapes to a positive response in
high g landscapes (Figure 6b). Nevertheless, an exception is found in extreme arid zones (i.e., when
£<0.1; Figure 6b). This is because in extremely dry areas, the availability of water defines the outcome
and the sensitivity of Q to any changes in land surface properties is very small (Donohue et al., 2013;
Roderick et al., 2014).

We then attribute dQ to different forcing factors between 1982-1985 and 2006-2010 over the global
vegetated lands (Figures 7 and 8). Compared with the early 1980s (i.e., 1982-1985), mean observed Q
over the global vegetated lands in the late 2010s (i.e., 2006-2010) increased by 29.7 mm yr?, and the
observed pattern with comparable magnitude in dQ is well captured by the BCP model (Figures 4b and
4d). Consistent with relative Q changes (in %; Figure 6), the impacts eCO> on the absolute Q change (in
mm yrt) also exhibit a significant upward trend as S increases (0.53 mm yr per 0.1 increase in S,
p<0.01). Compared to that, increases in P led to a 43.9 mm yr! increase in Q, and enhanced Ep m has
resulted in a decreased Q by 5.3 mm yr? (Figure 7f). For the entire vegetated lands and each resource
availability category, the impact of dP on Q generally dominates dQ and is often much higher than that
of eCO> (Figure 7). An exception is the low £ regions ( < 0.2), where the impact of eCO2 on Q
outweighs the impact of dP on Q (Figure 8a). As for the impact Ep_m 0N Q, it also shows a notable
gradient with changes in g as detected for the eCO: effect, with the impact of Er m on Q being
increasingly negative as £ increases (Figure 8b-e). The combined influence of other factors including
changes in rainfall intensity (Porporato et al., 2004; Westra et al., 2013) and climate change-induced
vegetation change (e.g., higher L) have, in general, exerted a negative impact on Q.
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Since changes in meteorological factors (P and Ep_wm) are often considered to dominate changes in Q
and have been extensively examined previously (e.g., Roderick and Farquhar, 2011; Yang et al., 2018;
Zhang et al., 2018), we next examine the sensitivity of Q to eCO2 (Sq to_eco2) and compare it with the
sensitivity of Q to changes in P and Ep_m. Because C, has different units from P and Ep_m, we use
relative units to better compare the three sensitivities (Figure 9). Globally, an increase in Ca by 1% only
leads to a decrease of Q by ~0.14% (equivalent to ~1.7% for the range of eCO> experienced over 1982-
2010). Similar to the attribution results shown above (Figures 6a and 6b), So t_eco2 is generally more
negative in global arid ecosystems where £ is low (Figures 9a and b). The negative Sq to_eco2 diminishes
quickly as f increases and becomes positive Sq to_ecoz in high g regions. The overall small Sq 1o ecoz iS
further manifested when comparing Sq to_ecoz With the sensitivities of Q to P and Ep_m. Averaged across
the global vegetated lands, the same relative change in P and Er would respectively lead to a ~10-times
and ~4-times stronger impact on Q than eCO- does. This highlights the predominant role of climate in

shaping the global Q regime (Figure 9c-f and Supplementary Figure S4).

4. Discussion and concluding remarks

Elevation in atmospheric CO2 concentration (and other greenhouses gases) is regarded as the ultimate
driver of anthropogenic climate change, with consequent impacts on Q. Although the impacts of climate
change on Q has been extensively studied, the response of Q to eCO> through vegetation feedbacks is
less understood and remains controversial (Gedney et al., 2006; Piao et al., 2007; Huntington, 2008;
Cheng et al., 2014; Trancoso et al., 2017; Yang et al., 2016a; Ukkola et al., 2016a and 2016b). Here, by
developing an analytical attribution framework, we detected a very small response of global Q to eCO»-
induced changes in vegetation structural (both above- and below-ground) and physiological functioning
(Figures 6-8), suggesting that the eCO, vegetation feedback only exert a minor impact on water
resources (partly due to the two opposing water effects between the structural and physiological

responses to eCOy) for the range of eCO, experienced over 1982-2010.

The overall negative impact of eCO on Q detected herein suggests that increased vegetation water
consumption driven by the structural response of vegetation (i.e., increases in L and Z;) to eCO-

outweighs the functional change of leaf-level water-saving caused by the physiological effect of eCO>
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(i.e., decreases in gs). This result is consistent with previous findings by Cheng et al. (2014), Trancoso
390 etal. (2017) and Ukkola et al. (2016a). In addition, we also detected a significant positive trend
(p<0.01) in the Q-eCO2 response along the resource availability gradient (Figure 6-9). This Q-eCO>
response pattern suggests that the structural response of vegetation (i.e., increases in L and Z;) to eCO>
is larger in areas with lower resource availability and gradually decreases as resources become less
limiting on plant growth (Figure 5). The positive response of Q to eCO- in high g catchments (primarily
395 located in tropical rainforests; Figure 6a) implies a dominant effect of eCO»-induced partial stomatal
closure over increases in L and Z; on E in these environments (Figure 6). This is reasonable, as both
theoretical predictions and in-situ observations have consistently reported a negligible response of L to
eCOz in humid and closed-canopy environments (Donohue et al., 2017; Yang et al., 2016a; Norby and
Zak, 2011; K&ner and Arnone, 1992). In such environments, water is generally abundant with light
400 and/or nutrient availability limiting vegetation growth (Nemani et al., 2003; Yang et al., 2015), and
vegetation have evolved to efficiently capture light by maximizing their above-ground structure (i.e., L).
As aresult, in these high L regions, vegetation has already absorbed most of the incident light and any
extra leaves would not materially increase the light absorption (Yang et al., 2016a). By contrast, in dry
regions, eCOz-induced increase in vegetation water use efficiency (so less transpiration for the same
405 amount of carbon assimilation at the leaf-level) would lead to an increase in L that is directly
proportional to an increase in water use efficiency which would increase canopy-level carbon fixation
(Figure 5b). This finding is consistent with satellite observations (Donohue et al., 2013) and in-situ
FACE experiments (Norby and Zak, 2011).

