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Abstract. Fractality has been found in many areas and has been used to describe the internal features 

of time series. But is it possible to use fractal theory to improve the performance of hydrological 

models? This study aims at investigating the potential benefits of applying fractal theory in model 

calibration. A new criterion named ratio of fractal dimensions (𝑅𝐷) is defined as the ratio of fractal 10 

dimensions of simulated and observed streamflow series. To combine the advantages of fractal theory 

with classical criteria based on squared residuals, a multi-objective calibration strategy is designed. 

The selected classical criterion is Nash-Sutcliffe efficiency (𝐸). The 𝐸-𝑅𝐷 strategy is tested in three 

study cases with different climate and geography. The results of experiment reveal that, from most 

aspects, introducing 𝑅𝐷 into model calibration makes the simulation of streamflow components 15 

more reasonable. Besides, in calibration, only little decrease of 𝐸 occurs when pursuing better 𝑅𝐷. 

We therefore recommend choosing the best 𝐸 among the parameter sets whose 𝑅𝐷 is around 1.  
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1 Introduction 

Since the first hydrological model was developed, proper methods to evaluate the performance of 20 

models have been pursued by hydrological community and a large variety of criteria have been 

proposed and used over the years. Most of the criteria are based on the squared residuals or absolute 

errors (Pushpalatha et al., 2012). Krause et al. (2005) compared nine efficiency criteria including 

correlation coefficient (r2), Nash-Sutcliffe efficiency (𝐸), index of agreement (d) and their variants, 

but none of them show overall dominance. Kling-Gupta efficiency was developed by Gupta et al. 25 

(2009) and Kling et al. (2012) to provide a diagnostically interesting decomposition of the Nash-
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Sutcliffe efficiency, which facilitates the analysis of the relative importance of its different components 

(correlation, bias and variability) in the context of hydrological modelling. Apart from criteria which 

are used to calculate model errors over the entire test period, there are also many criteria which focus 

on a certain period of interest. For example, criteria mentioned above are calculated over flood periods 

(Liu et al., 2017, 2019) or dry periods (Demirel et al., 2013). There are also studies which calibrated 45 

hydrological models over different hydrological components other than streamflow, such as 

evapotranspiration (Pan et al., 2017), soil moisture (Gao et al., 2015), snow water equivalent and even 

glacier melt (Liu et al., 2019). Another approach to improve the performance of models is the use of 

hydrological signature (Shafii and Tolson, 2015). Nonetheless, uncertainties of hydrological signature 

simulation are often large (Westerberg and McMillan, 2015). Hao and Singh (2013) proposed a 50 

method based on entropy theory for constructing the bivariate distribution of drought duration and 

severity with different marginal distribution forms. Pechlivanidis et al. (2015) combined conditioned 

entropy difference metric and Kling-Gupta efficiency for multi-objective calibration of hydrologic 

models. Li et al. (2010) used the Bayesian method for uncertainty assessment of hydrological model 

estimation.  55 

Chiew and McMahon (1993) classified calibration criteria into statistical parameters and 

dimensionless coefficients. Statistical parameters include mean value, standard deviation, coefficient 

of skewness, coefficient of variance and quantile points etc. Most of the dimensionless coefficients 

(include Pearson correlation coefficient (r2), Nash-Sutcliffe efficiency coefficient (𝐸) and Kling-

Gupta efficiency coefficient etc.) are based on the squared residuals (Pushpalatha et al., 2012). 60 

According to squared-residuals-based coefficients’ calculation formula, approaching of every 

simulated individual data to observed data makes the coefficients better.  

Another deficiency of existing criteria is the preference of particular parts of hydrograph. For example, 

statistical parameters are easily influenced by extreme individuals and are with large uncertainties 

(Westerberg and McMillan, 2015). Coefficients provide a measure of the overall agreement between 65 

simulation and observation, but are still significantly influenced by particular parts of hydrograph. 

High flows make a significant contribution to the value of 𝐸 and Kling-Gupta efficiency coefficient 

(Pushpalatha et al., 2012). Nevertheless, former studies report an underestimation of peak flow when 
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using 𝐸  as indicator alone (Jain and Sudheer, 2008). Overall, there is still large vacancy for 105 

calibration criteria which can give consideration to individual data and whole hydrograph.  

Since firstly introduced by Hurst in 1951, fractality of streamflow series has been studied for decades 

(Hurst, 1951). There has been a spectacular growth in fractal theory, which was expended to various 

areas and to multifractal theory (Bai et al., 2019; Davis et al., 1994). Following the fractal theory, 

descriptions of fractality include the Hurst exponent (rescaled range analysis) (Hurst, 1951), Hausdorff 110 

dimension (box-counting dimension or local dimension) (Jelinek, 2008; Falconer, 2004), and 

correlation dimension (Grassberger and Procaccia, 1983) etc. The difference of these dimensions is 

the calculation scheme of fractal dimensions, and they are numerically related and theoretically 

dependent. While the Hurst exponent calculated with rescaled range analysis was more widely used, 

the Hausdorff dimension could be expanded to multifractal analysis easily and has perspective 115 

applications in hydrology (Bai et al., 2019; Zhou et al., 2014). The fractality of time series is generally 

considered as a reflection of self-affinity, periodicity, long-term memory and irregularity (Bai et al., 

2019; Hurst, 1951; Mandelbrot, 2004). Self-affinity is a feature of a fractal whose pieces are scaled 

by different amounts in the x- and y-directions, and fractal dimensions represent the self-affinity of 

time series. The self-affinity of time series is the similarity of fine-resolution small parts and coarse-120 

resolution large parts of data. Hausdorff dimension is defined and calculated based on the self-affinity 

of data series. The periodicity and long-term memory of time series referred by its fractality are highly 

related. Long-term memory is the feature that the effect of an event in a series may persist for a 

relatively long time. Long-term memory of hydrological time series is usually studied with rescaled 

range analysis. The irregularity of a fractal series refers to the unpredictable changes in a time series, 125 

which is a feature of chaos system. Generally, the Hausdorff dimension of streamflow series represents 

the magnitude of fluctuation, i.e., the fluctuations in river flow are large for large river flow and small 

for small river flow (Movahed and Hermanis, 2008). Such feature is also called as long-term 

correlation, which can be described with the Hausdorff dimension (Onyutha et al., 2019). However, 