Our findings have important implications for an improved understanding of the global hydrological
410 cycle and managing the world’s water resources in a changing climate. Climate models have predicted
an increased Q that is primarily driven by an increased P for the 21% century (Lian et al., 2021; Milly
and Dunne, 2016; Swann et al., 2016; Yang et al., 2018). Here we show that eCO»-induced vegetation
feedbacks would mitigate this positive impact of climate change on Q in relatively dry regions and
exacerbate the Q increase in relatively wet regions. In addition, higher C, and increased P enhance the
415 availability of resources for vegetation growth, which increases vegetation coverage or L (Piao et al.,

2020; Zhang et al., 2020a; Zhang et al., 2020b). As the vegetation above-ground structural responses to
17
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eCO> decreases with the increase of L, the predicted future L increases suggest that the structural
response of vegetation to eCO. may eventually decrease and the physiological effect of vegetation to
eCO2 may become increasingly dominant in the overall response of vegetation water use to eCOo,
leading to an increasing water-saving effect of vegetation in response to eCO> under future climate
change (Zhang et al., 2020b). Analyses of the state-of-the-art climate model outputs already consistently
show this water-saving effect of eCO- globally, especially in relatively warm and humid environments
where L is high (Yang et al., 2019). Nevertheless, this may partly be because only some climate models
consider the physiological effect while ignoring structural responses of vegetation to eCO». In addition,
the impacts of eCOz on Q in relatively dry regions are still highly uncertain and show a great diversity

between climate models (Zhang et al., 2020b).

Finally, it is worthwhile noting there are several limitations in the developed modeling framework.
First, Guswa’s (2008) rooting depth model adopted herein employs an intensive root water uptake
strategy, which assumes that root water uptake occurs at a potential rate (i.e., Ep 1) until soil moisture
reaches the wilting point when transpiration is completely suppressed (Guswa, 2008). This intensive
root water uptake strategy differs from the root water uptake strategy employed in Porporato et al.’s
(2004) stochastic soil water balance model, which is a more conservative strategy under which root
water uptake linearly decreases with the decrease of soil moisture (Porporato et al., 2004). Combining
the two strategies in one modeling framework potentially leads to inconsistency in the theoretical aspect
of the approach. In fact, a later study by Guswa (2010) incorporated Porporato et al.’s (2004) soil water
balance model into Guswa’s cost-benefit framework for rooting depth (referred to as the Guswa-2010
approach herein). However, the Guswa-2010 approach could not provide an explicit solution for Z,
because the solution of transpiration in Porporato’s model is an incomplete gamma function of Zr
(Guswa, 2010; Porporato et al., 2004). As a result, to allow an analytical solution to be derived we used
Guswa (2008) for Z; in our modeling framework. According to Guswa (2010), using the conservative
root water uptake strategy resulted in a slightly deeper Z; compared to when the intensive strategy was
used. Despite that, the response of Z; to changes in Ca, under the two strategies should be similar, as the
effects of eCO2 on Z; are expressed via water use efficiency and Ep 1 in our parameterization, which are

independent of Z; parameterizations. This means that adopting different root water uptake strategies
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would only lead to differences in the resultant absolute magnitude of runoff (Q) but unlikely to result in
differences in the response of Q to eCO», especially when the relative magnitude is used (Figures 5d, 5e
and 6a, 6b, 6e and 6f). Alternatively, Rodr guez-Iturbe and Porporato (2004) incorporated the intensive
root water uptake strategy into a stochastic soil water balance model and obtained a steady-state
solution that has a simper form than Porporato et al.’s (2004) and also mimics the Budyko curve. This
approach deserves further investigation. Second, if interpreted strictly from a theoretical perspective,
Porporato et al’s (2004) model is more suitable to estimate hydrological partitioning during growing
seasons instead of over the entire year as it assumes a constant evaporative demand and precipitation
regimes and does not account for snow processes. Expanding all these simplifications, acknowledging
imperfect knowledge and parameterisation, would require further analyses to better understand how
they might affect the results shown here. Nevertheless, the uncertainties caused by these simplifications
in Porporato et al’s (2004) model might be partly overcome during the empirical connection made here
between the Porporato’s model and the Choudhury’s formulation of the Budyko curve, as evidenced by
the overall good performance of the developed BCP model in capturing the observed Q (Figure 4). The
third limitation of the current study lies in the steady-state assumption of the modeling framework.
More specifically, the steady-state assumption is made in: (i) catchment water balance; and (ii)
vegetation functioning. For (i), a five-year period does not necessarily guarantee zero-storage change.
Nevertheless, the imbalance in water balance calculation under a steady-state assumption at a five-year
scale is generally very small (i.e., typically less than 6% of P in arid regions and less than 3% of P in
humid regions) (Han et al., 2020). For (ii), both the Guswa’s model for Zr and Donohue’s model for L
(see Section 2.1.5) adopted herein were developed for steady-state vegetation (i.e., mature and
undisturbed vegetation). Applying these two models to immature (e.g., seedlings) and/or disturbed
vegetation can be problematic because immature and/or disturbed vegetation may have very different
water use and carbon allocation strategies compared to steady-state vegetation (Donohue et al., 2017;
Kuczera, 1987). However, the issues of vegetation age and disturbances are extremely complex and are
well beyond our scope. Moreover, global datasets of vegetation age and disturbances are currently
lacking. In this light, our modeled response of Q to eCO> should be regarded as if all vegetation were

mature and undisturbed. Further efforts are needed to better quantify the age and disturbances of
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vegetation and to better understand the water use and carbon allocation strategies through the entire

vegetation life-cycle and under various types of disturbances.

Data availability

All data for this paper are properly cited and referred to in the reference list.

Author contribution

YY and TRM designed the study. Y'Y performed the calculation and drafted the manuscript. TRM, DY,

YZ, SP, SP, and HEB contributed to results discussion and manuscript writing.

Competing interests
The authors declare that they have no conflict of interest.

Acknowledgments

This study was supported by the Ministry of Science and Technology of China (Grant No.
2019YFC1510604), the National Natural Science Foundation of China (Grant No. 42071029,
42041004) and the Guogiang Institute of Tsinghua University (Grant No. 2019GQG1020). T. McVicar
acknowledges support from CSIRO Land and Water. The following organizations are thanked for
providing observed streamflow data: the United States Geological Survey (USGS), the Global Runoff
Data Centre (GRDC), the Brazilian Agécia Nacional de Aguas, the Water Survey of Canada (WSC),
the Australian Bureau of Meteorology (BoM), and the Chilean Center for Climate and Resilience
Research (CR2). Thanks to the HESS Editor and three anonymous reviewers for helpful comments that

improved this study.

20



495

500

505

510

515

520

References

Ainsworth, A. E., and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms
and environmental interactions, Plant Cell Environ., 30, 258-270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.

Beck, H. E. et al.: MSWEP V2 global 3-hourly 0.1 “precipitation: methodology and quantitative assessment. Bulletin of the
American Meteorological Society., 3, 473-500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.

Beck H.E., et al.: Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations
from 9372 Catchments. Journal of Climate, 33, 1299-1315, 2020.

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A.1.J.M., McVicar, T. R., and Adler, R. F.:
MSWEP V2 global 3-hourly 0.1 °precipitation: methodology and quantitative assessment, Bulletin of the American
Meteorological Society, 100(103), 473-500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.

Brown, A.E., Zhang, L., McMahon, T.A., Western, AW., and Vertessy, R.A.: A review of paired catchment studies for
determining changes in water yield resulting from alterations in vegetation, Journal of Hydrology 310(1-4), 28-61,
https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.

Budyko, M. 1.: Climate and life. Academic, New York, 1974.

Caldwell, M. M.: in Exploitation of Environmental Heterogeneity by Plants (ed Caldwell M. M.) 325-347. Academic, San
Diego, 1994.

Campbell, G. S., and Norman, J. M.: An Introduction to Environmental Biophysics. Springer, New York, 1998.

Cheng, L., Zhang, L., Wang, Y. P., Yu, Q., Eamus, D., and O’Grady, A.: Impacts of elevated CO,, climate change and their
interactions on water budgets in four different catchments in Australia. J. Hydrol., 519, 1350-1361,
https://doi.org/10.1016/j.jhydrol.2014.09.020, 2014.

Choudhury, B.: Evaluation of an empirical equation for annual evaporation using field observations and results from a
biophysical model. J Hydrol., 216, 99-110, https://doi.org/10.1016/S0022-1694(98)00293-5, 1999.

Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact of CO fertilization on maximum foliage
cover across the globe’s warm, arid environments, Geophys. Res. Lett., 40, 3031-3035, https://doi.org/10.1002/grl.50563,
2013.

Donohue, R. J., Roderick, M. L., McVicar, T. R., and Yang, Y.: A simple hypothesis of how leaf and canopy-level
transpiration and assimilation respond to elevated CO, reveals distinct response patterns between disturbed and undisturbed
vegetation. J. Geophys. Res. Biogeosci., 122, 168-184, https://doi.org/10.1002/2016JG003505, 2017.

Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Roots, storms and soil pores: Incorporating key ecohydrological
processes into Budyko’s hydrological model. J. Hydrol., 436, 35-50, https://doi.org/10.1016/j.jhydrol.2012.02.033, 2012.

Eissenstat, D. M.: in Ecology in Agriculture (ed L.E. Jackson) 173-199. Academic, New York, 1997.

21


https://doi.org/10.1111/j.1365-3040.2007.01641.x
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1016/j.jhydrol.2004.12.010
https://doi.org/10.1016/j.jhydrol.2014.09.020
https://doi.org/10.1016/S0022-1694(98)00293-5
https://doi.org/10.1002/grl.50563
https://doi.org/10.1002/2016JG003505
https://doi.org/10.1016/j.jhydrol.2012.02.033

525

530

535

540

545

550

Falcone, J. A., Carlisle, D. M., Wolock, D. M., and Meador, M. R.: GAGES: A stream gage database for evaluating natural
and altered flow conditions in the conterminous United States. Ecology, 91, 621-621, https://doi.org/10.1890/09-0889.1,
2010.

Farquhar, G. D. et al.: Vegetation effects on the isotope composition of oxygen in atmospheric CO,. Nature, 363, 439-443,
1993.

Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Barraclough, A.D., and Hovenden, M.K.: Partitioning direct and
indirect effects reveals the response of water-limited ecosystems to elevated CO.. Proc. Natl. Acad. Sci., 113, 12757-12762,
https://doi.org/10.1073/pnas.1605036113, 2016.

Field, C. B., Jackson, R. B., and Mooney, H. A.: Stomatal responses to increased CO,: implications from the plant to the
global scale. Plant Cell Environ., 18, 1214-1225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x, 1995.

Fitter, A. H., and Hay, R. K. M.: Environmental Physiology of Plants. Academic, London, 2002.

Frank, D. C. et al.: Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Clim.
Change, 5, 579-583, https://doi.org/10.1038/nclimate2614, 2015.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5
global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168-182,
https://doi.org/10.1016/j.rse.2009.08.016, 2010.