applications of fractal theory in hydrology are limited in simple streamflow analysis, mostly only 130 

using the Hurst index (Katsev and L’Heureux, 2003). Also, some studies mentioned other indices 

based on fractal theory (Bai et al., 2019; Zhou et al., 2014; Zhang et al., 2010), but again, the research 
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objects were only observed hydrological data. Recent studies made a progress to hydrological 

modelling based on fractal theory (Zhang et al., 2010), but the model only reconstructed flood/drought 

grades series. As demonstrated by all these studies, the fractality of observed streamflow series (as 

well as other hydro-meteorological data) is inherent and represents some peculiarity of their study 155 

cases. However, few studies have tried to explore the applications of fractal theory in hydrological 

model calibration. To our best knowledge, the only exception is Onyutha et al. (2019), who utilized 

the Hurst-Kolomogorov framework to evaluate the performance of climate models (GCM and RCM) 

rather than to calibrate hydrological models. In their study, the Hurst exponent was used to represent 

the long-range dependence and evaluate the reproductivity of variability (Onyutha et al., 2019). 160 

However, the benefits of using fractal theory in model building and calibration have not been 

discussed.  

Unlike typical statistical evaluation of fluctuation (such as standard deviation and distribution 

function), the Hausdorff dimension takes the order of data into account. Therefore, on the basis of 

classical criteria who compare observed and simulated water balances, the Hausdorff dimension can 165 

offer useful insight into mechanisms controlling the extreme hydrological events (including floods, 

droughts and low flows) (Radziejewski et al., 1997). Another difference between fractal dimension 

and classical criteria is the influence of individual (or a small number of) data. While approaching of 

every simulated individual data to observed data makes the coefficient better, it may make the 

Hausdorff dimension of simulated data closer or farther away from that of observed data. That means, 170 

to reproduce all characteristics of observed streamflow, simulated streamflow and observed 

streamflow should have similar Hausdorff dimensions, as well as other traditional metrics. Given all 

that, the Hausdorff dimension is proposed in this study in hydrological model calibration.  

Since the fractal dimension describes the fractality of streamflow series and two different series may 

have the same fractal dimension, the fractal dimension could not be used to calibrate hydrological 175 

model independently. Multi-objective optimization approaches are widely used by hydrological 

community (Harlin, 1991; Yapo et al., 1998; Liu et al., 2017, 2019; Pan et al., 2017; Shafii and Tolson, 

2015). This set the stage of using some uncomprehensive but effective criteria as targets, such as 

aforementioned hydrological signatures (Shafii and Tolson, 2015; Westerberg and McMillan, 2015), 
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statistical targets and fractal criteria. Nonetheless, the strategy to use the Hausdorff dimension to 260 

calibrate hydrological models has not been studied. 

In this study, a new criterion defined as ratio of fractal dimension (𝑅𝐷) is introduced, as well as a 

calibration strategy. The criterion and calibration strategy should be able to consider the self-affinity, 

periodicity, long-term memory and irregularity of hydrograph during model calibration. Three 

catchments with different climate and geography are used as case studies. The aim of this study is to 265 

examine the applicability of using 𝑅𝐷 as one of the targets of multi-objective calibration and explore 

the performance of hydrological models when 𝑅𝐷 is considered. Section 2 describes differences 

between 𝑅𝐷 and classical criteria, and how 𝑅𝐷 is used in calibration (𝐸-𝑅𝐷 strategy). Section 3 

contains the brief information of study areas and methods used in this study to investigate the 

advantages of 𝑅𝐷. Section 4 provides the results and Section 5 provides the discussion. Section 6 is 270 

the summary and conclusion. In this study, our goal is to answer the following questions: (1) Is 𝑅𝐷 

a proper criterion for hydrological modelling, even if the reflection of 𝑅𝐷 is not as direct as classical 

criteria? (2) Could 𝐸-𝑅𝐷 strategy explicitly improve the performance of hydrological models? (3) 

Why can 𝑅𝐷 be used to improve calibration?  

𝟐 Study area and methodology 275 

2.1 Ratio of fractal dimensions and 𝑬-𝑹𝑫 strategy 

The box-counting method used to calculate the Hausdorff dimension is based on the idea of separating 

data into boxes and count the number of boxes (Mandelbrot, 2004). When adopted to analyze time 

series, the box-counting method sums adjacent data up (put adjacent individuals into boxes) and 

compares the treated data of various resolutions (different sizes of boxes). Fig. 1 graphically shows 280 

how the box-counting method works with time series. Fig. 1 (a) shows how the number of boxes 

needed to cover all data (N) changes when the size of boxes changes (resolution, δ). Fig. 1 (b) shows  

the log-linear relationship between N and δ. The definition of the Hausdorff dimension D is:  

𝐷 = log	 (N)
log	(1 δ⁄ )

,                              (1) 

Where δ is the size of boxes and N is the number of boxes (Evertsz and Mandelbrot, 1992).  285 
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Fig. 1. Flow chart of using box-counting method to calculate the Hausdorff dimension of time series.  

 520 

As stated before, the observed and simulated streamflow series shall have the same Hausdorff 

dimension. In this study, a new criterion named as ratio of dimension (𝑅𝐷) is defined as follow:  

𝑅𝐷 = %!
%"

,                           (2) 

where Ds  is the Hausdorff dimension of simulated streamflow series and Do  is the Hausdorff 

dimension of observed streamflow series. The range of 𝑅𝐷  is from 0 to +∞. When RD=1, the 525 

simulated streamflow series has the same Hausdorff dimension with that of observed streamflow 

series, which means that the model is the best in terms of fractals. The relevant examination of models’ 

performance under the supervision of 𝑅𝐷 has not been studied either.  

Obviously, 𝑅𝐷, as a metric of self-affinity deviation of simulated streamflow series from observed 

series, is not a criterion capable of evaluating the performance of hydrological models by itself. An 530 

immediate thought is to combine 𝑅𝐷 and another statistical criterion in model calibration.  

Three features are demanded for the statistical criterion to be combined with 𝑅𝐷. Firstly, the statistical 

criterion shall be able to evaluate the performance of models in terms of water balance to some extent. 

Secondly, the statistical criterion shall evaluate the response of streamflow to meteorological forcing. 