Friedlingstein, P., Joel, G., Field, C. B. and Fung, I. Y.: Toward an allocation scheme for global terrestrial carbon models.
Glob. Change Biol., 5, 755-770, https://doi.org/10.1046/].1365-2486.1999.00269.x, 1999.

Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and Stott, P. A.: Detection of a direct carbon dioxide
effect in continental river runoff records. Nature, 439, 835-838, https://doi.org/10.1038/nature04504, 2006.

Guswa, A. J.: The influence of climate on root depth: A carbon cost-benefit analysis. Water Resour. Res., 44, WR006384,
https://doi.org/10.1029/2007WR006384, 2008.

Guswa, A.J.: Effect of plant uptake strategy on the water—optimal root depth. Water Resour. Res., 46, WR009122,
https://doi.org/10.1029/2010WR009122, 2010.

Han, J. T., Yang, Y., Roderick, M. L., McVicar, T. R., Yang, D. W., Zhang, S. L., and Beck, H. E.: Assessing the steady -
state assumption in water balance calculation across global catchments. Water Resour. Res., 56, e2020WR027392,
https://doi.org/10.1029/2020WR027392, 2020.

Hansen, M. C. et al.: High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342, 850-853,
https://doi.org/10.1126/science.1244693, 2013.

Heinsch, F.A., Reeves, M., Votava, P.., et al.: User’s Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land
Algorithm, https://modis-land.gsfc.nasa.gov/pdf/MOD17UsersGuideV4.2June2019.pdf, 2003.

22


https://doi.org/10.1890/09-0889.1
https://doi.org/10.1073/pnas.1605036113
https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
https://doi.org/10.1038/nclimate2614
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1046/j.1365-2486.1999.00269.x
https://doi.org/10.1038/nature04504
https://doi.org/10.1029/2007WR006384
https://doi.org/10.1029/2010WR009122
https://doi.org/10.1029/2020WR027392
https://doi.org/10.1126/science.1244693
https://modis-land.gsfc.nasa.gov/pdf/MOD17UsersGuideV4.2June2019.pdf

555

560

565

570

575

580

585

Huntington, T. G.: CO»-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Process., 22, 311-
314, https://doi.org/10.1002/hyp.6925, 2008.

Huntington, T. G.: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 83-95,
https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.

Ito, A.: Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate:
implications for long-term monitoring from a process-based model, J. Plant Res., 123(4), 577-588,
http://doi.org/10.1007/s10265-009-0305-x, 2010.

Jain, A.K., Kheshgi, H.S., and Wuebbles, D.J.: A globally aggregated reconstruction of cycles of carbon and its isotopes,
Tellus B, 48(4), 583-600, https://doi.org/10.1034/j.1600-0889.1996.t01-1-00012.x, 1996.

Keeling, C.D. et al.: Exchanges of atmospheric CO, and 3CO, with the terrestrial biosphere and oceans from 1978 to 2000.
I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88 pages, 2001.

Kd&rner, C., and Arnone, J. A.: Responses to Elevated Carbon Dioxide in Artificial Tropical Ecosystems. Science, 257, 1672-
1675, https://doi.org/10.1126/science.257.5077.1672, 1992.

Kuczera, G.: Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest, J. Hydrol., 94,
215-236, https://doi.org/10.1016/0022-1694(87)90054-0, 1987.

Lehner, B. et al. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front.
Ecol. Environ., 9, 494-502, https://doi.org/10.1890/100125, 2011.

Li, H., Huang, M, Wigmosta, M.S., Ke, Y., Coleman, A.M., Leung, L.R., Wang, A., and Ricciuto, D.M. : Evaluating runoff
simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed, J.
Geophys. Res. Atmos., 116(D24), D24120, http://doi.org/10.1029/2011JD016276, 2011.

Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P., McVicar, T.R., Peng, S., Ottle, C., Yang, H., Yang,
Y., Zhang, Y., and Wang, T.: Partitioning global land evapotranspiration using CMIP5 models constrained by observations,
Nat. Clim. Change, 8, 640-646, https://doi.org/10.1038/s41558-018-0207-9, 2018.

Lian, X., Piao, S.L., Chen, A.P., Huntingford, C. Fu, B.J., Li, Z.X., Huang, J.P., Sheffield, J., Berg, A.M., Keenan, T.F.,
McVicar, T.R., Wada, Y., Wang, X.H., Wang, T., Yang, Y.T. and Roderick, M.L.: Multifaceted characteristics of dryland
aridity changes in a warming world. Nature Reviews Earth & Environment. 2, http://doi.org/10.1038/s43017-021-00144-0,
2021.

Lloyd, J., and Taylor, J. A.: On the Temperature Dependence of Soil Respiration. Funct. Ecol., 8, 315-323,
https://www.jstor.org/stable/2389824, 1994,

Mao, J., Thornton, P.E., Shi, X., Zhao, M., and Post, W.M.: Remote Sensing Evaluation of CLM4 GPP for the Period 2000—
09, J. Climate, 25(15), 5327-5342, https://doi.org/10.1175/JCLI-D-11-00401.1, 2012.

23


https://doi.org/10.1002/hyp.6925
https://doi.org/10.1016/j.jhydrol.2005.07.003
http://doi.org/10.1007/s10265-009-0305-x
https://doi.org/10.1034/j.1600-0889.1996.t01-1-00012.x
https://doi.org/10.1126/science.257.5077.1672
https://doi.org/10.1016/0022-1694(87)90054-0
https://doi.org/10.1890/100125
http://doi.org/10.1029/2011JD016276
https://doi.org/10.1038/s41558-018-0207-9
http://doi.org/10.1038/s43017-021-00144-0
https://www.jstor.org/stable/2389824
https://doi.org/10.1175/JCLI-D-11-00401.1

590

595

600

605

610

615

Milly, P. C. D., and Dunne, K. A.: Potential evapotranspiration and continental drying, Nat. Clim. Change, 6, 946-949,
https://doi.org/10.1038/nclimate3046, 2016.

Mu, Q., Zhao, M., and Running, S.: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens.
Environ., 115, 1781-1800, https://doi.org/10.1016/j.rse.2011.02.019, 2007.

Nachtergaele, F., van Velthuizen, H., and Verelst, L.: Harmonized World Soil Database. FAO, Rome Italy and [1ASA,
Laxenburg Austria, 2009.

Nemani, R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.;
Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300, 1560-1563,
https://doi.org/10.1126/science.1082750, 2003.

Nie, M., Lu, M., Bell, J., Raut, S. and Pendall, E.: Altered root traits due to elevated CO,: a meta-analysis. Glob. Ecol.
Biogeogr., 22, 1095-1105, https://doi.org/10.1111/geb.12062, 2013.

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and McMurtrie, R. E.: CO; enhancement of forest productivity
constrained by limited nitrogen availability. Proc. Natl. Acad. Sci., 107, 19368-19373,
https://doi.org/10.1073/pnas.1006463107, 2010.

Norby, R. J., and Zak, D. R.: Ecological Lessons from Free-Air CO, Enrichment (FACE) Experiments. Annu. Rev. Ecol.
Evol. Syst., 42, 181-203, https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011.

Oki, T., and Kanae, S.: Global Hydrological Cycles and World Water Resources. Science, 313, 1068-1072,
https://doi.org/10.1126/science.1128845, 2006.

Peng, C., Liu, J., Dang, Q., Apps, M.J., and Jiang, H.: TRIPLEX: a generic hybrid model for predicting forest growth and
carbon and nitrogen dynamics, Ecol. Model., 153(1-2), 109-130, https://doi.org/10.1016/S0304-3800(01)00505-1, 2002.

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tammervik, H., Nemani, R. R.,
and R. B. Myneni.: Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 14-
27, https://doi.org/10.1038/s43017-019-0001-x, 2020.

Piao, S., Friedlingstein, P., Ciais, P., Noblet-Ducoudre, N., Labat, D., and Zaehle, S.: Changes in climate and land use have a
larger direct impact than rising CO; on global river runoff trends. Proc. Natl. Acad. Sci. 104, 15242-15247,
https://doi.org/10.1073/pnas.0707213104, 2007.

Pinzon, J., and Tucker, C. A.: Non-Stationary 1981-2012 AVHRR NDVI3g Time Series. Remote Sens. 6, 6929,
https://doi.org/10.3390/rs6086929, 2014.

Pregitzer, K. S. et al. Fine Root Architecture of Nine North American Trees. Ecol. Monogr., 72, 293-309,
https://doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2, 2002.

Porporato, A., Daly, E., and Rodriguez-Iturbe, 1.: Soil Water Balance and Ecosystem Response to Climate Change. The
Amer. Nat., 164, 625-632, https://doi.org/10.1086/424970, 2004.

24


https://doi.org/10.1038/nclimate3046
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1126/science.1082750
https://doi.org/10.1111/geb.12062
https://doi.org/10.1073/pnas.1006463107
https://doi.org/10.1146/annurev-ecolsys-102209-144647
https://doi.org/10.1126/science.1128845
https://doi.org/10.1016/S0304-3800(01)00505-1
https://doi.org/10.1038/s43017-019-0001-x
https://doi.org/10.1073/pnas.0707213104
https://doi.org/10.3390/rs6086929
https://doi.org/10.1890/0012-9615(2002)072%5b0293:FRAONN%5d2.0.CO;2
https://doi.org/10.1086/424970

620

625

630

635

640

645

650

Roderick, M. L., and Farquhar, G. D.: A simple framework for relating variations in runoff to variations in climatic
conditions and catchment properties. Water Resour. Res. 47, W00GO07, https://doi.org/10.1029/2010WR009826, 2011.

Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water
cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, 1575-1589, https://doi.org/10.5194/hess-18-
1575-2014, 2014.

Ryan, M. G.: The effects of climate change on plant respiration. Ecol. Appl., 1, 157-167, https://doi.org/10.2307/1941808,
1991.

Sénchez, J. M., Kustas, W. P., Caselles, V., and Anderson M.C.: Modeling surface energy fluxes over maize using a two-
source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ., 112(3), 1130-1143,
https://doi.org/10.1016/j.rse.2007.07.018, 2008.

Saxton, K. E., and Rawls, W. J.: Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic
Solutions. Soil Sci. Soc. Am J. 70, 1569-1578, https://doi.org/10.2136/sssaj2005.0117, 2006.

Schaefer, K., Collatz, G.J., Tans, P., Denning, A.S., Baker, 1., Berry, J., Prihodko, L., Suits, N., and Philpott A.: Combined
Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model, J. Geophys. Res. Biogeosci., 113(G3),
G03034, doi:10.1029/2007JG000603, 2008.

Shuttleworth, W. J., and Wallace, J. S.: Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol.
Soc. 111, 839-855, https://doi.org/10.1002/j.49711146910, 1985.

Siebert, S., Doll, P., Hoogeveen, J., Faures, J. M., Frenken, K., and Feick, S.: Development and validation of the global map
of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535-547, https://doi.org/10.5194/hess-9-535-2005, 2005.

Sitch, S., et al.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global
vegetation model, Glob. Change Biol., 9(2), 161-185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.

Sivapalan, M., Bl&chl, G., Zhang, L., and Vertessy R.: Downward approach to hydrological prediction. Hydrol. Process., 17
(11), 2101-2111, https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.1425, 2003.