Thirdly, the criterion shall calculate model errors over the entire test period. These features make sure 535 

that the strategy meets basic needs. An additional requirement for the statistical criterion used in this 

study is the popularity of this criterion within the hydrological community. Therefore in this study, we 

choose E as the statistical criterion. Another reason to choose 𝐸 is that the pros and cons of 𝐸 are 

more familiar for hydrologists than other metrics, and this original version is still mostly often used 

in hydrological model calibration. In this manner, the advantages of 𝑅𝐷  emerge as well as the 540 

benefits of multi-objective calibration based on 𝑅𝐷.  

Nash-Sutcliffe efficiency coefficient (𝐸), a commonly used criterion since initially proposed (Nash 

and Sutcliffe, 1970), is calculated is:  

𝐸 = 1 − ∑('"('!)#

∑('"('")))))#
,                           (3) 

Where 𝑄* is the simulated flow, 𝑄+ is the observed flow and 𝑄+,,,, is the mean value of the observed 545 

flow.  
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A set of experiments is processed to illustrate the benefits of using the proposed 𝐸-𝑅𝐷 strategy to 

evaluate models. Descriptions of experiments are included in Section 3. Fig. 2 shows the whole 

process of 𝐸-𝑅𝐷 strategy.  555 

 

Fig. 2. Flow chart of 𝐸-𝑅𝐷 strategy. 

 

The value of Hausdorff dimension of the same time series may be different for different resolutions. 

The difference usually implicates that self-affinity of the time series changes as the resolution changes 560 

and in hydrology specifically, dominant driver of hydrological processes changes. For example, the 

dominant drivers of daily and annual circle of temperature are different. The Hausdorff dimension of 

joint data series (also called as joint multifractal spectrum) verifies the freezing-thawing process of 

soil moisture in a quantitative and solid way which unfolds the complex nonlinear relationship among 

three hydrological variables (Bai et al., 2019). According to this idea, the Hausdorff dimension 565 

determines whether the streamflow components are reasonably simulated. In this study, the largest 

temporal resolution is set as 365 days (1 year), to leave the inter-annual drivers out. It is believed that 

the range of resolution is enough for the Hausdorff dimension to reflect drivers of hydrological 

processes.  

2.2 Study area 570 

A small catchment located in Tibet named Dong, a medium sized catchment located in southeastern 

China named Jinhua and a large catchment located in the middle reach of Yangtze River named Xiang 

are used in this study.  

Dong is a small tributary of the Yarlung Zangbo River, with elevations ranging from 3512 to 5869 m. 

The area of Dong catchment is about 43.6 km2. The average annual precipitation of the study period 575 

is 413.5 mm. The average temperature is 10.6 ºC. The high elevation of Dong catchment results in 

cold climates. Former study has consolidated that snow pack and frozen soil significantly affect 

hydrological processes in the Dong catchment (Bai et al., 2019). Meteorological forcing data and 

streamflow observation of Dong catchment used in this study are from 2011 to 2014.  

Jinhua River is a 5536-km2 catchment of Zhejiang Province, southeastern China. The study area is 580 
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subject to Asian monsoon climate, and precipitation is strongly summer-dominant, occurring mostly 

from May to September. Based on meteorological data of 42 years (from 1965 to 2006), the mean 

annual precipitation in Jinhua catchment is 1847.4 mm. The average temperature is 17.6 ºC. Former 

studies show that precipitation data and streamflow data of Jinhua catchment are well matched (Pan 590 

et al., 2018). Meteorological forcing data and streamflow observation of Jinhua catchment used in this 

study are from 1965 to 2006.  

Xiang River is one of the largest tributaries of the Yangtze River, which flows into the Dongting Lake, 

the second largest freshwater lake in mid-China. The area of Xiang catchment is about 82,400 km2 

and data of nine meteorological stations are used in this study. Dominated by subtropical monsoon 595 

climate, the mean annual rainfall of the basin ranges from 1400 to 1700 mm and the average annual 

temperature is around 17 ºC. The basin experiences floods and droughts frequently, and rainfall is 

distributed evenly throughout the year, most of it falling in April to June. According to studies, 

precipitation is the most vital driver for Xiang River (Zhu et al., 2019). Meteorological forcing data 

and streamflow observation of Xiang catchment used in this study are from 1987 to 2013.  600 

Fig. 3 shows the topography of all study areas.  

 

Fig. 3. DEM of study areas.  

 

 605 

2.3 HBV model 

The HBV model is a conceptual rainfall-runoff model originally developed by Swedish 

Meteorological and Hydrological Institute (SMHI) (Bergström, 1976; Bergstrom, 1992; Lindström et 

al., 1997). The model has been successfully used in many cases (Seibert and Vis, 2012; Tian et al., 

2015, 2016). The HBV model is composed of precipitation and snow accumulation routines, a soil 610 

moisture routine, a quick runoff routine, a baseflow routine and a transform function. The HBV model 

takes into account the effect of snow melting and accumulation, which is significant in the Dong 

catchment. The actual evapotranspiration is calculated with a linear function. Two conceptual runoff 

reservoirs, the upper reservoir and the lower reservoir are included in the HBV model.  
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2.4 Multi-objective genetic algorithm 

A controlled and elitist genetic algorithm (a variant of NSGA-II) (Deb, 2001) is applied in model 

calibration. A controlled and elitist GA favors individuals with better fitness value (rank) as well as 705 

individuals that can help increase the diversity of the population even if they have a lower fitness 

value. An important behavior of this genetic algorithm is that, the individual with the best performance 

according to anyone of the criterion would be retained with the lowest rank. This makes sure that with 

multi-objective genetic algorithm, parameter set with the best possible 𝐸 could be found and the 

following comparison between 𝑅𝐷-𝐸 and 𝐸 is reasonable. In this study, |1 − 𝑅𝐷| is used as one 710 

of the criteria.  

Since HBV has 14 parameters to calibrate, the number of generations is 2800. Each generation has 

600 population. The crossover fraction is set as 0.8 (meaning). The Pareto fraction is set as 0.2 

(meaning). The population migrates every 20 generations, and the migration fraction is set as 0.5. 

These settings make sure that population will not trap in local optimum, which is important because 715 

𝑅𝐷 varies in a wider range than traditional criteria. Most of these numbers are the default settings, 

which is applicable to most of the problems. Only the number of the population of each generation 

(600) is larger than default (200) for finer presentation of Pareto front of the optimization. The 

meanings of settings can be found in Deb (2001).  

All 600 Pareto-optimized solutions of the last generation are used in the following analysis. GA 720 

optimization with the 𝐸-𝑅𝐷 calibration strategy (described in 2.1) will not drop population with 

perfect 𝑅𝐷  (=1) and unsatisfactory 𝐸 . Several representative selected parameter sets and 

corresponding simulated streamflow series are deeply studied.  

2.5 Approach for model evaluation  

To investigate the 𝑅𝐷’s effects in hydrological model evaluation, several tools are utilized.  725 

Pearson’s correlation coefficient 𝑟2 , percentage bias (bias), auto-correlation of observation, auto-

correlation of simulation, relative variance, maximum monthly flow and minimum monthly flow are 

used for a comprehensive comparison between models based on 𝑅𝐷 and traditional hydrological 

criteria (𝐸). The best 𝑅𝐷  model and best 𝐸  model (typical models) are selected from the last 

generation of GA calibration for detailed analysis.  730 
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To understand how the model is adjusted when 𝑅𝐷 is used as one of the objectives, the relationship 740 

between parameters and 𝑅𝐷 is analyzed. The distance correlation 𝑟,- is used to determine whether 

the variations of model’s parameters and 𝑅𝐷 are related. The distance correlation, as a multivariate 

measure of dependence, calculates the correlation of distances between points to means. The distance 

correlation is believed to have better performance when solving problems with non-linear data or 

extreme values (Székely et al., 2007). The relationship between parameters and 𝑅𝐷 may not be linear, 745 

which brings the necessity of using a nonlinear analysis approach rather than Pearson’s linear 

correlation coefficient. Distance correlation is also more robust to data outliers, than rank correlations.  

To look into the influence on simulation of specific parts of hydrographs brought by 𝑅𝐷, fast flow 

and baseflow are analyzed separately. The HBV model is slightly modified to output simulated fast 

flow and baseflow at every time step. Observed streamflow series are divided into the fast and 750 

baseflow using the Water Engineering Time Series PROcessing tool (WETSPRO tool) introduced by 

(Willems, 2009). WETSPRO separates fast flow and slow flow on the basis of filter theory, using 

several filter parameters including recession constant and average fraction of fast flow volumes over 

the total flow volumes etc. The 𝐸  and r2  of simulated fast flow/baseflow to observed fast 

flow/baseflow are calculated. Hydrographs of the first three years after warming up are shown to 755 

visually illustrate the influence of 𝑅𝐷 on fast flow and baseflow simulation.  

3 Results and discussion  

3.1 Overall evaluation of models on the Pareto front  

Fig. 4 shows the 𝑅𝐷 -𝐸  relationship of last population of multi-objective calibration in three 

catchments separately. The ranges of 𝑅𝐷 of final generation in three cases are different, so as the 760 

ranges of 𝐸/bias. The ranges of 𝐸 are 0.60 to 0.69 (Dong), 0.95 to 0.953 (Jinhua) and 0.818 to 0.822 

(Xiang). For all cases, the non-significant variation of 𝐸 indicates that for all selected parameter sets, 

the 𝐸 criteria could not fully distinguish them. On the contrary, the ranges of 𝑅𝐷 are about 0.72 to 

1 (Dong), 0.86 to 1.04 (Jinhua) and 0.85 to 1.01 (Xiang). According to relevant studies, the biggest 

difference of Hausdorff dimension of data of the same type is smaller than 0.25 (Hurst, 1951; 765 

Rubalcaba, 1997; Meseguer-Ruiz et al., 2019), which indicates the ranges of 𝑅𝐷 aforementioned 
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present the significant difference of simulated streamflow from the aspect of fractal. In this study, 𝑅𝐷 775 

is often lower than 1 and sometimes only slightly higher than 1, which agrees with the smooth 

hydrograph and simple structure of HBV model. Because that RD=1 means that the model is best in 

terms of fractals (see Section 2.2), the models whose 𝑅𝐷 is larger than 1 need discussion, too. Noting 

that the largest 𝑅𝐷 is very close to the best 𝑅𝐷 (=1), the largest 𝑅𝐷 model should be similar with 

the best 𝑅𝐷 model. And the GA algorithm discards most of the models with 𝑅𝐷 > 1 because they 780 

are not on the Pareto front. The bias does not change much when 𝑅𝐷 changes. A tiny difference 

within 3% occurs for the last generations of Dong, Jinhua and Xiang. More importantly, change of 

bias with the change of 𝑅𝐷 is different for three cases. For Dong catchment, the bias is firstly getting 

worse then getting better as 𝑅𝐷 approaching 1. Besides, a trend of bias of getting worse for Jinhua 

and a trend of bias of getting better for Xiang as 𝑅𝐷 approaching 1 can be observed. Without more 785 

cases, the trend of bias in this study is regarded to be random. In addition, in Xiang case, there is a 

break in Fig. 4. On two sides of the break, 𝐸 is close by and 𝑅𝐷 is significantly different.  

A single-objective calibration is operated to support the assumptions made in Section 3.3 that, in this 

study, the NSGA II algorithm can find the best 𝐸. The comparison between results of single-objective 

calibration and multi-objective calibration (𝐸-𝑅𝐷 strategy) is listed in Table 1. Besides, to get rid of 790 

the possible influence of the lengths of time series, a comparison of the multi-objective calibration 

with the same length of data is made. The results show that, at least in the cases of this study, the 𝐸-

𝑅𝐷 strategy would not change its behavior with the lengths of data.  

 

Fig. 4 𝐸-𝑅𝐷 of last generation of GA calibration.  795 

 

Table 1. Comparison of best 𝐸 between single-objective calibration and multi-objective calibration 

(𝐸-𝑅𝐷 strategy).  

 

The models with the best 𝑅𝐷, best 𝐸 and largest 𝑅𝐷 are selected from the Pareto front as typical 800 

examples. Fig. 5 is the simulated streamflow of three examples and observed streamflow as well. For 

each case, discharge within a three-year period is shown. Examples with the largest 𝑅𝐷 are used to 
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verify if the model with the same 𝑅𝐷  with observation is the best. Apparently, the simulated 

hydrographs of typical models in each case are similar, which agrees with the 𝐸 and 𝑅𝐷 in Fig. 4.  