Still, C.J., Berry, J.A., Collatz, G.J., and DeFries, R.S.: ISLSCP Il C4 Vegetation Percentage. In Hall, Forrest G., G. Collatz,
B. Meeson, S. Los, E. Brown de Colstoun, and D. Landis (eds.). ISLSCP Initiative Il Collection. Data set. Available on-line
[http://daac.ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee,
USA. http://dx.doi.org/10.3334/ORNLDAAC/932, 2009.

Swann, A. L. S., Hoffman, F. M., Koven, C. D., and Randerson, J. T.: Plant responses to increasing CO; reduce estimates of
climate impacts on drought severity, Proc. Nati. Acad. Sci., 113, 10019-10024, https://doi.org/10.1073/pnas.1604581113,
2016.

Trancoso, R., Larsen, J.R., McVicar, T.R., Phinn, S.R., and McAlpine, C.A.: CO2-vegetation feedbacks and other climate
changes implicated in reducing base flow. Geophysical Research Letters, 44, 2310-2318,
https://doi.org/10.1002/2017GL072759, 2017

25


https://doi.org/10.1029/2010WR009826
https://doi.org/10.5194/hess-18-1575-2014
https://doi.org/10.5194/hess-18-1575-2014
https://doi.org/10.2307/1941808
https://doi.org/10.1016/j.rse.2007.07.018
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1002/qj.49711146910
https://doi.org/10.5194/hess-9-535-2005
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.1425
http://dx.doi.org/10.3334/ORNLDAAC/932
https://doi.org/10.1073/pnas.1604581113
https://doi.org/10.1002/2017GL072759

655

660

665

670

675

680

Ukkola, A. M., Prentice, I. C., Keenan, T. F., van Dijk, A. I. J. M., Viney, N. R., Myneni, R. B., and Bi, J.: Reduced
streamflow in water-stressed climates consistent with CO, effects on vegetation. Nature Clim. Change, 6, 75-78,
https://doi.org/10.1038/nclimate2831, 2016a.

Ukkola, A. M., Keenan, T. F., Kelley, D. I, and Prentice, I. C.: Vegetation plays an important role in mediating future water
resources. Environ. Res. Lett., 11, 094022, https://iopscience.iop.org/article/10.1088/1748-9326/11/9/094022, 2016b.

Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in annual maximum daily precipitation. Journal of
Climate 26, 3904-3918, https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.

Wei, Y. et al. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project —
Part 2: Environmental driver data. Geosci. Model Dev. 7, 2875-2893, https://doi.org/10.5194/gmd-7-2875-2014, 2014.

Wong, S. C., Cowan, I. R., and Farquhar, G. D.: Stomatal conductance correlates with photosynthetic capacity. Nature 282,
424-426, https://doi.org/10.1038/282424a0, 1979.

Yang, Y., Donohue, R. J., and McVicar, T. R.: Global estimation of effective plant rooting depth: Implications for
hydrological modeling. Water Resour. Res., 52, 8260-8276, https://doi.org/10.1002/2016WR019392, 2016b.

Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L., and Beck, H. E.: Long-term CO; fertilization increases
vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J. Geophys. Res. Biogeosci.,
121, 2125-2140, https://doi.org/10.1002/2016JG003475, 2016a.

Yang, Y., Randall, R. J., McVicar, T. R. & Roderick, M. L. An analytical model for relating global terrestrial carbon
assimilation with climate and surface conditions using a rate limitation framework. Geophys. Res. Lett., 42, 9825-9835,
https://doi.org/10.1002/2015GL066835, 2015.

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., Donohue, R. J.: Hydrologic implications of vegetation response to
elevated CO; in climate projections. Nature Climate Change, 9, 44-48, https://doi.org/10.1038/s41558-018-0361-0, 2019.

Yang, Y., and Shang, S.: A hybrid dual-source scheme and trapezoid framework—based evapotranspiration model (HTEM)
using satellite images: Algorithm and model test. J. Geophys. Res. Atmos., 118, 1-17, https://doi.org/10.1002/jgrd.50259,
2013.

Yang, Y., Zhang, S., McVicar, T.R., Beck, H.E., Zhang, Y.Q., and Liu, B.: Disconnection Between Trends of Atmospheric
Drying and Continental Runoff. Water Resources Research, 54, 4700-4713. https://doi.org/10.1029/2018WR022593, 2018.

Zhang, C., Yang, Y., Yang, D., Wang, Z. R., Wu, X., Zhang, S. L., and Zhang, W. J.: Vegetation response to elevated CO;
slows down the eastward movement of the 100th meridian. Geophys. Res. Lett., 47, e2020GL089681,
https://doi.org/10.1029/2020GL 089681, 2020a.

Zhang, C., Yang, Y., Yang, D., and Wu, X.: Multidimensional assessment of global dryland changes under future warming
in climate projections. J. Hydrol., 125618, https://doi.org/10.1016/j.jhydrol.2020.125618, 2020b.

26


https://doi.org/10.1038/nclimate2831
https://iopscience.iop.org/article/10.1088/1748-9326/11/9/094022
https://doi.org/10.1175/JCLI-D-12-00502.1
https://doi.org/10.5194/gmd-7-2875-2014
https://doi.org/10.1038/282424a0
https://doi.org/10.1002/2016WR019392
https://doi.org/10.1002/2016JG003475
https://doi.org/10.1002/2015GL066835
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1002/jgrd.50259
https://doi.org/10.1029/2018WR022593
https://doi.org/10.1029/2020GL089681
https://doi.org/10.1016/j.jhydrol.2020.125618

685

690

695

Zhang, S., Yang, Y., McVicar, T.R., and Yang, D.: An Analytical Solution for the Impact of VVegetation Changes on
Hydrological Partitioning Within the Budyko Framework. Water Resources Research, 54, 519-537,
https://doi.org/10.1002/2017WR022028, 2018

Zhang, Y. Q., Viney, N., Frost, A., Oke, A., Brooks, M., Chen, Y., Campbell, N. Collation of Australian modeller's
streamflow dataset for 780 unregulated Australian catchments. CSIRO, Canberra, 2013.

Zhao, M.S., Running, S., Heinsch, F.A., and Nemani, R.: MODIS-Derived Terrestrial Primary Production, in Land Remote
Sensing and Global Environmental Change: NASA's Earth Observing System and the Science of ASTER and MODIS.
Remote Sensing and Digital Image Processing (Edited by Ramachandran B., et al.)., vol. 11. Springer: 635-660,
https://www.fs.usda.gov/treesearch/pubs/39324, 2011.

Zhu, Z., Piao, S., Myneni, R. B, Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao,
C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X,, Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Pefuelas, J., Poulter, B.,
Pugh, T., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., Zeng N.: Greening of the Earth and
its drivers, Nat. Clim. Change, 6, 791-795, https://doi.org/10.1038/nclimate3004, 2016.

Zhu, Z. et al.: Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation
(FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation
Index (NDV13g) for the Period 1981 to 2011. Remote Sens. 5, 22, https://doi.org/10.3390/rs5020927, 2013.

27


https://doi.org/10.1002/2017WR022028
https://www.fs.usda.gov/treesearch/pubs/39324
https://doi.org/10.1038/nclimate3004
https://doi.org/10.3390/rs5020927

700

705

710

715

720

725

730

List of Figures

Figure 1 Flowchart of using the analytical models to detect the eCO, impact on Q. The terminologies used are explained in
the following text (section 2.1.1 through 2.1.5).

Figure 2 Spatial distributions of (a) resource availability index categories and (b) climate aridity zones over global vegetated
lands for 1982-2010. For the land surface blank areas are non-vegetated regions. Respectively there are 2536, 8194, 10316,
12930 and 9093 0.5°x0.5°resolution grid-cells in the 0.0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 and 0.8-1.0 resource availability

index categories.

Figure 3 Location of the catchments across the globe. The grey dots show the locations of the original 21,856 catchments,

and red dots are the 2,268 catchments that pass the selection criteria and are used herein.

Figure 4 Validation of estimated Q at catchments. a, Model performance in predicting mean annual Q in 2,268
catchments over 1982-2010. b, Model performance in predicting Q trend in 2,268 catchments during 1982-2010. ¢, Model
performance in predicting mean annual Q in 2,268 catchments over 1982-2010 stratified by resource availability index
category. d, Model performance in predicting Q trend in 2,268 catchments over 1982-2010 stratified by resource availability
index category. The number of catchments in each resource availability index category are provided at the top of this sub-
plot. The legend from c applies to d. In ¢ and d, the upper / lower box edges represent the quantile divisions, the inner
horizontal line is the median, the dots indicate the mean, and the dashed line represent the 5% and 95% percentiles.

Figure 5 Modeled relative changes in L and Z, caused by eCO,. a, Spatial distribution of relative change in L induced by
eCO; during 1982-2010. b, Same as a, but for each resource availability index category. c, Validation of predicted L change
against in situ measurement during six Free Air CO; Enrichment (FACE) Experiments. Note that only FACE sites with
undisturbed vegetation are used (see Donohue et al., 2017). d, Spatial distribution of relative change in Z; induced by eCO;
during 1982-2010. e, Same as d, but for each resource availability index category. In b and e, the upper / lower box edges
represent the quantile divisions, the inner horizontal line is the median, the dots indicate the mean, and the dashed lines
represent the 5% and 95% percentiles. The number of grid-cells in each resource availability index category is provided in

Figure 2.

Figure 6 Relative Q change induced by eCO2 during 1982-2010 across the global vegetated lands. a, Spatial distribution
of relative change in Q induced by eCO.. b, Boxplot of relative change in Q induced by eCO; for each resource availability
index category. c, Spatial distribution of relative change in Q induced by eCO; when only the physiological effect is
considered. b, Boxplot of relative change in Q induced by eCO, when only the physiological effect is considered for each
resource availability index category. e, Spatial distribution of relative change in Q induced by eCO; when only the above-
ground and below-ground structural effects are considered. f, Boxplot of relative change in Q induced by eCO, when only
the above-ground and below-ground structural effects are considered for each resource availability index category. In b, d
and f, the upper / lower box edges represent the quantile divisions, the inner horizontal line is the median, the dots indicate
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the mean, and the dashed lines represent the 5% and 95% percentiles. The number of grid-cells in each resource availability
index category is provided in Figure 2.

Figure 7 Attribution of changes in Q between 1982-1985 and 2006-2010 across global vegetated lands. a, Spatial
distribution of changes in Q. b-e, Spatial distributions of changes in Q induced by (b) changes in P, (c) changes in Ep wm, (d)
eCOz, and (e) changes in other factors (mainly rainfall intensity and climate change-induced vegetation change). f,
Attribution of changes in Q between 1982-1985 and 2006-2010 averaged over the entire global vegetated lands. Values in

the brackets represent one standard deviation of each response among all vegetated grid-cells.

Figure 8 Attribution of changes in Q between 1982-1985 and 2006-2010 at grid-boxes within each resource availability
index (p) category. Values in the brackets represent one standard deviation of each response among grid-cells within each
resource availability index category. The number of grid-cells in each resource availability index category is provided in
Figure 2.