 810 

Fig. 5. Typical examples with best 𝑅𝐷 , best 𝐸  and largest 𝑅𝐷  (representative three-year 

hydrograph).  

 

A precondition of adopting the 𝑅𝐷-𝐸 strategy is the irrelevancy or weak correlation between two 

criteria. This precondition could be simply verified by looking into their calculation schemes or by 815 

examining during the multi-objective calibration. In this study, the calculation of two metrics (𝑅𝐷 

and 𝐸) are totally different, and the results of multi-objective calibration also show that the significant 

change of 𝑅𝐷 only leads to minor difference of 𝐸 (see Fig. 4). The best 𝐸 and worst 𝐸 are close 

according to the result of multi-objective calibration. Figs. 4 and 5 further imply that only little 

decrease of 𝐸 happens when pursuing better 𝑅𝐷. In this study, the equifinality of using only 𝐸 820 

emerges.  

Table 2 lists the 𝐸 values of typical models selected by the 𝐸-𝑅𝐷 calibration strategy and optimized 

model. Table 2 confirms the assumption that, in this study, directly analyzing the models calibrated 

by 𝐸-𝑅𝐷 calibration strategy is reasonable and efficient. Hydrological signatures including relative 

variance, lag-1 auto-correlation, percentage bias and maximum/minimum monthly flow are used to 825 

show the effect of 𝑅𝐷. 

 

Table 2. Hydrological signatures of typical models in all three cases.  

 

Table 2 shows the hydrological signatures of observed and simulated flow series in three cases. Most 830 

hydrological signatures, including lag-1 auto-correlation, relative variation and maximum monthly 

flow, of simulated series are close by. Lag-1 auto-correlations of simulated series are close with auto-

correlations of observed flow series. The lag-1 auto-correlations of series of flow series in Dong case 

and Xiang case are more than 0.9 while the values in Jinhua case are between 0.75 to 0.77. The relative 

variances of flow series in Dong case and Xiang case are smaller than 1, while the values in Jinhua 835 
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case are more than 1.8. These show the feature of catchments of different types which are well 

simulated by the HBV model. Maximum and minimum monthly flows of simulated and observed 

series are significantly different. In all three cases, maximum monthly flows of simulated series are 

close to each other and slightly smaller than maximum monthly flows of observed flow series. 

Minimum monthly flow is the only hydrological signature used in this study that distinguishes the 845 

typical models with the best 𝑅𝐷 and with the best 𝐸. In all three cases, the minimum monthly flow 

of simulated series with the best 𝐸  is significantly smaller than of the minimum monthly flow 

observed series. On the contrary, the minimum monthly flow of simulated series with the best 𝑅𝐷 is 

close to the minimum monthly flow of observed series in Jinhua and Xiang cases. The minimum 

monthly flow of simulated series with the largest 𝑅𝐷 is worse than that of simulated series with the 850 

best 𝑅𝐷. The high-flow percentiles (𝑄.) and low-flow percentiles (𝑄/.) are reasonable in three cases 

for all typical models. However, the high-flow percentiles and low-flow percentiles of best 𝑅𝐷 

models are still closest to the observation. In summary, hydrological signatures illustrate that major 

effects of 𝑅𝐷 are on the model’s low flow simulation. Therefore, in later sections, low flow related 

analysis will be more emphasized.  855 

3.2 Effect of 𝑹𝑫 on model parameters 

All parameter sets in the Pareto front of three cases vary. The distance correlations (𝑟,-) of parameters 

and 𝑅𝐷 are used to determine whether the change of parameters is stable. In addition, high value of 

𝑟,- indicates the significant relationship between the Hausdorff dimension and these parameters. In 

this study, the relation between GA-selected parameter sets and 𝐸 is not shown because 𝐸 and 𝑅𝐷 860 

in the Pareto front are highly related and the variance of 𝐸 is small (see Fig. 4).  

Table 3 lists the determinative parameters of three cases respectively. Distance correlation (𝑟,-) is used 

to illustrate the non-linear relationship between 𝐸 and 𝑅𝐷 in the Pareto’s optimal. The parameter 

effective precipitation exponent (β ) and degree-day factor are also listed in Table 3. Effective 

precipitation exponent is listed in Table 3 because of two reasons: 1) the range of 𝑟,- of β in Jinhua 865 

case is from 0.709 to 0.739 in Xiang case, which is better than all unlisted parameters; 2) β, as well 

as determinative parameters 𝛼, 𝐾𝐹, 𝐾𝑆, is a runoff-generation-related parameter. The degree-day 

factor is listed in Table 3 because of two reasons: 1) distance correlation between the degree-day factor 
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and 𝑅𝐷 is close to 0.8 in Xiang case; 2) in Dong case, distance correlation analysis does not show 875 

the significance of ablation of snow to hydrograph. Capillary transport is not determinative parameters 

to 𝑅𝐷 in Dong and Jinhua and therefore no further discussion of them is given afterwards. The 𝑟,- 

of 𝛽 (0.512) in Dong catchment is smaller than those in other cases. Fig. 6 shows the relationship 

between 𝛽 and 𝑅𝐷.  

 880 

Table 3. Determinative parameters and distance correlations (𝑟,-) between parameters and 𝑅𝐷.  

*: 𝑟,- ≥ 0.8 

 

 

Fig. 6. 𝛽 and 𝑅𝐷 relationship in three cases.  885 

 

An explicit relationship between parameters and criteria confirms that the effect of 𝑅𝐷 is not random. 

Six parameters (β, 𝛼, fast flow factor, baseflow factor, percolation, degree-day factor) are selected by 

distance correlation analysis for further discussion. 

Fig. 7 shows the relationship between 𝛼 and 𝑅𝐷. The fast flow factor (𝐾𝐹) is related to 𝑅𝐷 in all 890 

cases. Fig. 8 shows the relationship between 𝐾𝐹 and 𝑅𝐷. The varying patterns of 𝛼 and 𝐾𝐹 are 

the same in three cases. The fast flow exponent 𝛼 increases when 𝑅𝐷 approaches to 1 and 𝐾𝐹 

decreases when 𝑅𝐷 approaches to 1.  

 

Fig. 7. 𝛼 and 𝑅𝐷 relationship in three cases. 895 

 

Fig. 8. 𝐾𝐹 and 𝑅𝐷 relationship in three cases. 

 

Fig. 9 shows how fast flow changes with different surface water storages under different 𝐾𝐹 and 	𝛼 

of example models with best 𝑅𝐷 and best 𝐸. For all cases, 𝐸 selects higher 𝐾𝐹 and lower	𝛼. In 900 

Dong case, the relative difference of fast flow generation between best 𝑅𝐷 model and best 𝐸 model 

is always around 36%. The difference of fast flow between best 𝑅𝐷 model and best 𝐸 model is 
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significant in Dong case for the whole simulated period. In Jinhua case, the relative difference between 910 

the best 𝑅𝐷 model and best 𝐸 model decreases from more than 20% to less than 5%. In Xiang case, 

the relative difference between the best 𝑅𝐷 model and best 𝐸 model decreases from about 16% to 

8%. The difference between the best 𝑅𝐷 model and best 𝐸 model is important during the dry period 

and reduces as water storage of upper reservoir increases (the wet period). The relative difference is 

greater in Jinhua case than in Xiang case in low flow periods but smaller in Jinhua case in high flow 915 

periods. That difference between the best 𝐸 model and best 𝑅𝐷 model will finally lead to the greater 

variation of fast flow in low flow periods than in high flow periods. There are break points in Xiang 

case (Fig. 6, 7 and 8), but no evident effects shown in Fig. 5 and 9.  

 

Fig. 9. Response of fast flow to surface water storage. For each case, fast flow responses of typical 920 

models with best 𝑅𝐷 and 𝐸 are presented.  

 

The baseflow (slow flow) factor (𝐾𝑆) is related to 𝑅𝐷 in all cases. Fig. 10 shows the relationship 

between 𝐾𝑆  and 𝑅𝐷 . The varying patterns of 𝐾𝑆  are the same in three cases. However, the 

variation ranges of 𝐾𝑆 in three cases are different. The largest value of 𝐾𝑆 in Dong (0.153) is much 925 

larger than that in Jinhua (0.063) and in Xiang (0.048). The smallest value of 𝐾𝑆 in Dong (0.016) is 

also larger than that in Jinhua (0.005) and in Xiang (0.010). The 𝐾𝑆 of best-𝐸 in the three cases 

follows the sequence of catchment area. This agrees with the regular pattern that the concentration 

time of slow flow is highly related with the area of catchment.  

 930 

Fig. 10. 𝐾𝑆 and 𝑅𝐷 relationship in three cases. 

 

The percolation is significantly related to 𝑅𝐷 in all cases. The range of percolation in Dong case is 

larger than the others. Fig. 11 shows the relationship between percolation and 𝑅𝐷 in three cases. 

Percolation increases in Dong case and decreases in other two cases when 𝑅𝐷 increases. The range 935 

of percolation in Dong is larger than in the others. 𝐾𝑆 and percolation determine the way HBV 

models baseflow. The percolation in Dong case is larger than the others, which is the reflection of 
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Dong catchment’s arid climate. The percolation in Jinhua case is larger than the percolation in Xiang 940 

case, because the slope in Jinhua catchment is larger. 

 

Fig. 11. Percolation and 𝑅𝐷 relationship in three cases. 

 

The degree-day factor is significantly related to 𝑅𝐷  in Xiang case. However, the relationship 945 

between the degree-day factor and 𝑅𝐷 in Dong and Jinhua is weak. Fig. 12 shows the relationship 

between the degree-day factor and 𝑅𝐷. The degree-day factor of most selected models of Dong case 

is smaller than 0.05, indicating that these models barely have any snow-melt runoff. When 𝑅𝐷>0.9, 

several models have degree-day factors larger than 7. When 𝑅𝐷 is around 1, the range of degree-day 

factor is 8.18 to 11.76, indicating that 𝑅𝐷 somehow detects the snow-melt runoff in the hydrograph 950 

and makes the HBV model simulate the snow-melt runoff more reasonably. Notably, the 𝑅𝐷-selected 

degree-day factor in Dong case is too large according to the guidance of HBV (1.5 to 4 mm/day, in 

Sweden) (HBV light version 2, user’s manual), which may result from the unsuitable lumped model 

structure of HBV in rugged mountainous catchment. 

The degree-day factors in all selected models of Jinhua are large, but the temperature in Jinhua is too 955 

high to have snow accumulation. The distance correlation between the degree-day factor and 𝑅𝐷 is 

weak in Dong and Jinhua case. The range of degree-day factor of most models in Xiang case is from 

2.8 to 3.4. The range is small and so as the difference of snow-melt runoff of selected models. By 

checking the temperature series in the Xiang catchment, we find there are 61 days (out of 27 years) 

when the average temperature is below 0°C. Actually, since the Xiang catchment is large, there are 960 

snow events somewhere in the catchment almost every year. The low temperature may be covered by 

averaging, but the 𝐸-𝑅𝐷 strategy captured it and illustrated this by noticeable value of degree-day 

factor.  

 

Fig. 12. Degree-day factor and 𝑅𝐷 relationship in three cases.  965 

 

As illustrated in Fig. 7, 8, 10 and 11, the three runoff-generation-routine parameters, namely baseflow 
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factor (𝐾𝑆), fast flow factor (𝐾𝐹) and fast flow exponent (𝛼), have the same change patterns in three 

cases, suggesting a consistent preference of 𝑅𝐷 in all cases. Fig. 9 shows the visual difference of fast 

flow caused by introducing 𝑅𝐷. However, other parameters have different change patterns along with 

𝑅𝐷 because of different features of catchments (Fig. 6 and 12). For example, the soil parameter 𝛽, 

as illustrated by Equation (6), redistributes the precipitation and divides it into effective precipitation 980 

and infiltration. 𝛽 in Dong case and Xiang case increases and 𝛽 in Jinhua decreases when 𝑅𝐷 is 

getting better.  