Figure 9 Sensitivity of Q to eCO; and its relative importance to P and Ep m across the globe. a, Spatial distribution of Q
sensitivity to eCO; (% change in Q per 1% change in C,). b, Boxplot of Q sensitivity to eCO, for each resource availability
index category. c, Relative importance of eCO, on Q compared to changes in P on Q (% change in Q per 1% change in Ca,
compared to % change in Q per 1% change in P). d, Boxplot of the relative importance of eCO, on Q compared to changes
in P on Q for each resource availability category. e, Relative importance of eCO, on Q compared to changes in Ep m 0n Q (%
change in Q per 1% change in C, compared to % change in Q per 1% change in Ep). f, Boxplot of the relative importance of
eCO; on Q compared to changes in Ep m on Q for each resource availability category. In b, d and f, the upper / lower box
edges represent the quantile divisions, the inner horizontal line is the median, the dots indicate the mean value, and the
dashed lines represent the 5% and 95% percentiles. The number of grid-cells in each resource availability index category is

provided in Figure 2.
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Stomatal conductance Leaf are index

response to eCO, response to eCO,
(Section 2.1.4) (Section 2.1.5)
L
The S-W model The Guswa'’s model
(Section 2.1.2) (Egs. 3-5)
z,
Ep The Choudhury’s model
parameter (Eq. 2)
n
[ The Budyko model (Eq. 1) ]

755 Figure 1 Flowchart of using the analytical models to detect the eCO; impact on Q. The terminologies used are
explained in the following text (section 2.1.1 through 2.1.5).
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760 Figure 2 Spatial distributions of (a) resource availability index categories and (b) climate aridity zones over
global vegetated lands for 1982-2010. For the land surface blank areas are non-vegetated regions. Respectively
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Figure 3 Location of the catchments across the globe. The grey dots show the locations of the original 21,856

catchments, and red dots are the 2,268 catchments that pass the selection criteria and are used herein.
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770 Figure 4 Validation of estimated Q at catchments. a, Model performance in predicting mean annual Q in 2,268

775

catchments over 1982-2010. b, Model performance in predicting Q trend in 2,268 catchments during 1982-2010.
¢, Model performance in predicting mean annual Q in 2,268 catchments over 1982-2010 stratified by resource
availability index category. d, Model performance in predicting Q trend in 2,268 catchments over 1982-2010
stratified by resource availability index category. The number of catchments in each resource availability index
category are provided at the top of this sub-plot. The legend from c applies to d. In ¢ and d, the upper / lower box
edges represent the quantile divisions, the inner horizontal line is the median, the dots indicate the mean, and the
dashed line represent the 5% and 95% percentiles.
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780 Figure 5 Modeled relative changes in L and Z; caused by eCO.. a, Spatial distribution of relative change in L

785

induced by eCO, during 1982-2010. b, Same as a, but for each resource availability index category. c, Validation
of predicted L change against in situ measurement during six Free Air CO, Enrichment (FACE) Experiments.
Note that only FACE sites with undisturbed vegetation are used (see Donohue et al., 2017). d, Spatial distribution
of relative change in Z, induced by eCO, during 1982-2010. e, Same as d, but for each resource availability index
category. In b and e, the upper / lower box edges represent the quantile divisions, the inner horizontal line is the
median, the dots indicate the mean, and the dashed lines represent the 5% and 95% percentiles. The number of
grid-cells in each resource availability index category is provided in Figure 2.
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Figure 6 Relative Q change induced by eCO, during 1982-2010 across the global vegetated lands. a, Spatial

790 distribution of relative change in Q induced by eCO,. b, Boxplot of relative change in Q induced by eCO for
each resource availability index category. ¢, Spatial distribution of relative change in Q induced by eCO; when
only the physiological effect is considered. b, Boxplot of relative change in Q induced by eCO; when only the
physiological effect is considered for each resource availability index category. e, Spatial distribution of relative
change in Q induced by eCO, when only the above-ground and below-ground structural effects are considered. f,

795 Boxplot of relative change in Q induced by eCO, when only the above-ground and below-ground structural
effects are considered for each resource availability index category. In b, d and f, the upper / lower box edges
represent the quantile divisions, the inner horizontal line is the median, the dots indicate the mean, and the dashed
lines represent the 5% and 95% percentiles. The number of grid-cells in each resource availability index category
is provided in Figure 2.
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Figure 7 Attribution of changes in Q between 1982-1985 and 2006-2010 across global vegetated lands. a, Spatial

distribution of changes in Q. b-e, Spatial distributions of changes in Q induced by (b) changes in P, (c) changes

in Ep m, (d) eCO;, and (e) changes in other factors (mainly rainfall intensity and climate change-induced

vegetation change). f, Attribution of changes in Q between 1982-1985 and 2006-2010 averaged over the entire
805 global vegetated lands. Values in the brackets represent one standard deviation of each response among all

vegetated grid-cells.
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810 Figure 8 Attribution of changes in Q between 1982-1985 and 2006-2010 at grid-boxes within each resource
availability index (f) category. Values in the brackets represent one standard deviation of each response among
grid-cells within each resource availability index category. The number of grid-cells in each resource availability
index category is provided in Figure 2.
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815 Figure 9 Sensitivity of Q to eCO; and its relative importance to P and Er v across the globe. a, Spatial
distribution of Q sensitivity to eCO; (% change in Q per 1% change in Cy). b, Boxplot of Q sensitivity to eCO-
for each resource availability index category. ¢, Relative importance of eCO;, on Q compared to changes in P on
Q (% change in Q per 1% change in C, compared to % change in Q per 1% change in P). d, Boxplot of the
relative importance of eCO; on Q compared to changes in P on Q for each resource availability category. e,

820

Relative importance of eCO; on Q compared to changes in Ep m 0n Q (% change in Q per 1% change in Ca

compared to % change in Q per 1% change in Ep). f, Boxplot of the relative importance of eCO, on Q compared
to changes in Er_m 0n Q for each resource availability category. In b, d and f, the upper / lower box edges

represent the quantile divisions, the inner horizontal line is the median, the dots indicate the mean value, and the
dashed lines represent the 5% and 95% percentiles. The number of grid-cells in each resource availability index

825 category is provided in Figure 2.