3.3 Analysis of separated streamflow  

Separated simulated and observed streamflow series further reveal how 𝑅𝐷  influences model 

calibration results. The simulated total flow is also separated with the WETSPRO tool to make the 985 

principle of separation of simulation and observation same. Table 4 lists the parameters of WETSPRO 

in three cases. The recession constants are close to each other. The w-parameter filter, representing the 

case-specific average fraction of the quick flow volumes over the total flow volumes, shows the 

difference. The w-parameter filter of Dong catchment is 0.14, smaller than the other catchments, 

meaning that baseflow only occupies less proportion of total flow in Dong, showing the catchment 990 

features of small area and high slope. Fig. 13 shows the correlation coefficients between simulated 

and observed fast flow/baseflow (𝑟0- and 𝑟1-) and Nash-Sutcliffe efficiency coefficient (𝐸0 and 𝐸1) 

of all population of last generation in three cases and their variation with 𝑅𝐷. The observed fast flow 

and baseflow are separated from observed total flow using WETSPRO (William, 2009) (see Section 

3.4). In Dong case, both 𝑟1- and 𝑟0- slightly decrease as 𝑅𝐷 approaching 1. However, the range of 995 

𝑟0- in Dong case is from 0.02 to 0.15 and the range of 𝑟1- is from about 0.3 to 0.6, which means no 

correlation exists between simulated and observed fast flow and baseflow. The 𝐸0 and 𝐸1 in Dong 

case improve to 0.06 and 0.24 respectively. In Jinhua and Xiang cases, all models of last generation 

of GA simulate fast flow well. The 𝑟0- and 𝐸0 value in Jinhua case are above 0.95 and 0.94. The 𝑟0- 

and 𝐸0 in Xiang case are above 0.78 and 0.70. Surprisingly, there is still an evident improvement of 1000 

fast flow simulation due to the application of 𝑅𝐷. The major improvement is the performance in 

baseflow simulation. The values of criteria of baseflow simulation (𝑟1- and 𝐸1) are improved from 

poor to satisfactory. In Jinhua case, 𝑟1- is improved from less than 0.1 to more than 0.45 and 𝐸1 is 
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improved from -10 to about 0.38. In Xiang case, 𝑟1- is improved from about 0.4 to 0.75 and 𝐸1 is 

improved from -6 to 0.51.  

 

Fig. 13. Correlation coefficients and Nash-Sutcliffe efficiency coefficients on fast flow and baseflow 

respectively of models of last generation in three cases.  1010 

 

Fig. 14 and 15 show separated streamflow of typical models and observed streamflow to make a 

visible comparison of models based on 𝐸 and models based on 𝑅𝐷. Fig. 14 shows the fast flow and 

Fig. 15 shows the baseflow.  

 1015 

Fig. 14. Fast flow of typical models and observations (representative three-years hydrograph).  

 

Fig. 15. Baseflow of typical models and observations (representative three-years hydrograph).  

 

The fast flow response of the best 𝑅𝐷 model in Dong case matches well to observed fast flow. The 1020 

recession of fast flow of the best 𝑅𝐷 model in Dong case is too fast and the stable value is nearly 

zero, which is in the contrast of observation. The fast flow response of best 𝐸 model in Dong is late, 

the recession of fast flow is too slow and fast flow at recession periods is too much. The fast flow 

response of largest 𝑅𝐷 model in Dong is also late, but the fast flow recession is more reasonable. In 

Jinhua and Xiang cases, simulated fast flow of all typical models well matches the observation. In all 1025 

cases, the fast flow of best 𝑅𝐷 model is smaller than that of best 𝐸 model and the difference is 

greater in low flow periods, which is consistent with Fig. 9.  

In all three cases, the best 𝑅𝐷 models simulated baseflow well. 𝑅𝐷 selected models accurately 

simulated the seasonal flow variation of three catchments. The amplitude of baseflow fluctuation is 

close to separated observation by WETSPRO. The discharge also fits separated observation well. In 1030 

all three cases, the best 𝐸 models do not simulate the baseflow well enough. The models with the 

largest 𝑅𝐷 in three cases have different performance. Largest 𝑅𝐷 model in Dong case, of which 

𝑟1- = 0.82 and 𝐸1 = 0.25, is not satisfactory. On the contrary, 𝑟1- and 𝐸1 of the best 𝐸 model in 
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Dong are 0.87 and 0.79 respectively. The best 𝐸 models in Jinhua and Xiang case, however, are close 

to the best 𝑅𝐷 models. According to Fig. 10 and 11, in Jinhua and Xiang cases, smaller 𝐾𝑆 and 

percolation (of best 𝑅𝐷 model) make smaller recharge and outflow (baseflow) of lower reservoir and 

smaller fluctuation of baseflow. In Dong case, bigger percolation increases the recharge and total 

baseflow and smaller 𝐾𝑆 extends the period of baseflow recession, making simulated baseflow more 1040 

consistent with observation (Fig. 15).  

Two reasons exist for the unsatisfactory simulation of fast flow in Dong case. The first one is that the 

HBV model is not capable of accurately simulating mountainous catchment with snowpack and little 

gauge data are available for the Dong catchment. The second one is that WETSPRO may fail to 

correctly separate the short streamflow series of Dong catchment. This needs to be further verified.  1045 

Another visual demonstrator of the preference of 𝑅𝐷 is Fig. 14 and 15. Fast flow generation based 

on 𝑅𝐷 is more immediate while baseflow generation based on 𝑅𝐷 is smoother. Both of them are 

visually better than that when 𝑅𝐷 is not taken into account.  

Above results reveal the benefits of using 𝑅𝐷 and the slight decrease of 𝐸. The selection principle 

based on multi-objective calibration is therefore suggested following two steps: 1) sieving out all 1050 

parameter sets whose 𝑅𝐷 is around 1 (in this case, considering the data precision of MATLAB, 𝑅𝐷 

=1); 2) Choosing the parameter set with best 𝐸 among the sets in Step 1. It is determined that the 𝐸-

	𝑅𝐷  strategy using this selection principle improves the reliability of streamflow components 

simulation.  

That is, 𝑅𝐷 selects responsive fast flow (confirmed in Fig. 14) and smooth baseflow (confirmed in 1055 

Fig. 15) in all cases.  

4 Conclusion 

This study targeted at examining the possibility of using fractal theory to improve the performance of 

hydrological models. The definition of ratio of fractal dimension (𝑅𝐷) was proposed and used as a 

fractal criterion (against traditional statistical criteria). A scheme which combined 𝑅𝐷 and Nash-1060 

Sutcliffe efficiency coefficient (𝐸) to calibrate hydrological models was developed and examined. 

Three study cases named Dong, Jinhua and Xiang were included in the examination. This is the first 

删除了: to 

删除了: simulate 

删除了: ’1065 

删除了: 5 



 20 

time (to our best knowledge) that fractal theory was applied to calibrate hydrological models.  

The main conclusions of this study are as follows:  

1) The varying patterns of parameters of runoff generation routine (namely fast flow factor, fast flow 

exponent and baseflow factor) are similar in all cases of our study.  1070 

2) Several parameters were found to be related to 𝑅𝐷. For instance, the 𝐸-𝑅𝐷 strategy selected the 

degree-day factors with relatively high value in Dong case, which is not seen when only 𝐸 was 

considered.  

3. The 𝐸 -𝑅𝐷  strategy is innovative in hydrological modelling. That is, the 𝐸 -𝑅𝐷  calibration 

strategy is a potential way to take the fractality of observed streamflow series into consideration in 1075 

model calibration. Since fractal (also regarded as self-affinity) widely exists in nature, the 𝑅𝐷 as a 

criterion can be a good supplement for hydrological model calibration.  

The 𝐸-𝑅𝐷 strategy introduced in this study needs more case studies to corroborate its capability 

further. The combination of other traditional statistical criteria and 𝑅𝐷 shall also be examined. More 

studies are also needed to dig out more benefits of applying fractal theory in hydrological modelling.  1080 
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Table 1: Comparison of best 𝑬 between single-objective calibration and multi-objective calibration (𝑬-𝑹𝑫 

strategy). 

 Single-objective (𝐸) Multi-objective (𝐸) 

Dong 0.696 0.690 

Jinhua 0.951 0.953 

Xiang 0.820 0.822 

 

  

带格式的: 居中

带格式的: 居中

带格式的: 居中

带格式的: 居中



 26 

Table 2: Hydrological signatures of typical models in all three cases. 1305 

  Observation Best 𝑅𝐷 Best 𝐸 Largest 𝑅𝐷 

Auto correlation 

Dong 0.97 0.99 1.00 1.00 

Jinhua 0.76 0.76 0.76 0.75 

Xiang 0.94 0.95 0.94 0.94 

Relative 

variance 

Dong 0.53 0.56 0.58 0.57 

Jinhua 1.87 1.87 1.87 1.89 

Xiang 0.99 0.82 0.92 0.92 

Maximum 

monthly flow 

(m2 s⁄ ) 

Dong 1.54 1.40 1.42 1.39 

Jinhua 531.19 497.40 503.68 496.77 

Xiang 4210.01 3956.24 4027.68 4042.94 

Minimum monthly 

flow 

(m2 s⁄ ) 

Dong 0.44 0.30 0.27 0.26 

Jinhua 60.64 58.85 50.45 60.19 

Xiang 961.00 975.07 812.02 840.02 

High flow 

percentiles 

(𝑄.)(m2 s⁄ ) 

Dong 1.93 1.44 1.49 1.38 

Jinhua 752.00 745.02 734.12 740.28 

Xiang 6048.50 5817.06 5586.92 5817.08 

low flow 

percentiles 

(𝑄/.)(m2 s⁄ ) 

Dong 0.50 0.39 0.40 0.38 

Jinhua 37.77 38.55 37.80 37.31 

Xiang 803.75  790.95 845.76 744.52 
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Table 3: Determinative parameters and distance correlations (𝒓𝒅𝟐) between parameters and 𝑹𝑫. *: 𝒓𝒅𝟐 ≥ 𝟎. 𝟖 

 
𝑟,- (range of parameter) 

Dong Jinhua Xiang 

Effective precipitation 

exponent (β) (mm/mm) 
0.363 (0.010~0.012) 0.709 (0.791~0.911) 0.739 (0.435~0.499) 

Fast flow exponent (𝛼) 0.383 (0.100~0.124) *0.808 (0.473~0.579) 0.734 (0.677~0.819) 

Fast flow factor (𝐾𝐹) *0.853 (0.002~0.005) *0.812 (0.031~0.056) *0.823 (0.003~0.006) 

Baseflow factor (𝐾𝑆) *0.932 (0.016~0.153) *0.922 (0.005~0.063) *0.950 (0.010~0.048) 

Percolation (mm/day) *0.879 (1.37~7.00) *0.841 (1.10~2.34) *0.959 (1.62~3.16) 

Capillary transport 

(mm/day) 
0.122 (0~0.035) 0.084 (3.84~4.00) *0.914 (1.91~2.70) 

Degree-day factor  

(mm/(day ℃)) 
0.117 (0.01~12.2) 0.171 (14.5~15.6) *0.791 (2.80~4.20) 

 1310 
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Table 4 Parameters of WETSPRO.  

Parameter Dong Jinhua Xiang 

Recession constant 

(days) 
90 80 90 

w-parameter filter 0.14 0.43 0.38 
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Figure 1: Flow chart of using box-counting method to calculate the Hausdorff dimension of time series. 
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Figure 2: Flow chart of 𝑬-𝑹𝑫 strategy. 
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Figure 3: DEM of study areas. 
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Figure 4: 𝑬-𝑹𝑫 of last generation of GA calibration. 
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Figure 5: Typical examples with best 𝑹𝑫, best 𝑬 and largest 𝑹𝑫 (representative three-year hydrograph). 
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 1340 
Figure 6: 𝜷 and 𝑹𝑫 relationship in three cases. 
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Figure 7: 𝜶 and 𝑹𝑫 relationship in three cases. 1345 
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Figure 8: 𝑲𝑭 and 𝑹𝑫 relationship in three cases. 1350 
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Figure 9: Response of fast flow to surface water storage. For each case, fast flow responses of typical models 

with best 𝑹𝑫 and 𝑬 are presented. 1355 
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Figure 10: 𝑲𝑺 and 𝑹𝑫 relationship in three cases. 
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Figure 11: Percolation and 𝑹𝑫 relationship in three cases. 
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Figure 12: Degree-day factor and 𝑹𝑫 relationship in three cases. 
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 1370 
Figure 13: Correlation coefficients and Nash-Sutcliffe efficiency coefficients on fast flow and baseflow 

respectively of models of last generation in three cases. 
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Figure 14: Fast flow of typical models and observations (representative three-years hydrograph). 1375 
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Figure 15: Baseflow of typical models and observations (representative three-years hydrograph).  
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